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Mean value theorem for a system of differential
equations for the stress tensor and pore pressure∗

N.M. Zhabborov, Kh.Kh. Imomnazarov

Abstract. A system of second-order differential equations for the stress tensor and
pore pressure for the poroelasticity statics without mass forces and energy dissipa-
tion is obtained. The stress tensor is shown to be a biharmonic function. Integral
mean value relations in the explicit form for the obtained systems of differential
equations are found.

Introduction

It is well known that static simulation methods are used to solve multidi-
mensional boundary value problems at a small number of points, especially,
if the domain boundary shape is rather complex [1–3].

If a boundary value problem has stochastic parameters (for instance,
the equation coefficients or the right-hand sides are random), Monte Carlo
methods are an especially convenient tool to calculate both the average
characteristics of the solution and other static characteristics [4].

Such theorems were proved for many basic equations and systems of
equations (see [1–15]). In papers [16–18], systems of differential equations in
terms of displacements of particles of an elastic porous body and pore pres-
sure for stationary processes in the porous medium were obtained [19, 20].
Mean value relations for such systems of differential equations were also
established [16–18].

In the present paper, a system of differential equations in terms of
the stress tensor and pore pressure for stationary processes in the porous
medium is obtained. Mean value relations for the obtained system of differ-
ential equations are found.

1. Problem statement

Assume that a bounded domain Ω ⊂ R3 is a porous medium filled with a
homogeneous isotropic saturated fluid. In the reversible case, the elastic-
porous static state of the medium Ω is described by the following system of
differential equations [16–18]:
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µ∆U + (λ̃ + µ)∇ div U = 0, (1)

∆p = 0, (2)

where U = (U1, U2, U3) is the displacement vector of an elastic porous body
with the partial density ρs, p is the pore pressure, λ̃ = λ − (ρ2α)−1K2,
K = λ + 2µ/3, λ, µ, α = ρα3 + K/ρ2 are the constants of the equation of
state [20–22], ρ = ρs +ρl, and ρl is the partial density of the fluid. In [16], a
formula was obtained relating the stress tensor with the deformation tensor
of an elastic-porous body and pore pressure:

σik = 2µεik + λ̃δikε̄− α̂δikp, i, k = 1, 2, 3, (3)

εik =
1
2
(Ui,k + Uk,i), ε̄ =

3∑
n=1

εnn,

where δik is the Kronecker symbol, v,k = ∂v

∂xk
, α̂ = 1− K

αρ2 .
Solving system (3) with respect to the deformation tensor, we obtain

εik =
1
2µ

σik −
δik

3λ̃ + 2µ

(
λ̃

2µ
σ̄ − α̂p

)
, i, k = 1, 2, 3. (4)

2. System of differential equations for the stress tensor and
pore pressure

Substituting (3) into the consistency condition of the deformation tensor

εij,kk + εkk,ij = εik,kj + εkj,ik, i, j, k = 1, 2, 3,

we obtain the following system of second order differential equations for the
stress tensor and pore pressure:

σij,kk + σkk,ij −
1

3λ̃ + 2µ

[
λ̃δij σ̄,kk + λ̃δkkσ̄,ij − 2µα̂δijp,kk − 2µα̂δkkp,ij

]
= σik,kj + σkj,ik −

1
3λ̃ + 2µ

[
λ̃δikσ̄,kj + λ̃δkj σ̄,ik − 2µα̂δikp,kj − 2µα̂δkjp,ik

]
.

Let us perform summation over k:

∆σij + σ̄,ij −
1

3λ̃ + 2µ

[
λ̃δij∆σ̄ + 3λ̃σ̄,ij − 2µα̂δij∆p− 6µα̂p,ij

]
=

3∑
k=1

(σik,kj + σkj,ik)−
2

3λ̃ + 2µ

[
λ̃σ̄,ij − 2µα̂p,ij

]
, i, j = 1, 2, 3. (5)

From equation (1), with allowance for (3), for σik we obtain the first order
equation
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3∑
k=1

σik,k + α̂p,i = 0, i = 1, 2, 3. (6)

From (5), with harmonicity of the pore pressure p and the equilibrium equa-
tion (6), we obtain

∆σij +
2(λ̃ + µ)
3λ̃ + 2µ

σ̄,ij −
λ̃δij

3λ̃ + 2µ
∆σ̄ = 2α̂

3λ̃ + µ

3λ̃ + 2µ
p,ij , i, j = 1, 2, 3. (7)

Hence, at i = j and summing over i from 1 to 3, we obtain harmonicity of
the stress tensor trace σik, that is,

∆σ̄ = 0. (8)

With allowance for this equality, relation (7) takes the following form:

∆σij + βσ̄,ij = γp,ij , i, j = 1, 2, 3, (9)

β =
2(λ̃ + µ)
3λ̃ + 2µ

, γ = 2α̂
3λ̃ + µ

3λ̃ + 2µ
.

Thus, the pore pressure and stress tensor satisfy the system of second order
differential equations (2) and (9). It follows from system (9) that the stress
tensor components are biharmonic functions. In fact, let the Laplace oper-
ator ∆ act on both sides of equality (9), and, taking into account properties
(2) and (8), we obtain ∆2σij = 0.

3. The mean value relation for system (2), (9)

Now, according to [9], we introduce N(u), which is the averaging operator
of the vector function u = (u1, u2, . . . , un)T over the surface of a sphere
S(x, R) with respect to the uniform measure dS, that is,

N(u) =
1

ωnrn−1

∫
u(x + ry) dS(y),

where ωn is the unit sphere area, and {si}n
i=1 are the direction cosines.

For the harmonic function p(x), x ∈ Ω, the mean value relations [10]

p(0) =

∫
S(0,R) p dΩ∫
S(0,R) dΩ

=
1
ω3

∫
S(0,1)

p dS, (10)

p(0) =
3

4πR3
N (W )p(x), (11)

are valid. Here N (W )p(x) is the integral of P over the ball W (x, R) =

{|x − y| < R}. For the harmonic function ∂2p

∂xk∂xi
, i, k = 1, 2, 3, we use

relation (11):
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∂2p(0)
∂xk∂xi

=
3

4πR3

∫
W (0,R)

p,ik dW =
3

4πR3

∫
S(0,1)

p
xkxi

R2
dS.

From now on, Wt := W (0, t), St := S(0, t).
As shown in [10], the mean value relation is valid for a biharmonic func-

tion. Applying formula (2.5) from [10] to equation (6), we obtain

σij(0) =
3

2ω3

[
5

R3

∫
WR

σij dW −
∫

S1

σij dS

]
(12)

From the equilibrium equation (6), we have∫
Wη

σij dW =
∫

Wη

(σikxj),k dW −
∫

Wη

σik,kxj dW

= η3

∫
S1

σik
xjxk

η2
dS + α̂

∫
Wη

(pxj),i dW − α̂δij

∫
Wη

p dW

= η3

∫
S1

σik
xjxk

η2
dS + α̂η3

∫
S1

p
xixj

η2
dS − α̂δij

∫
Wη

p dW. (13)

From (12) and (13), we obtain

σij(0) =
3

2ω3

[
5

∫
S1

σik
xjxk

η2
dS −

∫
S1

σij dS +

5α̂

∫
S1

p
xixj

η2
dS − 5α̂

η3
δij

∫
Wη

p dW

]
.

Now we multiply both sides of this equality by η4, integrate from 0 to R
and, with allowance for (11), obtain

R5

5
σij(0) =

3
2ω3

[
5

∫
S1

σik
xjxk

η2
dS −

∫
S1

σij dS +

5α̂

∫
S1

p
xixj

η2
dS

]
− R5α̂

2
δijp(0). (14)

From the equilibrium equation (6), as in (13), we obtain∫
WR

η2σij dW = R5

∫
S1

σik
xjxk

R2
dS − 2

∫
WR

σikxkxj dW +

α̂R5

∫
S1

p
xixj

R2
dS − α̂δij

∫
WR

η2p dW − 2α̂

∫
WR

pxixj dW. (15)

Let us multiply (9) by η2 and integrate with respect to the ball,
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0 =
∫

Wζ

η2[∆σij + βσ̄,ij − γp,ij ] dW

= ζ2

∫
Sζ

[
σij,k

xk

ζ
+ βσ̄,i

xj

ζ
− γp,i

xj

ζ

]
dS −

2
∫

Wζ

[
σij,k

xk

ζ
+ βσ̄,i

xj

ζ
− γp,i

xj

ζ

]
dW

= − 2ζ3

∫
S1

[
σij + βσ̄

xixj

ζ2
− γp

xixj

ζ2

]
dS −∫

Wζ

(3σij + βδij σ̄ − γδijp) dW. (16)

Here we make use of the fact that the surface integral is zero and the Gaus-
sian formula.

Assuming in (13) that i = j = k, we obtain∫
Wη

σkk dW = η3

∫
S1

σkl
xkxl

η2
dS + α̂η3

∫
S1

p dS − 3α̂

∫
Wη

p dW. (17)

From (16) and (17), using simple transformations, we have

3
∫

WR

σikxjxk dW + 3α̂

∫
WR

pxixj dW −(
α̂ +

γ

3

)
δij

∫
WR

η2p dW + βδij

∫
WR

σklxkxl dW

=
∫

WR

η2σij dW + β

∫
WR

σ̄xixj dW − γ

∫
WR

pxixj dW. (18)

It can be shown by direct calculations that σklxkxl is a biharmonic function.
Using for it formula (12), we obtain

0 =
5

R3

∫
WR

σklxkxl dW −
∫

S1

σklxkxl dS. (19)

From (18), with allowance for (15) and (19), we have

5
∫

WR

σikxjxk dW = β

∫
WR

σ̄xixj dW +

R5

[∫
S1

σik
xjxk

R2
dS − β

5
δij

∫
S(0,1)

σkl
xkxl

R2
dS

]
−

(5α̂ + γ)
∫

WR

pxixj dW −
(
α̂ +

γ

3

)
δij

∫
WR

η2p dW +

γ

3
δij

∫
WR

η2p dW + α̂R5

∫
S1

p
xixj

R2
dS (20)

The volume integral in (20) can be transformed as follows:
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∫
WR

σkkxixj dW =
∫

WR

(σklxmxixj),l dW −
∫

WR

σkl,lxkxixj dW −∫
WR

σkixkxj dW −
∫

WR

σkjxkxi dW

= R5

∫
S1

σkl
xixjxkxl

R4
dS + α̂R5

∫
S1

p
xixj

r2
dS −

3α̂

∫
WR

pxixj dW −
∫

WR

(σkixkxj + σkjxkxi) dW. (21)

In the derivation of (21), we used the equilibrium equation (6).
From (20) and (21), after simple transformations, we obtain∫

WR

σikxjxk dW =
R5

5 + 2β

[
β

∫
S1

σkl
xixjxkxl

R4
dS +

∫
S1

σik
xjxk

R2
dS−

β

5
δij

∫
S1

σkl
xkxl

R2
dS

]
+

α̂(β + 1)
5 + 2β

R5

∫
S1

p
xixj

R2
dS +

γ

3(5 + 2β)
δij

∫
S1

η2p
xixj

R2
dW − (5 + 3β)α̂ + γ

5 + 2β

∫
WR

pxixj dW. (22)

From (16) and (22), after simple transformations, we obtain the integral
mean value relations theorem for the stress tensor:

Theorem. For the system of differential equations (9), the following mean
value relations are valid :

σij(0) =
3

2ω3(5 + 2β)

[
10(1− β)

∫
S1

σik
xkxj

R2
dS − 7βδij

∫
S1

σkl
xkxl

R2
dS +

35β

∫
S1

σkl
xixjxkxl

R4
dS

]
+

15α̂(2 + 5β)
2ω3(5 + 2β)

∫
S1

p
xixj

R2
dS +

15
2ω3R5

(
α̂ +

7γ

3(5 + 2β)

)
δij

∫
WR

η2p dW +

105(α̂β + γ)
2ω3(5 + 2β)R5

∫
WR

pxixj dW − 5α̂

2
δijp(0). (23)

Thus, we have obtained integral mean value relations (7), (8), and (23)
for a system of poroelasticity equations. To determine the dilatancy zone, it
is necessary to have integral characteristics of the medium being considered.
In mathematical simulation, the averaging method––the mean value theorem
is used for this. The relations obtained for the stress tensor of a porous body
and pore pressure allow using dilatancy zones in problems of monitoring the
Earth’s crust technogenic processes and earthquake prediction [23].

Since in (23) α̂ tends to zero, we obtain mean value relations for the
stress tensor components for the static equations of classical elasticity [10].
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