
Bull. Nov. Comp.Center, Num. Anal., 17 (2015), 53–59
c© 2015 NCC Publisher

Particle reordering optimization in
the Particle-in-Cell method implementation for

the GPU-based supercomputers∗

A.V. Snytnikov

Abstract. The main point of the performance of a code for a GPU (Graphical
Processing Unit) is data locality. For the PIC method this means that all the
particles belonging to one cell must be located closely in memory. During the
particle push the particles might move to other cells, and must be transported to
a different place in memory (to a different cell). This is called particle reordering.

For the first time the particle reordering technique is proposed that involves
no critical sections, semaphores, mutexes, atomic operations, etc. This results in
almost 10 times redution of the reordering time compared to the straightforward
reordering algorithm.

1. Introduction

The objective of the present paper is to analyze and to increase the per-
formance of the template implementation of the PIC method for the GPU,
proposed in [1].

This work has been inspired by the effect of anomalous heat conduc-
tivity observed at the GOL-3 facility in the Budker Institute of Nuclear
Physics [2]. The GOL-3 facility is a long open trap where the dense plasma
is heated up in a strong magnetic field when injecting a powerful relativistic
electron beam of a microsecond duration. The effect is a decrease in the
plasma electron heat conductivity by 100 or 1000 times as compared to the
classical value for the plasma with the temperature and density observed
in the experiment. An anomalous heat conductivity arises because of the
turbulence that is caused by the relaxation of a relativistic electron beam
in the high-temperature Maxwellian plasma. The physical problem is to
define the origin and mechanism of the heat conductivity decrease. This is
of great importance for the fusion devices because the effect of anomalous
heat conductivity helps in heating plasma and, also, in confining it. The
problem of heat transport in fusion devices was widely discussed (e.g. [3, 4])
and some recent works [5].

It is also necessary to provide a large number of particles for each cell
of the grid for the simulation of turbulence. The level of non-physical sta-
tistical fluctuations is inversely proportional to the number of particles per

∗Supported by the RFBR under Grants 14-07-00241, 15-31-20150, and 14-01-31088
and, also, by the SB RAS Integration Projects 103 and 113.

54 A.V. Snytnikov

cell. So, if there are too few particles, all the physical plasma waves and
oscillations will be suppressed by the non-physical noise. Thus, the perfor-
mance improvement will always be necessary, and this is the objective of
this paper.

2. The model description

The basic plasma physics equations. The mathematical model em-
ployed for the solution of the problem of beam relaxation in plasma consists
of the Vlasov equations for ion and electron components of plasma and of
Maxwell’s equation system. These equations in the usual notation have the
following form:

∂fi,e
∂t

+ ~v
∂fi,e
∂~r

+ ~Fi,e
∂fi,e
∂~p

= 0, ~Fi,e = qi,e

(
~E +

1

c
[~v, ~B]

)
,

rot ~B =
4π

c
~j +

1

c

∂ ~E

∂t
, div ~B = 0,

rot ~E = −1

c

∂ ~B

∂t
, div ~E = 4πρ.

In the present paper, this equation system is solved by the method described
in [6]. All the equations will be further given in the dimensionless form. The
following basic quantities are used for the transition to the dimensionless
form:

• characteristic velocity is the velocity of light ṽ = c = 3 · 1010 cm/s;

• characteristic plasma density ñ = 1014 cm−3;

• characteristic time t̃ is the plasma period (a value inverse to the elec-

tron plasma frequency) t̃ = ω−1
p =

(
4πn0e

2

me

)−0.5
= 5.3 · 10−12 s.

The Vlasov equations are solved by the PIC method. This method im-
plies the solution of the equation of motion for model particles:

∂~pe
∂t

= −(~E + [~ve, ~B]),
∂~pi
∂t

= κ(~E + [~vi, ~B]),
∂~ri,e
∂t

= ~vi,e,

κ =
me

mi
, ~pi,e = γ~vi,e, γ−1 =

√
1 − v2.

The quantities with subscripts i and e are related to ions and electrons,
respectively.

Particle reordering optimization in the Particle-In-Cell method. . . 55

The leapfrog scheme is employed to solve these equations:

~p
m+1/2
i,e − ~p

m−1/2
i,e

τ
= qi

(
~Em +

[
~v
m+1/2
i,e − ~v

m−1/2
i,e

2
, ~Bm

])
,

~rm+1
i,e − ~rmi,e

τ
= ~v

m+1/2
i,e ,

where τ is the timestep.
The scheme proposed by Langdon and Lasinski is used to obtain the val-

ues of electric and magnetic fields. The scheme employs the finite-difference
form of the Faradey and Ampere laws. A detailed description of the scheme
can be found in [6]. The scheme gives the second order of approximation
with respect to space and time.

3. The GPU implementation

The implementation of the above PIC algorithm for the GPUs is quite stan-
dard. The field evaluation method is ported to the GPU almost without any
change. The computation speed is high enough even without optimization.
The field arrays are stored in the GPU global memory.

The bottleneck of the PIC codes is the particle push. With the CPUs,
it takes up to 90 % of runtime. So, first the particles are distributed among
cells. This step reduces the push time only twice with the CPUs. With the
GPUs, it is even more important since it enables the use of texture memory
(texture memory is limited and the whole particle array will never fit). The
second step is keeping the field values related to the cell (as well as to the
adjacent cells) in the cell itself. This is important since each particle needs
6 field values and writes 12 current values to the grid nodes. Now this
all is done within a small amount of memory (the cell) without addressing
the global field or current arrays that contain the whole domain. Then the
evaluated currents from all cells are added to the global current array.

This gives the speedup of about 10 for Tesla 2070 as compared to a single
Xeon core. This is not so much, but no sophisticated optimization has been
applied yet.

4. The template implementation of the PIC method

In order to accomplish the main objective (a tool for the fast development
of the new problem-oriented PIC codes for GPUs) it is necessary to do the
following:

• develop an optimized GPU implementation of the PIC method for a
particular problem;

56 A.V. Snytnikov

• create a set of diagnostics tools to facilitate the analysis of results by
the physicist; and

• provide an option to replace problem-specific parts of the computa-
tional algorithm.

In order to do the latter, the C++ templates are used. This means
that the “computational domain” class that contains “cell” class objects is
implemented. The “cell” class contains “particle” class objects. Here The
“computational domain” class is a template class with the “cell” class as a
parameter. The “cell” is a template itself, with “particle” as a parameter.

For a wide variety of the PIC method implementations most of the oper-
ations of a cell with its particles are absolutely the same (adding/removing
a particle, particle push, the evaluation of the particle contribution to the
current). Only the gridless particles method or gyrokinetic codes might be
an exception. And even they fit the proposed scheme since they just don’t
need some of the operations, they do not introduce anything new. This fact
gives a hope that these operations once implemented as a template will be
efficient for a number of problems solved with the PIC method.

Also, the operations of the computation domain with cells are absolutely
the same. The things that differ are the initial distribution and the bound-
ary conditions. Thus, these operations must be implemented as virtual
functions.

Since particle attributes and the operations with particle, are similar in
most cases, it is possible to create a basic implementation of the “particle”
class containing particle position, momentum, charge, and mass. Then, if
for some new physical problem the “particle” needs new attributes, then a
derived class is implemented, and this new class “derived particle” is used
as a parameter to the “cell” template class.

At present, there are object-oriented implementations of the PIC method
(e.g., the OOPIC library), and also the template libraries for the PIC method
[7, 8], but for CPU-based supercomputers, not for hybrid ones.

The porting of the implemented PIC method template to the GPU was
done in the following way–– on the basis of the PIC method template (class
Plasma) a derived class was created (class GPUPlasma), which is also a
template. In the GPUPlasma, the following methods were added:

• copying the domain to GPU,

• comparison of CPU and GPU results, and

• invocation of GPU kernels for field evaluation.

The implementation of the “cell” for the GPU (GPUCell class) was in-
herited from the Cell class. It is important that the particle storage within
a cell must be optimized in terms of the GPU memory, thus the structure

Particle reordering optimization in the Particle-In-Cell method. . . 57

or the class arrays are not suitable. The GPUCell class also includes copy-
ing to and from a device and comparison of the GPU and the CPU cells.
The “particle” implementation for the GPU here is exactly the same as for
the CPU. Here it is necessary for debug that the computation methods are
implemented just once both for the CPU and the GPU.

5. The bottleneck of the GPU implementation of the PIC
method

Most of the time is usually spent on the particle pusher. But as can be
seen from Table 1, in this implementation of the PIC method the particle
reordering stage apperared to be the most time-consuming. The reason is
the following. When a cell transmits its particles to another cell (writes the
data to the particle array of this another cell), in the writing process one
must be sure that nobody else is writing there at the same time. And this
can easily happen since all the cells transmit their particles simultaneously.
In such a way, a certain writing protection tool should be used. In the first
implementation of the algorithm, a semaphore was given to each cell, and
when it is “on”, writing is prohibited. Thus, many cells are at the same
time waiting to write their particles in some other cells which appear to be
busy. And everybody waits. . .

6. Optimization of separate kernels

Particle pushing was previously used only in the global memory. But the
profiling shows that this is a weak point. Due to this reason, the shared
memory is used to save electromagnetic fields. There is no performance in-
crease in pushing possibly because of some bigger problems, such as memory
access patterns. This requires further analysis.

Particle reordering. The following scheme is proposed to reduce the re-
ordering time:

1. The reordering kernel is divided into two parts;

2. Every cell constructs a list of particles that fly to other cells;

3. A 3D matrix of 33 size is filled which indicates to how many particles
are going to fly to each neighbour cell (there are 26). Also, a position
in the list must be provided;

4. A synchronization point, since all the cells should terminate;

5. Every cell calls its neighbour, learns how many particles are going to
fly from the neighbour cells and where they are exactly located, and
writes these particles into its own particle array.

58 A.V. Snytnikov

Table 1. The result of optimization for the main stages of the GPU
implementation of the PIC method, timing for Tesla M2090, ms

Stage Not optimized Optimized

Particle push 164.431 211.082
Field evaluation 0.272 1.195
Particle reordering 2049 220.623
Current assignment 19 22.67
Field assignment 90.4 11.983

One should notice that nowhere in this algorithm a need of using the same
data at the same time arises. This means that all cells can work concurrently.
That is why in the optimized version the reordering is much better.

The current and field assignment. This was previously sequentially
done for each cell (each cell uses one CUDA thread). Using 125 threads (the
size of a local field array in each cell) resulted in much faster work (the last
line in Table 1).

7. Performance with different GPUs

In Table 2, the main parameters of the GPUs used in the optimization tests
are shown. In Table 3, the time instant for different stages of the algorithm
are given. The point of interest here is not just looking at these numbers,
but analyzing difference and proposing a new optimization strategy. First,
one can see that the field evaluation and assignment are faster with K40.
This means that regular patterns are to be provided everywhere to attain
good performance. Second, a push is performed almost 10 times slower with
GeForce than that having even more cores than Tesla 2090. This means
that a program mainly depends on the bus width and on the number of
multiprocessors. Third, the current assignment time is close to Tesla and
Kepler (Tesla K40). This means that not all the cores are used (Kepler has
5 times more!).

Table 2

Parameter
GeForce

GTX 850M
Tesla M2090 Tesla K40m

Total amount of global memory, Mb 4096 5375 11520
Number of multiprocessors 5 16 15
Number of CUDA cores 640 512 2880
GPU max clock rate, MHz 902 1301 745
Memory bus width, bit 128 384 384

Particle reordering optimization in the Particle-In-Cell method. . . 59

Table 3. Timing of the main stages of the algorithm with different
GPUs (optimized version), ms

Stage
GeForce

GTX 850M
Tesla M2090 Tesla K40m

Particle push 2000 211.082 285.839
Field evaluation 1.004 1.195 0.353
Particle reordering 2226 220.623 191.298
Current assignment 316 22.67 44
Field assignment 169 11.983 8.066

8. Conclusion

An optimization strategy for the GPU implementation of the PIC method
is presented. A new particle reordering method is proposed with 10 times
reduction of the reordering time.

References

[1] Snytnikov A.V., Romanenko A.A. Parallel template implementation of Particle-
In-Cell method for hybrid supercomputers // Bull. Novosibirsk Comp. Center.
Ser. Computer Sci. –– Novosibirsk, 2014. –– Iss. 36. –– P. 79–89.

[2] Astrelin V.T., Burdakov A.V., Postupaev V.V. Generation of ion-acoustic waves
and suppresion of heat transport during plasma heating by an electron beam
// Plasma Physics Reports. –– Vol. 24, No. 5. –– P. 414–425.

[3] Cohen B.I., Barnes D.C., Dawson J.M., et al. The numerical tokamak project:
simulation of turbulent transport // Computer Physics Communications. ––
May, 1995. –– Vol. 87, Iss. 1–2. –– P. 1–15.

[4] Jaun A., Appert K., Vaclavik J., Villard L. Global waves in resistive and hot
tokamak plasmas // Computer Physics Communications. –– December, 1995. ––
Vol. 92, Iss. 2–3. –– P. 153–187.

[5] Gardarein J.-L., Reichle R., Rigollet F., et al. Calculation of heat flux and
evolution of equivalent thermal contact resistance of carbon deposits on Tore
Supra neutralizer // Fusion Engineering and Design.–– October, 2008.–– Vol. 83,
Iss. 5–6. –– P. 759–765.

[6] Vshivkov V.A., Grigoryev Yu.N., Fedoruk M.P. Numerical “Particle-in-Cell”
Methods. Theory and Applications. –– Utrecht-Boston: VSP, 2002.

[7] Decyk V.K. Sceleton PIC codes for parallel computers // Comp. Phys. Comm.––
May, 1995. –– Vol. 87, Iss. 1–2. –– P. 87–94.

[8] Malyshkin V.E., Tsigulin A.A. ParaGen–– the generator of parallel programs for
numerical models // Avtometriya. –– 2003.–– No. 3. –– P. 124–135 (In Russian).

60

