Bull. Nov. Comp. Center, Num. Anal., 11 (2002), 103-112
© 2002 NCC Publisher

Linear optimization programs*

G.I. Zabinyako, E.A. Kotelnikov

The paper presents the software for the linear programming problems both for
the integer and the mixed-integer linear programming. For the solution of problems
of the above types it is possible to exploit a parallel algorithm. Some examples of
solution of test problems are given.

1. Objectives

The software for the linear programming (LP) has been developed for so-
lution of problems of the following form: find max f(z) = (c,z) with the
constraints

Az =b, a<z<p.

Here A is m x n matrix; ¢, z,a,8 € R*; b € R™. The software programs
are designed for the problems with m < 32000. The variables z; can be
bounded either only from below or from above, or they can be free. These
variables can also be fixed assuming a; = ;. General constraints can be
set as inequalities not putting them into the form of equalities.

In problems of the integer and the mixed-integer linear programming
(ILP) the requirement of some variables z; € J to be integer and the con-
straint to apply |J| < 32000 are added.

2. General information about the software

The software has been written in FORTRAN-77, debugged in the operat-
ing systems DOS and UNIX. The parallel version of the ILP-algorithm is
implemented within the MPI parallel programming system. -

The input data of problems are represented in the MPS-format [1]. The
software contains the numerical solution procedures and programs for data
processing to provide the input, the logical data control, compiling dictio-
naries and reference tables, the transfer from the external MPS-format to
the internal format of the package and forming the output forms.

Attempts to apply the LP for modelling real processes frequently en-
counter the difficulty which is inconsistency of the system of constraints of

*Supported by the Russian Foundation for Basic Research under Grants 99-07-90422,
01-07-90367. '

104 G.1. Zabinyaeko, E.A. Kotelnikov

the model. In the LP package, the version of approximation of an inconsis-
tent system by a consistent one has been realized. In addition to a standard
section of the MPS data, a supplementary section for correcting the vector
b in the right-hand side has been introduced. The user selects which of b;
are subject to correction and the admissible value of their variation b;. If it
is b; which is connected with a constraint in the form of an equality, which
is subject to correction, then additional variables u; and v; are introduced,
and the respective constraint is transformed to the form

(@i z) =bi+u;—v;, 0<u;<db;, 0<v <

A constraint on the type of inequalities, for example, (a;,z) < b; is
transformed as follows:

(ai,z) <b; —v;, 0L v < b

The user sets only the name of a constraint corresponding to b; and
the value db;, the formation of constraints being automatically done. Then
the LP problem of minimization of a sum of the variables u; and v; with
allowance for the transformed system of constraints is solved.

It is assumed that in the ILP software the problem with integer variables
not taken into account is inconsistent, and provision is not made for the
possibility to correct constraints.

The column-wise sparse format is used for the matrices, defined by anal-
ogy with the row-wise sparse format [2]. The latter can also be used to call
the software programs.

The matrix B! inverse to the basis matrix B is represented in the
multiplicative form. To store multiplicators, special data aggregates are
used. Multiplicator columns are stored in the 8-byte field. The first 8-byte
word of each multiplicator consists of 4-byte integer variables I~ and I +,
being indicators to the previous and the successive multiplicators. After I-
and IT a real 8-byte variable G inverse to the leading element is written.
Then follow 2-byte integers: iv is the number of the leading element, k is
the quantity of nonzero elements of a column without a leading element,
11 ...1) are the numbers of nonzero components. Then 8-byte real variables
a1, .- ., a; are located, which are nonzero elements of the column.

The algorithms are governed by the numerical parameters which indi-
cate to the frequency of addressing to the reinversion procedure, specify the
accuracy of fulfilling the conditions according to the direct and the dual vari-
ables in the LP problems, define the constraints on selection of the leading
elements, etc. The user sets the names of two files, the first one containing
statistical data on the problem and its solution, and the second file — the
information which is necessary for resuming the solution of the problem if
needed. Options of setting the parameters are written down into files with

Linear optimization programs 105

fixed names (different for the LP and the ILP). The ILP programs provide
for some approaches to be exploited by certain options to obtain approxi-
mate solutions.

3. The simplex method procedures

Below we briefly present characteristics of the basic procedures of the sim-
plex method and some examples of solution to poorly-scaled problems of
the LP.

3.1. Correction of matrices inverse to the basic matrices. Let at
a recurrent iteration of the simplex-method, the p-th column of the basic
matrix B be replaced by the column a., of the matrix A. The matrix B =
B+(a.q—Bep)e; becomes basic, where e,, is the p-th unit vector in R™. The
matrix B! is calculated by the Forrest-Tomlin method [3] supplemented
with operations to control the numerical stability. For the newly formed
multiplicator U, 1 the smallness of the leading element module is controlled.
The maximum value of modules of the elements U, ! is compared to the
maximum of modules of the elements in B. Such verifications can result in
taking the decision on the unrecurrent appeal to the reinveresion procedure.

Before we appeal to the correction procedure, the vector s = :I:B"la.q
and the number of the leading row p are determined, then the value Smax =
max;=1,..,m |8i| is calculated. If spay/ [spl > M, where M is a sufficiently
large positive number, the unrecurrent appeal to the reinversion procedure
is done, or the decision on the fact that the column a., at several immediate
iterations should be kept as non-basic is taken.

3.2. The reinversion procedure. In the algorithm of the inverse matrix
renewal [4] we make an attempt to minimize the filling-up of the multi-
plicative presentation of the matrix B~! = U~1L~? with non-zero elements,
where each of the matrices U~! and L~ is the product of the corresponding
multiplicators. This is a heuristic method of reduction of the matrix B by
rearranging rows and columns so that this matrix be as close as possible to
the bottom-triangular shape.

The columns which after rearrangements have no non-zero elements
above the main diagonal are called normal, while the rest ones — the columns-
spikes. When selecting the leading elements, the normal columns generate
only L~!-multiplicators, and the column-spikes - L~! and U ~Lmultiplica-
tors. The normal column multiplicator is completely defined by values of
elements of the respective column of the matrix A. Therefore only the num-
ber of a column from A and the number of the leading row are stored in the
multiplicator field.

106 G.I. Zabinyako, E.A. Kotelnikov

In the software in question, the algorithm has been implemented, in
which in addition to heuristics [4] an attempt is made to apply standard
operations of controlling the numerical stability when selecting the leading
elements [5]. '

3.3. Calculation of the step. Let at a recurrent k-th iteration of the
simplex-method the direction s = =B 'a.; be defined. The procedure of
calculation of the step \ along s is based on the algorithm from [6]. First
the maximum value)\; is defined such that a; — 0 < z; + A18; < G + Ok,
where z; are basic variables; J is a small positive value which is increased
at each iteration of the simplex-method. When selecting the leading row p,
an attempt is made to maximize the value |s,| using the relations Az < Ay
and o; < 2 + A28; < Bj. As a result, A = max{)Az,7/|sp|}, where T is a
certain positive value, T < . At the (k + 1)-th iteration g1 = 0k + 7.

After reinversion, it may appear that some basic variables z; do not sat-
isfy the two-sided constraints. The relations a;j < z; < f; are reconstructed
with the help of solution to the LP problem in whose object function ¢; = 0
with a; < z; < B, ¢j = 1 with 2; < a and ¢j = —1 for ; > ;. The initial
value); of the step in the direction s is determined as

A1 = arg 1;1;}]1 Z(max{[), aj — Tj— psj} + max{0, z; + ps; — ﬂ,})
J

The leading row p and the step A are selected in the manner similar to
the above-considered version.

3.4. Some examples of solution to the LP-problems. As examples
we have selected five poorly-scaled problems from a set of the NETLIB
tests [7]. Table 1 contains: dimensions, nz-the number of non-zeroes in the
matrix, modulo values of the minimum and the maximum elements a;; of
the matrix A.

It has not been possible to obtain solutions to the problems presented
in Table 1 with a reasonable accuracy without counterbalance algorithm of
the constraint matrices elements. In the LP-software, the counterbalance
procedure from [8] has been implemented. Table 2 presents the results of
the solution to problems employing the counterbalance. There is an option

Table 1
N Problem name m n nz min |ag;| max [a;;|
1 perold 625 1376 6018 5.3E-5 2.4E4
2 pilot.ja 940 1988 14698 2.0E-6 5.8E6
3 pilot.we 722 2789 9126 14E-4 4.7TE4
4 pilot4 410 1000 5141 3.7E-5 2.8E4
5 pilotnov 975 2172 13057 2.0E—6 5.8E6

Linear optimization programs 107

Table 2
N it t lz*fl | Ny*iha he he Vi Vo
1 4408 261 4.4E3 8.9E1 7.3E-7 7.7E~10 31399 23230
2 5405 578 4.3E3 7.7E1 8.9E-7 9.2E-10 67151 49272
3 4334 315 6.3E3 2.1E6 3.0E-11 1.5E-12 29543 21095
4 1290 39 7.8E3 1.2E2 6.8E-7 3.9E-11 20346 13123
5 1593 180 5.3E4 2.3E1 1.3E-6 3.5E-15 60124 45168

in the file specifying the controlling parameters values in which it is possible
to indicate whether the scaling is necessary. When solving the problems,
the frequency of addressing to the reinversion procedure was set equal to
50, i.e., after carrying out 50 recurrent recalculations of the inverse matrix.
In the course of solution due to computing errors there arose additional
addressings to this procedure. Thus, for Problem 1 there were 46 unrecurrent
addressings, while for Problems 2 and 3 there was one for each.

Estimates of errors and norms of the optimal values of the direct ||z*||;
and the dual variables |y*||; are given in Table 2 for the original scales
(i.e., after carrying out the inverse transformations corresponding to the
counterbalance). '

Remark. N is the number of a problem; it is the number of iteration of
solution to problem; ¢ is time of solution in sec. on IBM PC with the clock
frequency 75 MHz; h, = max; |(a;,,2*) — b;|; he = maxjes, (.5, 4*) - ¢,
where a.; is the j-th column of the matrix 4, and j runs the list of basic
columns; ¢; is the j-th component of the object function vector ¢; V; is the
maximum number of double words occupied with multiplicative presentation
of inverse matrices in the course of the problem solution; V; is the maximum
memory under multiplicators after the reinversion.

Different versions of solution to the NETLIB problems and the detailed
information about the algorithms are presented in [9].

4. The integer linear programming

In the ILP programs, the method of branching and boundaries with one-
sided branching has been implemented. Let us briefly dwell on the sequential
algorithm which is considered in good detail in [10] and [11].

4.1. The algorithm with branching and boundaries with one-sided
branching. The algorithm is based on solving a series of the LP estimation
problems. The branching variable is selected by penalties [1, 12]. Let us
present the basic variable z; for j € J in the optimal basis of the recurrent

108 G.I. Zabinyako, E.A. Kotelnikov

estimation LP problem in the form z; = [z;] + v;, where [z;] is the integer
of z;. Let PJ-‘" stand for the penalty for the increase of z; by the value 1—vj,
and P;” for the decrease by the value v;.

Let z* be the optimum to the i-th estimation problem, and ff = f(<*)
and r* — the value of the incumbent corresponding to the given time instant.
If an admissible integer solution is still to be found, then r* = —co. For those
basic variables zj,7 € J, where :c_f';- is non-integer, calculate the penalties
P;‘,Pj_. Among them, define the minimum penalty Prin. If fi— Ppin < 1,
then the i-th estimation problem is selected from a higher level in the list
of problems. :

At fi— Pmin > r', the branching is realized with respect to the basic vari-
able z;, to which corresponds the maximum penalty Pj+ or P;". The schemes
of the method of branching and boundaries with one-sided branching make
possible to use a compact form of lists of estimation problems. Let at a
certain level k, the variable z; with the penalties P;~ and Pj+ be selected for

branching. If P;” < PJ-+, then the problem corresponding to P; is selected
as a recurrent estimation problem, and it is necessary to store the informa-
tion about the alternative problem in the list of estimation problems (in our
case in the auxiliary array h). To this end, the assignments h(1,k) = j;
h(2,k) = ﬁ; are performed, where /3; is the upper boundary of the variable
z; in the i-th estimation problem at the preceding level (k —1); h(3,k) =1
if f— P < ' and h(3,k) = 0 otherwise (if h(3,k) = 1, we will consider
the corresponding branch to be marked); h(4,k) = f% h(5,k) = PJ-+. At
P?L < P7, the estimation problem, corresponding to the penalty PJ-+ is se-
lected, and in the array h the following values are stored: h(1,k) = —j3;
h(2,k) = oi; h(3,k) is either equal to 0 or 1 depending on fulfilling the
inequalities f* — Py < i h(4,k) = f*; h(5,k) = P; .

The schemes with one-sided branching allow one to easily go from one
estimation problem to another. If the fixed value z§ = o} = (3; is assigned to
the variable selected for branching, then the fictitious variable is introduced
into the basis, to provide non-degeneracy of the basic matrix. Otherwise the
optimal basis of the preceding problem is used. Solution to any estimation
problem except for the problem corresponding to ¢ = 0 starts with verifica-
tion of tolerances of the basic variables. If constraints are violated, then the
algorithm of minimization of the piecewise-linear function to provide toler-
ance is applied (see Section 3.3). Only zero values are considered admissible
for fictitious variables.

It is possible to modify the scheme of problem solution using controlling
parameters. For example, to shorten the selection procedure, the user can
set the estimation f of the value of the object function. If the optimum fiof
the estimation problem appears less than f, then in the sequel it is not used
as parent. For obtaining approximate solutions, the input parameter oy is

Linear optimization programs 109

provided. The process of solving the problem terminates if the recurrent
incumbent r* satisfies the inequality (f° — r%)/|f| < dy.

4.2. Parallel algorithm. The parallel algorithm is so structured that
at each of processor elements the algorithm with branching and bound-
aries with one-sided branchings is implemented in the asynchronous mode.
Among the processor elements, an element with zero number is distin-
guished. The data on a problem are read from the external memory by zero
processor and are transferred to all the rest. Then the original problem is
solved on zero processor with no allowance for integer features, while all the
other processes are expecting at this time instant. In the course of solution
the reference information, needed for organizing the parallel computations
is being accumulated in zero element.

For loading any processor (including zero processor in the sequel) the
arrays ISB, ISN and, partially, h are transferred to its main memory. The
integer array ISB of m components contains the numbers of basic variables,
the integer array ISN of n dimension for non-basic variables shows at which
boundary — the upper or the lower - are variables, and for the basic variables
in ISN, the numbers of positions in the basis are written. A part of the
array h to be transferred, is determined by the level at which the solution
of estimation problems starts.

Let it be necessary to load a certain processor from zero processor. As-
sume a variable z; be selected for branching at the level k of zero processor
and P;” < P+ The estimation problem correspondmg to the penalty P;

will be solved on zero processor. If f* — P"' > r*, the data are tra.nsferred
to the target processor element. At zero processor element, the branch cor-
responding to P;" is marked (1 is assigned to the element h(3 k)).

At the receiving side, all the unmarked branches, having the level higher
than k, are marked. The matrix B~ is constructed based on the list of ISB
by means of the reinversion procedure.

The data of ISB, ISN, and h are sufficient for the formation of the first
estimation problem at a given processor element. Then the algorithm with
branching and boundaries with one-sided branching is carried out.

In the parallel algorithm it is desirable, where possible, to begin the
calculation process with a higher branch at each processor element. To this
end, at each of processor elements the arrays ISB and ISN are stored, which
are transferred to a certain other processor as soon as the call comes.

If a new incumbent r* is received at a certain processor, this information
is transferred to all the other. After receiving r?, the fulfillment of the
inequalities h(4,k) — h(5,k). < r* is checked up, where k corresponds to
the level with which the fulfillment of the algorithm at a given processor
element started. In those cases when this inequality holds, the call for a
new assignment is done.

110 G.I. Zabinyako, E.A. Kotelnikov

The obtained value of = is used for the revision of marked and unmarked
branches in the array h. It may appear that the information in the arrays
ISB, ISN becomes out of date. In this case, new versions of ISB, ISN are
prepared, and the message about the change of the level corresponding to
these arrays is sent to the zero processor.

The problem is considered to be solved if the incumbent v = f0is
obtained, or zero level is attained in all the processors.

The data of the problem are transferred by the blocked MPI function
BCAST [13]. Further all the processes are carried out asynchronously, and
the data are exchanged by unblocked functions.

4.3. Examples of solution to the ILP problems. Large sets of test
problems in different application areas of the ILP have been stored in the
MPS-format. To check up the validity of the software, the tests were selected
from: ftp.camm.rice.edu/pub/plople/bixby/mipl ib/miplib3/

Table 3 demonstrates the dimensions of the problems.

Table 3
N Problem name m me n n; ny nz
1 air03 124 124 10757 10757 10757 91028
2 bell3a 123 — 133 71 39 347
3 bellb 91 — 104 58 30 266
4 blend2 274 89 353 264 231 1409
5 demulti 290 78 548 75 75 1315
6 fiber 363 363 1298 1254 1254 2944
7 gen 780 150 870 150 144 2592
8 gesad 1368 - 48 1152 384 216 4944
9 gesad.0 1224 120 1152 672 336 3622
10 1152lav ! 97 96 1989 1989 1989 9922

Remark. N is the number of a problem; m is the total amount of con-
straints, of which m, is that on equalities; n is the number of variables of
which n; is that of integer, and n; is that of the Boolean variables; nz is the
number of nonzero elements in the matrix A.

Table 4 represents some characteristics of the solution process of prob-
lems by the sequential algorithm. The ILP-problems were solved on the
multiprocessor common memory computer RM600.

Remark. N is the number of a problem; it; is the quantity of iterations
of the solution of a problem, kyep is the total number of addressings to the
reinversion procedure, k; is the number of incumbents obtained in the course
of solution, t; is the time (in seconds) needed for solution.

Linear optimization programs 111

Table 4
N it krap k“ tl N 'it kggp k.‘ tl
1 1421 28 1 17.04 6 | 36293085 | 721839 | 52 | 68141.
2 552937 12154 5 | 251.03 7 118468 2374 3 | 409.46
3 | 8105266 | 579981 | 558 | 3282.6 8 257365 5132 | 10 | 1465.1
4 305445 6772 13 | 281.56 9 482728 9623 | 37 | 2218.2
5 390673 7813 29 | 446.93 10 2502135 50064 | 22 | 5184.7
Table 5
N ity ity ity ity s(it) s(rep) t
1 1421 468 0 0 1889 38 19.58
2 140675 138439 138245 138624 555983 12362 64.06
3 473266 468836 519309 519050 1980461 148020 206.72
4 41205 40588 39584 40781 162158 3732 38.71
5 68906 53846 47463 48759 218974 4554 84.80
6 6485799 5704399 5595746 5393408 23179352 484614 12933.
7 42795 34692 31914 27926 137327 2801 146.05
8 92309 49356 42829 55231 239725 5073 529.28
9 204444 136010 127949 132077 600480 12282 922.21
10 463937 430534 456976 426948 1778395 35612 1071.2
Table 6
N 1 2 3 4 5 6 7 8 9 10
it/s(it) | 0.75 | 0.99 409 | 1.88 | 1.78 | 1.56 | 0.86 | 1.07 | 0.80 | 1.41
t1/t 0.87 | 3.92 | 15.88 | 7.27 | 5.27 | 5.27 | 2.80 | 2.77 | 2.40 | 4.84

Table 5 contains characteristics of the solution process of problems by
the parallel algorithm. In the parallel version, four processor elements, each
for 1 process, were used. '

Remark. N is the number of a problem; it; is the quantity of iterations
performed on the i-th processor element; s(it) is the total number of itera-
tions on all the processor elements; s(rep) is the total number of reinversions;
t is time (in seconds) needed for the fulfillment of the parallel algorithm.

Table 6 allows us to compare the efficiency of solution to problems by
the sequential and the parallel algorithms.

In the table, it/s(it) shows the ratio between the number of iterations
in the sequential algorithm and the total number of iterations performed on
the four processors. The ratio ¢/t shows the acceleration gained as a result
of parallelization. As seen from the data of the tables, Problem 1 represents
an example of the big-size problem, which is easy to solve, and it makes no
sense to use parallelization.

112 G.I. Zabinyako, E.A. Kotelnikov

The process of solution of the ILP-problems is unstable. The number
of iterations and other characteristics of the computational process are es-
sentially dependent on the selection of the initial values of controlling pa-
rameters. The common property of instability of the process of solution is
dramatized in certain problems by the following factors: non-uniqueness of
solutions of the ILP estimation problems, ill-conditioning of the basic ma-
trices. When solving the problems, the same initial values of controlling
parameters were selected both for the parallel version of calculations and in
calculations in the one-processor mode.

References

[1] Murtagh B. Advanced Linear Programming. Theory and Practice. — Moscow:
Mir, 1984.

[2] Pissanetsky S. Technology of Sparse Matrices. — Moscow: Mir, 1988.

(3] Forrest J.J.H., Tomlin J.A. Updated triangular factors of the basis to maintain
sparsity in the product form simplex method // Math. Programming. — 1972. -
Vol. 2, Ne 3. — P. 263-278.

[4] Hellerman E., Rarick D. Reinversion with the preassigned pivot procedure //
Math. Programming. — 1972. - Vol. 1, Ne 2. - P. 195-216.

(5] Zabinyako G.I. Algorithm of reinversion of the simplex-method // Proc.
ICMMG, Ser. Sistemnoe modelirovanie. — Novosibirsk, 1998. — Vyp. 5 (23). -
P. 59-73.

[6] Gill P.E., Murray W., Saunders M.A., Wright M.A. A practical anticy-
clone procedure for linearly constrained optimization // Math. Programming.
Ser. B. — 1989. — Vol. 45, Ne 3. — P. 437-474.

[7) Gay D.M. Electronic mail distribution of linear programming test problems //
Math. Programming Society COAL Newsletter. — 1985. — Vol. 13. - P. 10-12.

[8] Gill P.E., Murray W., Write M. Practical Optimization. — Moscow: Mir, 1985.

[9] Zabinyako G.L, Kotelnikov E.A., Kobkova T.M., Rozhin V.E. The linear pro-
gramming programs LP-VC. — Novosibirsk, 1995. - (Report / SB RAS. Com-
puting Center; GR Ne 01.9.30001317, Ne 02.9.5000357).

[10] Zabinyako G.I. Program package of the integer linear programming // Diskret.
analiz i issled. operatsii. — 1999. — Ser. 2, Vol. 6, Ne 2. - P. 32-41.

[11) Zabinyako G.I Program package of the integer linear programming. - Novosi-
birsk, 1998. — (Report / SB RAS. ICMMG; GR Ne 01.9.30 001317, Ne 02.9.80
005512).

[12] Kovalev M.M. Discrete Optimization (Integer Programming). — Minsk: Izd.
Belorus. Univ., 1977. '

[13) Korneev V.D. Parallel Programming in MPL - Novosibirsk: Izd. SO RAN,
2000.

