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Numerical simulation of orographic
waves using an atmospheric model with
artificial compressibility*

M.S. Yudin

A three-dimensional mathematical model of local climate based on the artificial
compressibility approach is considered. No outer iterations are necessary in order
to solve the diagnostic equation for the pressure in complex terrain. Higher order
approximation schemes based on the splitting up method are used for the advective
operators of the problem. The turbulence parameterization scheme is based on the
concept of computation of the mixing length. The dry atmospheric waves over a hill
have been simulated. The results of the numerical experiments are in qualitative
agreement with the theory available.

1. Introduction

A number of mathematical-meteorological models have been developed dur-
ing the last 20-30 years [1]. The knowledge of space and time distribution
of meteorological variables is important for the solution of various problems
of urban planning and environmental protection. It is difficult to detect
large variations of these fields in irregular terrain only with the help of mea-
surements. Mesoscale meteorological models have been developed which
have become useful tools for contributing to the unknown information. The
applications of mesoscale modeling include the simulation of air flow over
an urban region and the associated dispersion and advection of pollutants,
convective scale dynamics in mountainous regions, etc.

It was shown by the scale analysis of atmospheric dynamics that the ap-
plicability of the hydrostatic approximation for tropospheric motions breaks
down when the resolvable horizontal and vertical scales are of the same or-
der [2]. The treatment of non-hydrostatic dynamics is required, and this is
often accomplished via the so-called anelastic approximation (3, 4, 5], where
the sound waves are filtered out by a modification of the mass continuity
equation.

An important property of the anelastic system is that the perturbation
pressure must be such that the velocity field satisfies the continuity equation.
The result is that the perturbation pressure can no longer be determined
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explicitly, but rather must satisfy an elliptic partial differential equation in
complex terrain. It is necessary to solve this equation at each time step, in
order to update the pressure field. Therefore, it is more difficult to work
with the anelastic system numerigally than with the set of equations which
are obtained in the hydrostatic case [4]. The incorporation of orography by
the use of the terrain-following coordinate transformation creates additional
problems in solving this equation by a direct method. A popular approach
is to solve the equation using the “outer iterations”, that is, by an iterative
application of a direct method [4].

In the last 15-20 years, the advancement of computational methods made
it possible to develop non-hydrostatic models where sound waves are not
filtered out (e.g. [6, 7, 8]). Various numerical techniques have been applied
to solve these completely hyperbolic problems.

A three-dimensional mathematical model of local climate based on the
artificial compressibility approach is considered in this paper. The artificial
compressibility method proposed by Yanenko [9] and Chorin [10], has been
successfully applied to various problems of fluid dynamics. Now descriptions
of the method can be found in textbooks (e.g. [11]). In applying this method
to a non-hydrostatic model, it is not necessary to use outer iterations in order
to solve the diagnostic Poisson-type equation for the pressure in complex
terrain [8].

The paper is organized as follows: Section 2 describes the model. In
Section 3, the numerical algorithm for solving the model equations is given.
Section 4 deals with the results of numerical simulations of atmospheric flow
over a hill. Conclusions are given in Section 5.

2. The mathematical model

The basic equations for motion, heat and continuity in a terrain-following
coordinate system are as follows:
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U = pG'V?%u, V = pGY?%, W = pG?w, P = GY?p', where p', §' are
deviations from the basic state pressure 5 and potential temperature 8, C,
is the sound wave speed, u,, v, are components of the geostrophic wind
representing the synoptic part of the pressure, 7 is the terrain following
coordinate transformation:
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2z, is the surface height, H is the height of the top of the model domain.

Here H = const, f; and f, are the Coriolis parameters equal to 2Qsin A,
2Q cos A, respectively, A is the latitude,
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where w = =z W + G + GPo.

The terms R, R,, R,, Ry refer to the subgrid-scale processes. As a tur-
bulence parameterization, we used a simple scheme based on the computa-
tion of Blackadar [12] mixing length (see, e.g. [1]). Conventional logarithmic
wind profiles between the surface and the first layer in the atmosphere are
evaluated. For the roughness length, we take 0.1 m.

For the upper boundary, we assume w = 0, v = 4y, v = v,, 0 is a
constant value given by the basic state.

For the lower boundary, we assume w = 0, § = 6,(z, y) is taken to be the
same value as the basic state at the same level. The turbulent fluxes through
the surface layer are determined from the Monin—Obukhov similarity theory.

For the lateral boundaries, the conditions of zero normal derivatives are
used in the present study.

3. Numerical formulation of the model

The model is solved numerically by the conventional algorithm of splitting
the problem into “advection—diffusion” and “adjustment” problems [13].

The advection processes are realized as follows: the first derivative ap-
proximation consists of central-difference operators in space:

d
ﬁ |k= ;aif’s[sﬂ]k,
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where Di[p]x = (@i — Pr—i)/2ih.
This operator can be further split in space, provided the appropriate
spatial filters are available [15].
Viscous and Coriolis terms are treated implicitly.
At the “adjustment” stage we proceed as follows: Let the appropriate
system of equations with boundary conditions be
<Pj+1 —
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in real orography, where @ are vector fields obtained after the “advection -
diffusion” stage, At is a time step interval. Rewriting the equation, we get
QO‘H'i - E
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where A, is the operator A in plain orography [8]. We solve this problem
at the “adjustment” stage provided the (A — A,) operator is realized at the
“advection—diffusion” stage. The problem with A, operator is easily solved
by any standard method (Successive Over-Relaxation in this work).

The terms describing sound waves are treated by the “natural filter
scheme” [13], that is, implicitly. The space filters of the Shapiro type [6] are
used at each step of the computation.

4. Simulations of flow over a hill

The results of a simulation of flow over an isolated hill are presented here
as an example. The bell-shaped hill with the height of 500 m is situated in
the center of the 10 km x 10 km domain. The top of the domain is at 5 km.
The geostrophic flow goes from the west, with ug = 5 m/sec, v, = 0.

As a basic state, the standard atmospheric stratification df/dz = 3.5
K/km is assumed. An absorbing layer is situated above the height of ap-
proximately 1500 m. The computational grid consists of 31 x 31 x 16 points,
the horizontal grid size is Az = Ay = 333 m, the vertical grid size Az is
variable, increasing with height. The hill is slowly inflated during the first
15 minutes of the computation.

Figures 1-6 show the potential temperature field 8 at 45 min real time.

Figure 1 shows the N - S cross-section through the center of the hill.
The picture is rather symmetrical.

Figure 2 represents the E ~ W cross-section through the center of the
hill. At low heights in front of the hill, the field is lifted and it is sinked
behind the hill.

Figures 3-6 are the surface plots at the levels from 20 m to 1200 m
above ground reference. At the lower levels, the flow turns to the left, while
at the upper levels the flow seems to be almost symmetrical.
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Figure 1. N-S cross-section through  Figure 2. E-W cross-section through
the center of the hill the center of the hill

Figure 3. Surface plot at 20 m AGR  Figure 4. Surface plot at 100 m AGR
(above ground reference)
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Figure 5. Surface plot at 400 m AGR  Figure 6. Surface plot at 1200 m AGR
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The pictures described above are in qualitative agreement with the ex-
isting theory and observations (e.g. [16]).

5. Conclusions

A three-dimensional mathematical-meteorological model for the simulation
of local climate was considered in the paper. The introduction of “artificial
compressibility” into the model can greatly reduce the CPU time necessary
for an effective solution of the pressure equation.

The results of the numerical experiments on the flows over an isolated
hill are satisfactory and agree qualitatively with the existent knowledge of
the behaviour of orographic waves.

The inclusion of moisture and soil processes into the model is now under
way.
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