
Bull. Nov. Comp.Center, Num. Anal., 17 (2015), 35–42
c© 2015 NCC Publisher

A parallel method for reliability calculation of
diameter constrained networks∗

Sergei Nesterov, Denis Migov

Abstract. The problem of network reliability calculation is studied. It is assumed
that a network has unreliable communication links and perfectly reliable nodes.
The diameter-constrained reliability for such a network is defined as probability
that every pair of terminals of network is connected by operational paths with a
number of included edges less or equal to a given integer. The problem of computing
this characteristic is known to be NP-hard, just like the problem of computing
the network connectivity probability. For solving this problem, we propose the
parallel method, which is based on the well-known factoring method. The analysis
of the numerical experiments allowed us to set some important parameters of the
algorithm to speed up calculations.

1. Introduction

In the present paper, we consider the networks where the links are subject
to random failures under the assumption that failures are statistically in-
dependent. Random graphs are commonly used for the modeling of such
networks. As a rule, the network reliability is defined as some connectiv-
ity measure. The most common reliability measure of such networks is the
probability that all the terminal nodes in a network can keep connected
together, given the reliability of each network node and edge. The prob-
lem of calculation of the network probabilistic connectivity is known to be
NP-hard [1]. Nevertheless, it is possible to conduct the exact calculation of
reliability for networks with a dimension of practical interest by taking into
consideration some special features of real network structures and based on
modern high-speed computers [1–8].

In practice, it is often not enough to have a path between a chosen pair
of nodes, but it is necessary to have a path passing via a limited number of
communication links [9]. For example, if there is a constraint on the time
it takes to transmit the data between two nodes, T , then the number of
transit nodes participating in this transmission must not exceed T/t, where
t is the time it takes to process the data on each network node. Thus, we
arrive at a different reliability measure. The diameter-constrained network
reliability (DCNR) is a probability that every two nodes from a given set
of terminals are connected with a path of length less or equal to a given
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integer. By the length of a path we understand the number of edges in
this path. This reliability measure was introduced in [10] and studied in
more detail in [11–13]. The problem of computing this measure in general
is known to be NP-hard, just like the problem of computing the probability
of network connectivity. By now the complexity of the DCNR calculation
has been completely studied for different diameter values and a number
of terminals [13]. In our previous studies we developed some methods for
speeding-up the DCNR calculations [14–16].

However, despite the improvements achieved on the efficiency of the com-
putational methods for the reliability analysis, such methods still are ineffec-
tive, and so their parallel realizations are needed for operations on modern
supercomputers. By now in this area we have only a parallel approach to
the network reliability estimation by Monte Carlo technique [17, 18] and
the parallel implementation of the well-known factoring method, which was
proposed in one of our previous work [19].

In this paper, we propose a parallel method for the DCNR calcula-
tion. The proposed method is based on the well-known sequential factoring
method [20]. We have chosen the fastest modification [10] of the factoring
method for the DCNR calculation with the improvements proposed in [16].
For the parallel implementation we have chosen “Master-Slave” parallel pro-
gramming model, as we done for the calculation of the network probabilistic
connectivity [19]. The analysis of the results of the numerical experiments
allowed us to optimize some important parameters of the algorithm which
further increase its speedup and scalability.

2. The basic definitions and notations

We represent a network with unreliable edges and perfectly reliable nodes by
an undirected graph G = (V,E). For each edge e, the presence probability
0 ≤ re ≤ 1 is given. Further on we refer to this probability as edge reliability.
Also, a set of terminals K is given. It is supposed that the network operates
well when any pair of terminals can establish a connection via only the
operational edges.

An elementary event is a special realization of the graph defined by the
existence or absence of each edge. The probability of an elementary event
equals the product of probabilities of the existence of operational edges
multiplied by the product of probabilities of the absence of faulty edges.

A reliability of G with a diameter constraint d is defined as the sum of
elementary events in which every pair of terminals can be connected by a
path of length not exceeding d. By a length of path we mean the number
of edges which belong to this path. We denote this reliability measure by
Rd

K(G).
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3. Methods for the DCNR calculation

The definition of the DCNR gives a method for computation of this param-
eter. However, such a direct approach results in an exhaustive search of all
graph realizations; thus, this method is ineffective even for small-scale enu-
meration networks. That is why other methods are used for the calculation
of different reliability measures. The most common method among them is
the factoring method [20], which can be applied to any network reliability
measure, including the DCNR. The factoring method divides the probability
space into two sets, based on the success or the failure of one graph par-
ticular unreliable element: a node or an edge. We consider networks with
unreliable edges only, so we may choose any unreliable edge. The chosen
edge is called pivot. So, we obtain two subgraphs. In one of them the pivot
edge is absolutely reliable, and in the second one the pivot edge is absolutely
unreliable, that is, absent. The probability of the first event is equal to the
reliability of the pivot edge; the probability of the second event is equal
to the failure probability of the pivot edge. Thereafter obtained subgraphs
are subject to the same procedure. The total probability law gives the ex-
pression for the network reliability. For the DCNR, we have the following
formula:

Rd
K(G) = reR

d
K(G/e) + (1− re)R

d
K(G\e), (1)

where G\e is the graph G without edge e, G/e is the graph G with the
absolutely reliable edge e. Recursions continue until a graph is obtained,
in which at least one pair of terminals can not be connected by the path
of a limited length (returns 0), or all pairs of terminals are connected by
absolutely reliable paths (returns 1). Further on we refer to this method as
SFM (simple factoring method).

A modified factoring method for the DCNR calculation was proposed
by Cancela and Petingi [10]. Further on we refer to this method as the
CPFM (the Cancela & Petingi factoring method). This method is much
faster than basic factoring method in the diameter constrained case (1).
The main feature of the modified factoring method is operating with a list
of paths instead of operating with graphs. In the preliminary step for any
pair of terminals s, t, the list Pst(d) of all the paths with a limited length
between s, t is generated. It automatically removes all edges, which do not
belong to any such path, from the consideration. For example, all the so-
called “attached trees” without terminals are no longer considered. By Pd

the union of Pst(d) for all the pairs of terminals is denoted. By P (e), a set
of paths from Pd, which include the link e, is denoted. Parameters of the
modified factoring procedure are not graphs. Instead, we use 6 parameters,
which describe the corresponding graph in terms of Pd. Here we do not
outline the algorithm pseudocode, it can be found in [10].
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One of the main reasons, which makes the calculation of diameter con-
strained network reliability much more complicated as compared to other
network reliability measures, is the lack of methods for decreasing the re-
cursion quantity. In our previous studies [14–16], we obtained the methods
which can make the DCNR calculation faster. These methods are the fol-
lowing: the analogue to the well-known series-parallel transformation for the
CPFM, and the pivot edge selection strategy, which can be well applied to
the DCNR calculation by the CPFM and by the SFM (1). Also, we have
obtained the decomposition methods for calculating the DCNR for the net-
works with two terminals. The methods obtained allow us to significantly
reduce the number of recursive calls in the CPFM and complexity of the
DCNR computation.

4. Parallel implementation of the method for DCNR
calculation

In this section, we introduce an algorithm with the use of the MPI for the
DCNR calculation for supercomputers with distributed memory. The main
idea is based on the CPFM method: in the factoring procedure one part
of the problem (for example, “contracting” of an edge) remains with the
paternal process while the other one is sent to some idle process.

As in our previous research into parallel computing of the network reli-
ability [19] (without diameter constraint), we chose “Master–Slave” parallel
programming model (Figure 1). The main idea of such an approach is that
one master process controls all the other guided processes.

Figure 1. “Master–Slave” model

It was decided to send to a child process all required data for calculation
with a probability of the corresponding event. This allows us to store only
the part of result reliability with every process; it should be just summarized
at the end of the factoring algorithm. Probability of every partial “sub-
network” is a multiplicative factor which is initialized by 1 for the initial
network. It is being changed during the factoring procedure: the probability
of G\e is the probability of G multiplied by re, and for G/e –– by (1 − re).
Below we represent pseudo code of algorithms for master process and for
guided processes. The algorithm for guided processes calls the recursive
factoring procedure; pseudo code of this procedure is given separately.
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function MasterProcess

evaluate(input) % make all required data structures
send(input) to process 1 % run 1st process
while there is any busy process

receive(message) from sender
if message = I AM FREE

sender := idle status
else if message = I NEED HELP

helper := 0 or idle process
send(helper) to sender

end if
end while

end function

function SlaveProcess

RD
K := 0 % reliability part on current process

recursionCount := 0 % on current process
do

receive(message) from sender
if message = MPI FACTO

receive(input) from sender
MPIFactorization(input, 1, RD

K)
else if message = CONTRACT EDGE

receive(input, e) from sender
contractEdge(input, e, Pl, R

D
K)

end if
while message 6= STOP
send(recursionCount, RD

K) to master process
end function

function MPIFactorization(Pl, R
D
K)

e := some edge
send(help message) to master process
receive(helper) from master process
if helper = 0

contractEdge(input, e, Pl ∗ pe) from sender
% start edge contracting here

else
send(input, e, Pl ∗ pe) to helper % send this part to a helper

end if
deleteEdge(input, e, Pl ∗ (1− pe)) to master process

% another part of job
end function
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In [19], one important parameter of the algorithm was studied: the lower
limit of the dimension of a graph that could be assigned to another process.
Here we study the analogue to this parameter with a diameter constraint.
In this case it turns to the upper limit of the number of considered edges.
After the number of considered edges exceeds this limit, the current process
stops sending data to the master process and executes all procedures with-
out any help. We define this parameter as Nedges. The best values of this
parameter strongly depend on the graph structure and computer architec-
ture and can be selected experimentally. Below we are trying to find the
optimal value of Nedges, which makes the algorithm faster.

5. Case studies

Figure 2. A test graph
for the proposed algo-
rithm

In this section, we examine the scalability of
the algorithm proposed. We also try to find the
optimal value for Nedges. For the numerical ex-
periments we choose a 5 × 5 topology grid, it
contains 25 vertices and 40 edges. The num-
ber of terminals is equal to 5, diameter being
equal to 9 (Figure 2). In spite of its small di-
mension, this graph is very complicated for com-
puting its DCNR because of non-applicability
of various accelerating methods. The experi-
ments were carried out on the computing cluster
HKC-30T of the Siberian Supercomputer Cen-
ter. This cluster consists of double-blade servers

HP BL2220 G6 with Intel Xeon 5540 2.53 GHz CPUs.

Figure 3. Scalability of the parallel algorithm
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Different values of Nedges were considered. Figure 3 shows the scalability
of the proposed algorithm for different values of Nedges. As we can see, the
optimal value is between 10 and 20.

The results show that the CPFM works well in parallel implementation
for supercomputers with distributed memory. The algorithm shows a linear
speedup for the number of cores not exceeding 128.

6. Conclusion

In this paper, we introduced a parallel implementation of the factoring
method for the exact calculation of the network reliability in with the di-
ameter constraint. Also, we offer to set one important parameter of the al-
gorithm proposed, which significantly improve its performance. The results
of the numerical experiments show that the CPFM works well in parallel
implementation for supercomputers with distributed memory. Our primary
goal is to further improve the scalability of the proposed algorithm. It seems
that there are two ways to do this: using several master processes or not
using them at all.
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