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Research into periodic signal processing
by the median filters

Vladimir I. Znak

Abstract. We discuss a specific nature of the phase-synchronized-weighted
(Synphase-Weighted) Median Filters when processing frequency-modulated (possi-
bly, swip) signals recorded at a discrete time. It is shown that the response of the
Synphase-Weighted Median Filters weaker depends on the filter length than the
response of conventional median filters. The conclusions obtained are confirmed
by the results of numerical statistical modeling. The algorithm of processing of a
signal with a frequency band 5 Hz is presented.

1. Introduction

The median filters are of interest to us as means of preserving signal steps,
sharp discontinuities and edges when processing a signal for the noise sup-
pression. The nature of a median and principles of appropriate filtering are
very simple. A median is the central value of numbers sorted in the ascend-
ing order, and the median filtering of any sequence is the replacement of
the central element (CE) of the sequence by the median. In this way, the
median filtration for the sequence

{y1, . . . , yn} = Y, (1)

is the following:

u0.5(n) = MEDn(yc−ν , . . . , yc, . . . , yc+ν) = ỹc, (2)

where ỹc is the central value of the variational row

{ỹc−ν ≤ . . . ≤ ỹc ≤ . . . ≤ ỹc+ν} = Ỹ , c ∈ Z, (3)

composed of the terms of sequence (1). Here n = 2ν + 1 is odd.
Thus, we consider the median filter as a particular case of the percentile

filter
uα(n) = RANKr(n)(yc−ν , . . . , yr, . . . , yc+ν) = ỹr,

where α = (r−1)/(n−1) is measure of the size of the corresponding sample
of the sequence Y . For a median, we have α = 0.5, r = c.

Let to each yi ∈ Y a rational number or the weight wi ∈ W , i = 1, n, be
assigned, where the weight wi is interpreted as the number of copies of the
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element yi (usually, weights are selected symmetric with respect to the CE of
sequence (1)). In this connection, N =

∑n
i=1 wi is the length of the sequence.

Now, to row (3) we assign the sequence of weights W̃ = wj(i), i, j = 1, n,
where wj(i) are rearranged to permutations of the elements yi ∈ Y according
to their rank. A median is selected by the consecutive account of the weights
up to the time of fulfilling the condition

∑c
j=1 wj(i) = (N + 1)/2:

uw
0.5(n) = MEDn(w)

(
y

(w(c−ν))
c−ν , . . . , y(w(c))

c , . . . , y
(w(c+ν))
c+ν

)
= ỹ(w(i))

c . (4)

The non-integer weights can be transformed to integers by introduction of
an appropriate factor. Schemes for operation with non-integer weights are
offered in paper [1]. Some specific features of the median filters were deter-
mined in works [2, 3]. In the research into the filter response to a cosine
function [2], the author comes to the conclusion about likelihood of the spec-
tral characteristic of the moving medians and the moving averaging. The
result is presented for a simple unweighted filter provided that the length
of the filter does not exceed the period of the function. In paper [3], the
authors propose a modified trimmed mean (MTM) filter containing the fea-
tures both of the median and the linear filters. But the authors do not
investigate the behavior of this filter on periodic signals.

Our task is to propose such a modification of a median filter that would
be adapted for the processing of a frequency-modulated signal, to investigate
the behavior of this filter, and to weaken the dependence of the filter response
on length.

2. Basic definitions

In our case, we consider a signal, recorded in the digital mode during some
discrete time using a preassigned time interval ∆t = const. First of all it is
worthwhile to dwell in more detail on the basic definitions.

2.1. The case of a harmonic signal. Let us address to a sinusoidal
harmonic function

y(t) = sin(ϕ + $t), (5)

recorded at discrete moments of time as the sequence

Y = {yi = sin(ϕ + $i∆t), i = 0,±1, . . . ,±ν}, (6)

where n = 2ν + 1 = 2RT is the length of the record and T is the period
of the function. Let us assume the length of the sequence be such that the
condition

(ν − 1)$∆t ≤ R2π ≤ ν$∆t (7)

is satisfied.
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Then
VR =

RT

∆t
=

R2π

$∆
(8)

is the evaluation of R periods of the signal in quanta of time (R ≥ 1 is
integer).

Let to elements yi ∈ Y of sequence (6) there be assigned weights such
that wc = wc±jT = 1, j = 1, R, while the other weights are equal to zero.
The filter with these features will be called a co-phased (phase-synchronized-
weighted) or synphase weighted (SPhW) filter. The weight of the central
element can exceed the weights of other components –– for emphasizing its
value–– more than by unit. It is the case of the weighted SPhW filter. The
computation of the corresponding weights and the response of the SPhW
filter to a harmonic signal are established in paper [4]. Because of importance
of the algorithm of calculating weights for the co-phased components of the
sequence Y , let us present here:

1. Computation of length of the filter as

dne, where n =
2RT

∆t
+ 1; (9)

2. Realization of assignments: w0 = 1, w±i = 0, i = 1, ν;

3. Introduction of the integer variable j = 1, . . . , R, where j is a cycle
index;

4. Computation of indices of the elements with nonzero weights, and
computation of the corresponding weights according to the rules:

i) Vj = jT/∆t;
ii) if Vj = dVje = bVjc, then w±Vj = 1 and go to Item 5; else
iii) w±dVje = Vj − bVjc; w±bVjc = dVje − Vj ;

5. If j < R, then j := j + 1 and go to Item 4i; else exit from the loop
and finish the procedure.

Here, we designated as dxe the smallest integer greater or equal to x (the near-
est from above) and as bxc–– the largest integer less or equal to x (the nearest
from below).

2.2. The case of a frequency-modulated signal. The response of the
SPhW filter to a frequency-modulated signal is established in paper [5].
In this paper, based on the results of paper [5] we will demonstrate, with
attraction of a specific example, the weakening of dependence of the response
of the SPhW filter on length, and propose the algorithm of processing of a
signal with frequency band 5 Hz.
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Now, we turn to the sequence of sinusoidal functions

{y(sg)
l (t), l = 1,m}, where y

(sg)
l (t) = sin(ϕl + $

(sg)
l t), (10)

recorded at discrete moments of time ti(l) with a permanent period of quan-

tization ∆t and with the circular frequencies $
(sg)
l (the frequency band

∆f of the sequence is constrained: ∆f = fm − f1). Such a sequence is a
frequency-modulated (FM) signal. We will present a sample of the l-th term
of sequence (10) as a row

y
(sg)
i (l) = sin(ϕl + $

(sg)
l i∆t), i = 0,±1, . . . ,±ν (11)

of the length n = 2ν + 1 satisfying conditions (7), (8). Let T (fl) be the
evaluated (own) period of the SPhW filter and T (fl) ∼ T

(sg)
i . The response

of the SPhW filter of length N = 3 (R = 1) is the following:

uf,w
0.5,n(φ1)(l) = MEDn(w)

(
sinϕl, sin(ϕl ± 2π(T (sg)

l + ςl)/T
(sg)
l )

)
. (12)

Here ςl = T (fl) − T
(sg)
l . So, the estimation of the relative period deviation is

∆l =
f

(sg)
l

f (fl)
−

[
f

(sg)
l

f (fl)

]
, (13)

where [x] is the integer nearest to x.
In a more general case, expression (13) acquires the form

∆l,j =
jf

(sg)
l

f (fl)
−

[
jf

(sg)
l

f (fl)

]
. (14)

Here −0.5 ≤ ∆l,j ≤ 0.5 or
|∆l,j | ≤ 0.5. (15)

Now the response (12) of the SPhW filter will look like:

uf,w
0.5,n(φ1)(l) = MEDn(w)

(
sinϕl, sin(ϕl ±∆ϕl)

)
, (16)

where ∆ϕl = 2π(T (sg)
l + ςl)/T

(sg)
l .

Let

Ql =
∫ 2π

0

u
(f,w)
0.5,n(φ1)(l)

yl
dϕl, 1 ≤ l ≤ m, (17)

be the generalized estimation of the response quality of the SPhW filter,
where yl = sinϕl is the signal value corresponding to the CE of sequence
(11). It is possible to demonstrate that

Ql

2π
∼= 1− |2∆ϕl|

π
. (18)
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The behavior of this estimation as
function of |∆l,j | is shown in Fig-
ure 1.

Now for the average estimation

∆l =
1
m

m∑
l=0

(
jf

(sg)
l

f (fl)
−

[
jf

(sg)
l

f (fl)

])
and under the condition of the own
filter frequency band

Figure 1. Generalized estimation of
the response quality

∆f (fl) = {f (fl)
1 , f

(fl)
2 , . . . , f

(fl)
k },

we have the functional

∆r,l =
1
m

m∑
l=0

(
jf

(sg)
l

f
(fl)
r

−
[
jf

(sg)
l

f
(fl)
r

])
. (19)

The results are obtained under the condition of equality of the central ele-
ment weight to unit. If the weight of the CE exceeds the weights of other
components, then the results obtained are applicable in this case, too, be-
cause the correlation of ranges of the variable ϕl and the function ∆l,j is
saved. Emphasizing the value of the central element will only improve the
quality of such a response as this will displace a centroid to ϕl. However,
the nonlinear character of the functions such as median and trigonometrical
essentially restricts the possibility of their analysis and obtaining more exact
estimations.

From the analysis of expressions (18), (19), we can turn to the problem
of selecting the structure of the SPhW filter oriented towards a frequency-
modulated signal processing.

3. Comparison of the SPhW and conventional median filters

Let us compare the degree of preservation of a periodic signal on the output
of the SPhW filter to that on the output of the corresponding conventional
median filter.

Expressions (18), (19) make it possible to conclude that the SPhW filter
with a length N = {3, 5} together with f (fl) = 7 Hz, will save a satisfactory
quality of a signal in the frequency band 6.3÷ 7.75 Hz.

Let us have a record of this signal with the quantization interval equal
to ∆t = 0.02 s, and a frequency step 0.1 Hz. The period (time of existence)
of the model is 40 s; and the time of existence of each frequency is the same.
We will use the autocorrelation coefficient K(y, u), where y is the input of



122 V.I. Znak

Table 1. Autocorrelation coefficients
for unweighted filters

n Med SPhW

3 0.99 0.99
5 0.93 0.99
7 0.27 0.98
9 −0.90 0.93

11 −0.92 0.84

Table 2. Autocorrelation coefficients
for weighted filters

n/w Med SPhW

3/3 0.99 1.00
5/3 0.99 0.99
7/5 0.93 0.99
9/5 0.76 0.99

11/7 0.27 0.96
13/7 0.37 0.95
15/9 0.37 0.95

the filter, u is the output, in order that the degree of preservation of a signal
on the output of the filters be estimated. Results of estimations are given
in Table 1 (the results of testing the unweighted filters), and Table 2 (the
results of testing the weighted filters). In Table 1, the column n includes
the filter lengths, and Med, SPhW are autocorrelation coefficients for the
conventional median and the co-phased filters, respectively. Table 2, in
addition to the filter lengths, includes the weight of the central element ––
w (after slash, i.e., n/w denotes the length n and the weight of the CE).
The appropriate dependence of the signal preservation degree on lengths
are shown in Figure 2, for unweighted, and in Figure 3, for weighted filters,
respectively.

Figure 2. Autocorrelation
coefficients for unweighted filters

Figure 3. Autocorrelation
coefficients for weighted filters

In principle, this estimation of the behavior of the SPhF filter is valid for
an optional sample of f (fl) and the correspond frequency band. In this case,
it is important to satisfy the condition of the ratio between the repetition
rate of time sampling and f (fl).

4. The parallelizing as a principle of expansion of frequency
band of the SPhW filter

In the previous section, we have demonstrated the process of working up a
frequency-modulated signal with the frequency band ∆f ≈ 1.5 Hz. Here,
we will demonstrate that there exists a possibility of signal processing with



Periodic signal processing by the median filters 123

a wider frequency band. At the same time, we will show restoring a signal
from noise. For this purpose, we will show the parallel organized structure
of filter that permits signals processing in a wide frequency band. The one
version of such structure of the SPhW parallel organized filter is offered in
[6]. The threshold principle of the composition/restoration of a signal filtered
by a n-tap structure SPhW filter was used there. The median principle of a
signal restoration is concerned here.

For the illustrative purposes, we consider the processing of a linear
frequency-modulated (LFM) signal using the numerical statistical model-
ing. Let the source signal be LFM signal with a frequency band 5–10 Hz
and with a frequency step equal to 0.1 Hz. The quantization interval is
∆t = 0.02 s. The period (time of existence) of the signal is 40 s. For distor-
tion of a signal, white noise with zero mean Gaussian distribution is used.
The level of the noise is such that a signal value is five times lower than the
level of noise (on the average).

For the signal processing in our case, we can use the algorithm, whose
flow-charts are shown in Figures 4, 5. The algorithm includes three parallel
directed sets (Set 1, Set 2, Set 3; Figure 4), each directed set including eight
parallel lines (Figure 5). At first, we consider functions of operators of these
lines.

- rY ��
Set 1

Set 2
AA Set 3

Ẏ1

Ẏ2

Ẏ3

MED(ẏk,1, ẏk,2, ẏk,3),

ẏk,j ∈ Ẏj , ∀k, j = 1, 2, 3
-Ẏ

Figure 4. Flow-chart of signal processing

- rY ��
AA

U(f0, j)

· · ·
U(f7, j)

U̇(f0, j)

U̇(f7, j)

Ü(f0, j)

Ü(f7, j)

Y1,j

Y7,j

F (σ
(L)
0,j , . . . , σ

(L)
7,j ) -

Ẏj

Figure 5. Signal processing on Set j, j = 1, 2, 3

First of all, operators of each i-th line (i = 0, . . . , 7) are calculated for
own frequency: f0 = 5.15 Hz, f1 = 5.85 Hz, f2 = 6.5 Hz, f3 = 7.1 Hz,
f4 = 7.7 Hz, f5 = 8.25 Hz, f6 = 8.9 Hz, f7 = 9.55 Hz. Here the weights are
calculated with the use of the above-described algorithm.

The operators U(fi, j) of one separate Set j, j = 1, 2, 3, are identi-
cal to each other with the exception of the own frequency fi. The same
remark is valid for the rest operators U̇(fi, j), Ü(fi, j). As far as distinc-
tions of these operators for separate directed sets are concerned, they are:
U(fi, 0) implements the function uf1,3

0.66,N(φi
+ufi,3

0.34,N(φ1); U̇(fi, 0) implements

ufi,3
0.71,N(φ2) + ufi,3

0.3,N(φ2); Ü(fi, 0) implements ufi,3
0.5,N(φ2,φ3).
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The operator F (σ(L)
0,j , . . . , σ

(L)
7,j ) reconstructs the LFM signal in all the

frequency band. As basis of the operator for building-up the signal we use
a standard deviation of a signal with some basis L of the signal values:

σ(L) =
(∑

i∈L

(xi −M(x))2
)1/2

. (20)

Let the basis L be running along the signal values from the beginning to
the end of the record, for each line. Hence, we will have a set of standard
deviations Θ(L)

j (k) = {σ(L)
0,j (k), . . . , σ(L)

7,j (k)} for each k-th moment of the
processing. The examined operator picks out as ẏ(k) ∈ Ẏj such yi,j(k) ∈
Yi,j , i = 0, . . . , 7, j = 1, 2, 3, for which corresponds a maximum value of a
standard deviation, i.e, the function

f(σ(L)
i,j (k), yi,j(k)) = ẏ(k) if σ

(L)
r,j (k) ≥ σ

(L)
i,j (k) (21)

is realized for any σ
(L)
i,j (k), σ(L)

r,j (k) ∈ Θ(L)
j (k).

Three iterations of the signal processing for L = 9 were realized: the
output Ẏ was used as repeated input of the algorithm.

The results of the test data of the statistical trial are given in Table 3.
The iterations of the processing are shown in table rows: K

(∗)
I /K

(0)
I , . . . ,

K
(∗)
III/K

(0)
III (slash is used to denote first/second lines of the table). Here,

the first lines of the table contain the autocorrelation coefficients for a noise
signal and the second lines–– the autocorrelation coefficients for a pure signal
(not deformed by noise). At the same time, K

(∗)
0 , K

(0)
0 are the autocorre-

lation coefficients before processing. The degree of preservation of a pure
signal on the output of the filter after iterations is shown in Figure 6. The

Table 3. Autocorrelation coefficients for frequency-modulated
signals: K

(∗)
0 = 0.4235, K

(0)
0 = 1.0

Coefficient
Directed set

MED
1 2 3

K
(∗)
I 0.5 0.4236 0.562 0.5342

K
(0)
I 0.998 0.989 0.967 0.992

K
(∗)
II 0.5840 0.5505 0.6403 0.6076

K
(0)
II 0.99 0.987 0.963 0.987

K
(∗)
III 0.6253 0.6089 0.6486 0.6329

K
(0)
III 0.986 0.984 0.96 0.984
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5.0 Hz 5.1 Hz
sw

0

I

II

III

Figure 6. Change of the waveform of
a pure signal on the output of the filter
after iterations of processing

5.0 Hz 5.1 Hz
sw

0

I

II

III

Figure 7. Restoration of noise signal
on the output of the filter after iterations
of processing

degree of restoration of a noise signal on the output of the filter after it-
erations is shown in Figure 7. The length of the signal does enable not
us to present it in full volume in the figures, therefore here only the lower
frequency are shown (5.0 Hz, 5.1 Hz).

One can judge about the degree of preservation of a pure signal and
about the degree of restoration of a noise signal.

Finally, the above-described algorithm does not pretend to be the opti-
mal algorithm (i.e., the one having a minimum number of computing oper-
ations used for the maximum precision). This problem demands separate
attention. Our purpose was to demonstrate the existence of a possibility
of processing of the FM signals with a wide frequency band by the SPhW
filters.

5. Conclusion

Thus, in any case of processing of a periodic signal, the behavior of a co-
phased median filter is more preferable against the background of the be-
havior of a conventional median filter in all cases without exception (see
Figures 2 and 3).

Let us make one remark concerning the signal processing by such filters:
variation of a rank up/down in regard to a median opens up a possibility for
super-position of outputs of a pair of filters working in parallel, such that one
of them is a percentile filter uα,N(φ1,...,φR) = RANKα

N(w)(y0, φV , . . . , φ±RV ),

and the other is uβ,N(φ1,...,φR) = RANKβ
N(w)(y0, φV , . . . , φ±RV ). At the same

time, the equality (α + β)/2 = 0.5 should be fulfilled. The design of such
a filter is close to the idea of the Modified Trimmed Mean Filters stated in
[3]. However, in our case, the use of such a composite filter demands some
attention: the filter is transformed to the category of the linear averaging
ones if the parameters α, β exceed certain values (this is manifested in the
effect of smoothing a step-like function).
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