Parallel template implementation of a Particle-in-Cell code for the simulation of ultrarelativistic beam dynamics

In order to simplify the development of high-performance plasma physics codes for hybrid supercomputers, a template implementation of the Particlein-Cell (PIC) method was created. The template parameters are the problemspecific implementations of "particle" and "cell" (as C++ classes).

Thus, it is possible to develop a PIC code for the supercollider...

boronina.pdf252.25 KB

The numerical simulation of interacting galaxies by means of hybrid supercomputers

In this paper, a new hydrodynamic numerical simulation of interacting galaxies is proposed. The main subgrid physics processes are: the star formation, the supernovae feedback, the cooling function and the molecular hydrogen formation. The collisionless hydrodynamic approach was used for the simulation of the stars and dark matter. An approach...

kulikov.pdf399.81 KB

Comparison between combinations of the splitting and the variational data assimilation schemes for atmospheric chemistry transport models

The atmospheric chemistry dynamics with a convection-diffusion model is studied. The numerical Data Assimilation (DA) algorithm presented is based on the additive-averaged splitting schemes. It carries out "fine-grained" variational data assimilation at separate splitting stages with respect to the spatial dimensions, i.e., the same measurement data are assimilated with different...

penenko.pdf504.07 KB

A domain decomposition algorithm using SPH and PIC methods for simulating gas-dust gravitating disks

We present a new parallel algorithm for supercomputer simulation of gas-dust circumstellar gravitating disks. The algorithm uses the domain decomposition technique and combines numerical methods of smooth particle hydrodynamics (SPH), particle-in-cell (PIC) and grid-based gravitational solver with the convolution method and parallel multidimensional Fast Fourier Transform.

The algorithm is designed...

snytnikov3.pdf368.3 KB