Bull. Nov. Comp. Center, Num. Model. in Atmosph., etc., 6 (2000), 89-98
© 2000 NCC Publisher

Modeling of barotropic fluid dynamics
on the sphere based on the contour
dynamics

L.V. Zinovieva

In this paper, a solution of equations of the barotropic fluid evolution in the
spherical geometry by the method of the contour dynamics is considered. Integro-
differential equations for velocity and some dynamic characteristics are obtained.
The motions and interactions of some vortex structures on the sphere are studied.

1. Introduction

The contour dynamics (CD) as a technique of solving nonlinear two-dimen-
sional Euler equations in classical hydrodynamics was first described by
Zabusky, Hughes and Roberts in 1979. This method is applied for model-
ing of the evolution of vortical structures and is based on an assumption
that the vorticity has piecewise-constant distribution. Its main advantage is
that the problem is reduced to the dynamics of contours. So, the dimension
of the field of states of the system decreases. In present, there are many
publications which are concerned with the method of contour dynamics in
various fields — from the physics of plasma to dynamics of the atmosphere
and ocean. One can find a detailed review of studies which presents the
contour dynamics in hydrodynamics problems in [1]. '

The present study describes a numerical scheme, which permits us to
apply the CD to the barotropic fluid evolution problem on the sphere.

2. The contour dynamics for the atmosphere
and ocean on the sphere

2.1. General principles of the CD. Sufficient conditions of using the
CD can be formulated as the following five principles:

1. The fluid motion is quasi-two-dimensional, and the velocity field can
be written as

u = up(z,y,t) - a(z,y,t)y, v=vwo(z,y,t)+ a(z,y, ). (1)
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The velocity is written as a total of a “background” value (uo, vo) and
a component connected with a stream function %. The coefficient a
depends on the geometry of a problem.

2. As the corollary of the dynamic equation, there exists some adiabatic
invariant II(z,y,t) which is constant for any material point:

dll
'EEH,:-FHH,;-I-UHQ.:O. (2)

3. The adiabatic invariant is connected with the stream function by an
elliptic operator L:

I = Ly. (3)

4. The operator L is reversed by the Green function G(z,y,§,n):
v = [[nE G dedn. @

5. At the initial moment
II= HOX(DO)! (5)

where IIp is a constant. When moving, Dy transfers into D with
a boundary C(t). The validity of the expression IT = Tlpx(D) at
any moment of time is evident from the condition of the invariant
conservation.

We determine the function
1
o &n= [ Glyis+E-2)ny+m-vzdz  ©

which satisfies the equality G = [(§ — =) F]¢ + [(n — y) Fl»-
Now, taking this property into account and applying the Stokes theorem,
we obtain the formula for the stream function

b =Tof FIE=a)dn = (1-1)d€). Y

Thus, the stream function and the velocity field (see (1)) are unambigu-
ously determined by the contour C(t), whose motion is described by the

equations
dr dy

a=" @
where 7, y are meant to denote the Lagrangian co-ordinates of the fluid
particles belonging to the contour.

=0, (8)
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In case of an arbitrary piecewise-constant distribution, the velocity field
is calculated by superposition of effects of all the contours in which adiabatic
invariant has a discontinuity.

A simple case, where conditions of applicability of the method are fulfilled
is a fluid motion described by the Euler equations.

2.2. Numerical solution of the Euler equations. Under the assump-
tion that fluid is incompressible, inviscid and its motion is plane-parallel,
two problems are considered: interaction of an initially round vortex of ra-
dius 0.3 and a point vortex with the same sign and with equal values of the
circulation —0.097 and interaction of two round vortices of radius 0.3 and
with the circulation —0.097.

The evolution of vortices is described by the Euler system of equations
which can be written down in terms of the stream function and the vorticity.

wt + wwy + vwy =0, T»bwz'}"/’yy:w’ u=_¢ya v = Py.

The expression for the stream function is obtained using the Poisson
equation

1
v= o [[wle,minRdgan,
and, respectively, :
- w
U= Q—chln R(e; d€ + e, dn). (9)

When solving problems, we made use of the numerical scheme proposed
in [2].

In Figure 1, there is shown an interaction between the round vortex and
the point vortex. The vortical domain and the point vortex spin around
the point in the centre of the flow. When moving, the shape of the domain
becomes oval. At t = 24, a quasireturn occurs — the shape of the domain
becomes nearly round.

Two round domains rotate around the centre of symmetry, in the time
interval from 4 to 12 they are stretching, becoming closer to each other, at
¢t = 15 their boundaries practically coincide. The motion of the domains is
displayed in Figure 2.

It is impossible to solve the problem of interaction of two vorticity do-
mains at £ > 15, because the shapes of the contours are becoming more
complicated and the approximation is not accurate enough.

In the case of interaction of the vortical domain and the point vortex, a
relative alteration of the circulation Al'/T" was calculated. In the table, At
is the number of nodes, At is a time step, all the values are taken at t = 12.

N 20 - 50 20 50 250

At 1 1 0.1 0.1 ' 1
AT/T | 1.46-10"1 | 1.51-10~* | 1.08-10~* | 4.30-107% [ 1.51-10!
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t=12 t=24

Figure 1. Plain geometry. The interaction between a vortical region
and a point vortex

OO O

t=4 t=8
t=12 t=15

Figure 2. Plain geometry. The interaction between two vortical regions
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So, we can see that although the scheme is not dissipative, it can be
applied to the investigation of motions of the Euler fluid at a certain time
interval.

2.3. The formulation of the problem in the case of spherical geom-
etry. In order to observe the flow on the sphere, we introduce a modified
spherical co-ordinate system (r, A, ) with the unit vectors i,, iy, i,:

r=/22 4+ y2+ 22 (radius), A= arctg% (longitude),

F4
=sinp= ———on—eo— is latitude).
7 ® o (v _ )
Let us consider a barotropic model, in which the vertical component
is small as compared to the meridional and the zonal components (u and
v, respectively). The vector field of the curl looks like w = w(, g, t)i,,

we neglect the zonal component of the curl. Under these conditions, the
equations of the evolution are written as

dA v du I —
E__l\/—_ﬂ—p,—?‘ E_u 1—[1 (10)
The equation of continuity is expressed in terms of the variables (A, u):

d u a
5(ﬁ) + ﬁ(\/l - u2v) = 0.

This relation allows us to introduce a general stream function ¥, which
satisfies the conditions

ov ov 1
L 1— 2 —
ox ~VITHY =t (v
In the model, the vorticity conservation law is fulfilled:
dw

and the stream function and the vortex are connected to each other by the
Laplace operator w = AW,
Solving the Poisson equation with respect to ¥, we obtain the formula:

¥(7) = 51; /wln(r(:i‘,yj‘)ﬁ) ds1, (13)
S

where r is the distance between the point of integration § and the point &,
in which we calculate the value of the stream function.

The solution to the Poisson equation exists if the following condition
limiting the class of functions w is fulfilled
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fs wds = 0. (14)

Let {D;(t)}, i = 1,...,n, be a set of domains, to any of the domains
there corresponds a value of the vortex w; and outside these domains the
vortex is equal to zero. Then we have the expressions for the velocity:

\/;.::E[f 6111(1'(2,;1}')/2)

aln(r(a:,g')ﬂ)
21rR\/1 - p2 E/

Taking into account the fact that dInr/0X = —0Inr/dX and applying
the Stokes theorem, we obtain the equation

/ ln(r(Z, g})/2)d /
27rR\/1_-—_— N " 2nR, /1 “p

’mdl

where C; is the boundary of the domain D;.

We take the integral over D; in the expression for the meridional velocity
using the formula

VI /f aln(r(z 0/2) ;. \/__ / Fuw;dX,

2rR

where F = [ Mﬂg—i’ﬂ-&ay’ . The function F is determined accurate within
an additive function depending on the parameters g, A, A’ whose integral
along the contour C' is equal to zero.

Therefore, we obtain the final expressions for the velocity:

1- ﬂ 2 Fw,- d)\’,

21rR C; (15)

(16)

r(&§,
2R7r\/1-—-—2/_w'1n 5

The projections of the velocity are displayed as contour integrals of cer-
tain functions. Formulas (15), (16) allow us to use a numerical algorithm
which is similar to the contour dynamics for plane motions of the ideal
inviscid fluid to solve problems of the class under consideration.
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3. Numerical experiment

Problems of the fluid motion with different initial distributions of the vortic-
ity were examined. In all the cases, the vorticity field is antisymmetric with
regard the equator. It permits the accomplishment of condition (14). The
vorticity field remains antisymmetric for all the time of evolution, therefore
it is sufficient to compute the velocity for the nodes located in the north
hemisphere.

The evolution of the contours is described by Lagrangian equations (10).
The contours are approximated by several nodes connected by the curves
A=A+ (A2 = A)s, = py + (p2 — pa)s, where (Ag, py) and (A2, p2) are
the co-ordinates of the nodes and the parameter s runs through the values
from zero to one.

In case when integration is conducted along the segment of the curve
neighboring to the point &, the function In(r) is approximated by the func-
tion ((1—p?)(A = X)? + 25 (s — #)%)/2, a relative error of the integral
is of the first order with respect to distance between the neighboring nodes
Az. The function F from equation (15) has also the logarithmic singularity
at & = g, therefore the value of the integral along the interval neighboring
to the point Z is taken with respect to the value in the middle point.

In other cases, the integrals are computed by the method of the trape-
zoids. The function F is determined by the condition F(A,u, N, p) = 0 if
A # X" and the point of integration (), i) lies on the north hemisphere, and
it is determined by the condition F(A, p, N, —p) = 0if XA # X’ and (N, ') is
the point lying on the south hemisphere. Specified like that the initial level
of F' allows us to approximately calculate the integral with low computer
cost. The interval with the end points (X, x') and (N, +u) (the sign “4”
is taken for the point located on the north hemisphere and “ - ” is taken
if (A, ' is the point symmetric to one of the nodes and lying on the south
hemisphere) is divided into the parts whose lengths do not exceed a given
value. The integral is calculated with the use of values in the middle points
of these intervals. The equation. of the evolution is approximated by the
scheme of the predictor-corrector type: ’

w(M, pd) __A_t’ NIEERYIN w(AIHO5, yi+05)
1= (ui)2 2 \/1 — (uit05)2

This scheme is of the second approximation order with respect to time. It
is stable. _

Solving the problem of interaction of two domains, where the vorticity is
equal to 0.1, we obtain the picture of the motion analogous to the dynamics
of two vortices in the classical Euler fluid (Figure 3): the domains are rotat-
ing around the point located-at the centre of the flow. In the time interval

At. (17)
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t=4 t=1T

Figure 3. The interaction between two regions with equal vorticity

from 0 to 40 their shape is becoming oval. At t = 40, the domains are
stretched along the parallel. At ¢ = 70, the segments of vortices boundaries
practically coincide. In the following, one can consider the system as vortex
of the round shape with two bands of vorticity, emanating from it.

The interaction of a vortical domain and a point vortex is displayed in
Figure 4. The stream function for the motion induced by the point vortex is
obtained by approaching to a limit in the expression of the stream funttion
of the velocity field induced by a vorticity domain: ¥ = 2% In(r), where I' is
circulation of the point vortex and r is a distance between the vortex and
the evaluation point.

The boundary of the vortical domain is given by the equations A =
Z cos(z), p = sin(3§ + F5sin(z)), = € [0.2x], the initial co-ordinates of
the point vortex A = %, p = 35. When the circulation of a point vortex
takes value 0.01 and vorticity is equal to unit at any point of the domain,
the point vortex rotates around vorticity domain, the shape of the domain
changes insignificantly. If circulation is increased to 0.05, the shape of the
domain will change to a greater extent and the centre of rotation will move
towards the point vortex. The domain stretches along the parallel when the
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r=0.01
t=0 t=0.1 t=1.06
I'=0.05

=

t=0.1 t=0.2

=

t=05 t=0.7

Figure 4. The interaction between a vortical region and a point vortex

vortex is located toward the north from the domain. When the system has
performed a turn of 180°, the shape of the domain become almost triangular.
The period of rotation around the centre of the system decreases to 0.7. It
is obvious that the distance between the point vortex and the domain has
increased. It indicates to the fact that the scheme is non-conservative.

Also, we have considered the problems with allowance for rotation of
the sphere. Velocity of the point rotating with the sphere is determined
by © = /1 — u?i,. The planetary vorticity is equal to 2u, respectively,
and the adiabatic invariant is the absolute curl equal to the sum of relative
and planetary curls. In this case, the motion of vortex is obtained by the
superposition of the solution of a similar problem for a relative curl and the
shift in the direction opposite to rotation, the speed of the shift being equal
to the speed of rotation.
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4. Conclusion

In general, we can say that the results of the numerical experiment do not
contradict to our empiric notions. So the contour dynamics is applicable to
studying local vortical structures on the sphere. Its main benefit consists
in fact that a two-dimensional problem is reduced to a one-dimensional
problem and integrals taken over regions are reduced to integrals along their
boundaries. Another advantage of this method is that it allows us to solve
the problems with non-smooth initial data distributions.

Often in the process of the evolution, contours elongate and complicate
their shape. In this case, these CD algorithms become not applicable. To
avoid such difficulties, there exist modifications of the method which contain
nodes redistribution on the contour and cut-off of dynamically insignificant
segments (so-called “the contour surgery”, [3]).

The applied algorithm allows us to describe the motion of vortices only
_ qualitatively. The main difficulties are connected with using unbounded
integrands. The approximation can be violated, in particular, in the case
when the region has a non-smooth boundary. To improve the approximation
we can invent a procedure of nodes redistribution. The applied difference
scheme is not conservative, but one can achieve the conservation of invariants
with necessary accuracy, by decreasing of a time step. Further it is possible
to construct modifications of the method similar to “the contour surgery”
for plane flows.
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