Joint NCC & IIS Bull., Comp. Science, 16 (2001), 67-78
© 2001 NCC Publisher

Application of constraint hierarchy to
timetabling problems

T. Yakhno, M. E. Tekin

1. Introduction

At the beginning of each school year, universities everywhere must undertake
boring and time-consuming process of slotting students, teachers and lessons
into available classrooms. It is a natural scheduling problem and schedule-
makers are looking for simple flexible and effective automatic systems.

Scheduling problems are often NP-complete. There are many approaches
to deal with them such as algorithmic approach, operation research ap-
proach, etc. Algorithmic (or integer programming) approach is hard for
scheduling problems, since the domain of the search space is very large.
Finding the solution in this search space by traditional search methods
is very inefficient. A lot of attention in operation research has been paid
to scheduling problems that are based on relatively simple mathematical
models. Operation research often aims to achieve a high level of efficiency.
This approach has some classical models to use when modeling a practical
scheduling problem. The main disadvantages of these models are in that
they discard many degrees of freedom and side constraints that exist in the
practical scheduling situation. Discarding degrees of freedom and side con-
straints causes optimal solutions to be eliminated, regardless of the solution
method used. Discarding the side constraints may result in a simplified ver-
sion of the problem and solving this simplified problem might be easier but
the solution found can be impractical for the original problem [2].

While operation research methods are efficiency oriented (i.e., they are
specialized algorithms for specialized problems), artificial intelligence re-
search tends to investigate more general scheduling models and tries to solve
these problems by using the general problem solving techniques. However, in
some specific cases, Al algorithms may perform poorly on specific instances
compared to operation research algorithms. On the other hand, operation
research offers us efficient algorithms to solve the problems that however can
be not suitable in practice, while Al algorithms are more applicable [8].

Naturally, we want the best of both worlds, i.e., we want efficient algo-
rithms that can be applied to a wide range of problems [6].

68 T. Yakhno, M. E. Tekin

With the emergence of constraint programming, especially the intro-
duction of finite domain constraints into logic programming, the constraint
satisfaction approach has started to attract more and more attention due to
its effectiveness in solving real-life planning/scheduling problems. Although
the constraint programming approach is still a search-based approach, it
involves many improvements over the integer and operation research ap-
proaches. Generate-and-test nature of problem solving in logic programming
is greatly extended with constraint programming, giving it the efficiency of
finding optimal solutions in short execution time [7, 9].

Timetable scheduling is a well-known instance of scheduling problems.
There are many studies done on this subject and it still attracts many re-
searchers, since it is one of the most challenging problems in the domain.
As other scheduling problems, the timetable scheduling problem is also NP-
complete [4]. In timetable scheduling, resources are instructors, classrooms,
and groups of students and hours of the weeks. They should be allocated
for lessons so that the preferences of a student and lecturer should be maxi-
mized (optimal solution) without conflicts on scheduling a room, instructor
and student in the timetable [1, 10].

Although many similar systems had been developed so far, the main dis-
advantage of these systems is the lack of flexibility. In nearly all of these
systems, users cannot define their own constraints. Hard coded constraints
direct the entire search and may leave the user with some unwanted solu-
tions. Giving a user the ability to define his/her own constraints would give
more user satisfaction, as well as improve the solution quality.

The present paper considers the application of the hierarchy of con-
straints to the University timetabling problem. The hierarchy of constraints
allows the users to specify their preferences according to which the system
is looking for solutions that can satisfy most of the users.

2. Over-constrained systems and constraint
hierarchy

Over-constrained systems are constraint satisfaction problems without a so-
lution. In other words, for the variables of the systems, it is impossible to
find valuations that exactly satisfy all of the problem constraints. Generally,
real world problems fall into this category. In order to handle with this kind
of problems, the constraint hierarchies are used. Instead of exact solutions,
partial solutions are used that satisfy not all the constraints but different
subsets of the given constraints.

In many applications, such as interactive graphics, planning, scheduling,
document formatting, and decision support systems, users need to express

Application of constraint hierarchy to timetabling problems 69

their preferences, as well as strict requirements. In such systems, expressing
the preferences in the same way as the strict requirements generally results in
insolvability of the problem. In order to overcome this situation, an arbitrary
number of levels of preference are used, each successive level being more
weakly preferred than the previous one.

Definition 2.1. A labeled constraint is a constraint labeled with strength.
A symbol of a labeled constraint indicates where is the strength of the con-
straint and where is the constraint itself [3].

When writing a labeled constraint, we usually give symbolic names to dif-
ferent strengths of constraints. These symbolic names can be mapped onto
integers 0, ...,n, where n is the number of levels.

Constraints representing strict requirements are called Hard Constraints.
Constraints representing preference are called Soft Constraints. Most of the
systems and constraint programming languages allow users to define an ar-
bitrary number of levels for preference, where each successive level being
more weakly preferred than the previous one [5].

Definition 2.2. A constraint hierarchy H is a multiset of labeled con-
straints. Given a constraint hierarchy H, Hy denotes the HARD constraints
in H. In the same way, the sets Hy, Ho, ..., H, are defined for preference
levels 1,2,...,n [3].

The greater the label is, the weaker the constraint is. A solution to the
constraint satisfaction problem embodying constraint hierarchies is not the
same as a solution to the constraint satisfaction problem without them. So,
we need to revise our definition of a solution to the constraint satisfaction
problem.

Now for each value of index n, let us define the proper sets of constraints
Hy,...,H,.

Hjy is HARD Constraints,

H,={ce H/s(c) =i},i <n,

Hp=0if k > n.

Definition 2.3. A solution S to a constraint hierarchy H is a set of valua-
tions for free variables in constraints with the following properties:

— each valuation in S must be such that, after it is applied, all the HARD
constraints hold;

— each valuation in S satisfies the non-required constraints as much as
possible, respecting their relative strengths.

To formalize this, let us define a set Sy of valuation such that all the Hy
constraints hold:

70 T. Yakhno, M. E. Tekin

So ={60/Vc € H,ch = true}.

Here cf denotes the Boolean result of applying the valuation 6 to the con-
straint c.

Then, using Sp, it is possible to define a solution set S by eliminating
all potential valuations that are worse than some other valuation, using the
special predicate better [3]:

S ={0/0 € HA\Vo € Sy—better(c,0, H)}.

There are many different ways to specify the predicate better [9]. In our ap-
plication, we will use the so-called locally-better predicate, when the system
tries to satisfy as much soft constraints as possible, taking into account their
strength.

3. Problem description and system input

The Computer Science Engineering Department of Dokuz Eyliil University
offers undergraduate, Master and PhD degrees to their students. Under-
graduate program consists of several courses lectured during 4 years (or 8
semesters). In MS program, each student must take 24 credits for gradua-
tion. PhD program is normally a 4-year program.

The Computer Science Engineering Department has to prepare the time-
tables at the beginning of the semester. Every student normally enrolls to
from 5 to 8 courses in one semester.

The Master program courses are lectured only two days of the week. So,
these courses should be scheduled taking this constraint into account.

Each course consists of theoretical and practical sections. Each course is
normally divided into 2 or 3 blocks of 2 hours (sometimes 3 hours) during
the week.

The department building has 6 rooms. Only 3 of them are suitable for a
large number of students. Elective courses have a relatively small number of
students enrolled to, so, while preparing the timetable, small classrooms are
assigned to these courses. Some classrooms can also be assigned to specific
courses.

Computer Science Engineering Department currently employs 8 aca-
demic staff members and 9 research assistants to help the academic staff.
Generally one lecturer conducts 3 lessons per semester. Because of the large
number of lecture hours, preferences (preferred hours of the days for giving
a lecture, the maximum number of lectures to be conducted per day, etc.)
of the lecturers are taken into account while preparing the timetable.

Application of constraint hierarchy to timetabling problems 71

The timetable problem discussed here is to generate a weekly timetable
for the Computer Science Engineering Department, i.e. to schedule all the
blocks of all the courses to the available classrooms and hours of the week.

The final result should satisfy the following constraints:

e Blocks of the same semester cannot overlap.
e Two blocks with the same lecturer cannot overlap.
e There cannot be overlapping blocks in the same classroom.

e Lecturers and Classroom of a block must be available for its whole
duration.

e Blocks of a course should be scheduled on different days.

All the conditions described above make it very difficult to prepare a
timetable for the department manually. Generally, the final timetable for
the department is prepared after 4 weeks work. Therefore there is a need to
develop an efficient system to solve the problem.

The system mainly contains 4 kinds of objects at the input stage of the
program. They are:

e Lecturer Objects,

Classroom Objects,

Lesson Objects,
e Constraint Objects.

The relations between various classes at the input stage of the system
can be seen in Figure 3.1.

As an example, let us consider the specification of the class Lecture
(Figure 3.2).

A lecturer object is the entity, where all the information about each
academic staff member is stored. This information is

e Name of the lecturer,

e Available hours of the lecturer.

A lecturer may be not available at the department during some periods of
the week for some reasons. So, while entering the information to the system,
these hours should be identified to the system in order not to have an invalid
schedule, i.e., a schedule that employs a lecturer while he/she is not available
in the department. A lecturer may also have some other preferences over
days. We will consider them as soft constraints. For example, a lecturer
can prefer morning classes. So, while these soft constraints are unimportant
when we control the validity of a timetable, they can help us to evaluate

T. Yakhno, M. E. Tekin

72

sosse[o Jndur o1} I0J 8INJOIYDIR WSISAS oY, ‘'€ 2In3r g

WoolssE |

WooussE |

WooIssE |

SEE|JWO0ISEE |

(P i S1000ISSE | 3]

HUWooIssE |

PR D ETER| N
JUIEgEUARIERID
(I==Eq ()==ieq
[Tl s [Th]
&~
() =epdn
Pt
(0P UIR SW o oussE |) (1=9212g (1maEg
HUMWO0ISEE | [@E-ET] [@ =TT
I
Ca=Epdn
¥
uossaalalag WooEsE|JR3E|ag
UDSSERIERI] WooIEEE|] RjEa)
() =epdn e
G=nLle G=n1h (=103 G L
B JIUIENEIO] 2| JuosEaT] ERIDE]
() aepdn lainaaaag
(o puing UIEISU0 D) (opuing suossaT) AEITI R (o puim siaingaaT)
JunUIEREU0] Junuossa upEIngae
3
(1=epdn
(roputan, s3epdn) .\
punossaaiepdn
(ipes (1peaq (peoy (1peaq
[Juadg (Juadg (Juadg Juadg

(e p Ui, UIE W)
MU ey

Application of constraint hierarchy to timetabling problems 73

-loix

Lecturers
Adil Alpkogak

Lokman Kolukisa

“Yalpin Cebi

Senife Sungun

Akira Imada ﬂ

EITTPNCRCR mpl ey

New

Lecturer Mame: Tatyana vakhno Dane

W aminnunn hour of courses per day |4

i~ Preffered Hour

i

b onday Tuesday Wednesday Thursday Friday
830915 I | D |
5:30-10:15 I | I |
10:30-11:15
11:30-12:15
1300- 1345
14:00-14:45
15:00 - 15:45
16:00 - 16:45

Figure 3.2. Lecturers window

the final timetables, i.e. a timetable can be more preferable than the other,
according to the number of satisfied constraints.

All this availability and preference information is stored in a 5 x 8 integer
array. Each element of the array can take values in the interval [—3, 2].

The value —3 in the array means that the lecturer is not available in
the department during the corresponding hour. The values —2 and —1 cor-
respond to unwillingness for lecturing a course during the corresponding
hours. The scheduler will try not to assign lessons to hours having a prefer-
ence of —2 unless there is no other choice.

The value 0 means “neutral” preference of the lecturer. Assignment of
a lesson to this hour in the timetable gets no penalty, but it does not also
increase the score of the solution found.

The values 1 and 2 in the array correspond to the wish to lecture a
course during the marked hours of the timetable. The scheduler will first try
to assign a lesson of the lecturer to the hour with the preference equal to 2.
By doing this, the solution found will get bonus for making this assignment,

74 T. Yakhno, M. E. Tekin

thus having a higher score. Different values of preferences are marked in the
Lectures window by different colors.

All information related to the lecturers is taken from the Lecturers win-
dow.

In a similar way, other classes are defined.

The system has got some built-in constraints like “there cannot be over-
lapping lessons in the same classroom”. Besides, a user can define other
constraints of different weights. Objects belonging to Constraint Class store
the user-defined constraints.

All the constraints in the system are binary, so a constraint is a relation
between two lesson objects. Since constraint hierarchy is used in the imple-

mentation of the system, priorities of the constraints (in other words, their
weight) should be defined.

4. Search and constraint solver

Constraint Solver converts all the inputs of the program into variables which
should be evaluated later, specifies the domains of each variable, searches
for a solution, evaluates the results and selects the best solution for the user.

All of the functions described above are implemented in a single class
named SchedulerClass which contains multiple methods.

SchedulerClass directs the whole search process. Most of the updates
over the input type objects are also carried out by this class. For example,
when we delete a classroom from the system, all of the lesson instances
should be checked and the domains containing the deleted classroom should
be updated. In order to keep this job simple, all the lists containing pointers
to different object types are kept in this class. When a change in one list
occurs, it is very easy to go over the references of other lists and carry out
the updates.

But the main duty of the class is to traverse the search space and find a
solution of the problem.

4.1. Building a constraint graph

After each variable and its corresponding domain are created, the system
builds the constraint graphs that will direct the search.

Two constraint graphs are used in the system. One of them contains
the hard constraints with no weight and the second one contains the soft
constraints with various weights.

Application of constraint hierarchy to timetabling problems 75

Hard constraints are not handled in the constraint graph. Satisfaction
of these constraints is guarantied by forward checking and arc-consistency
methods [9].

After building the hard constraints defined in the system, the constraint
objects, i.e. user-defined constraints, are to be checked. A user can also
define his/her hard constraints. For example, although lessons A and B do
not belong to the same semester and have different lecturers, a user may
want them to be scheduled to different hours, because some students might
be enrolled to both courses at the same time.

Hard constraint graph contains the constraints that directly conduct the
search. If any inconsistencies are detected in the graph, a backjump occurs [9].

Hard constraints include only one predicate EQUAL (as well as its nega-
tion, "EFQUAL). The predicate FQUAL(A, B) means that the lesson block
A must be scheduled exactly on the same hours of the same day as the lesson
block B.

Soft constraints are built using the information from the constraint ob-
jects and there can be some other soft user-defined constraints of various
weights. Some scoring criteria, such as “blocks of the same lesson should
not be scheduled to the days following each other”, are used after a valid
scheduling is found. Soft constraints do not direct the search process. Soft
constraints are only used to score the solutions found. Thus, they are used
in finding the optimal solution.

4.2. Ordering of the variables

Ordering of the problem variables is important when we need to find any
solution to the Constraint Satisfaction Problem [9]. In this case, finding the
first solution as soon as possible is the goal of the search process.

But the timetabling problem is the optimization one and we are looking
for the best (optimal or near optimal) solution. To achieve this, the entire
search tree should be inspected for solutions. Ordering of the variables is of
no importance when the entire tree is to be traversed.

In the system, we employed Fail First Principle for variable ordering [9].
This is a general heuristic for search. It suggests that the variable which is
likely to fail in labeling should be labeled first. By doing this, inconsistencies
can be detected earlier.

The labeling complexity can be measured differently. For finite domains,
the size of a variable domain is important. A variable with a smaller domain
is likely to fail earlier when compared to a variable with a large domain.

The number of constraints affecting the variable can also make the labeling
difficult.

76 T. Yakhno, M. E. Tekin

We made several tests employing both measures. In some problems, or-
dering according to the domains was performed well, while ordering accord-
ing to the constraints was very poor in performance. But there were other
problems, where ordering according to constraints was very good. The sys-
tem currently uses the domain size measurement for variable ordering.

4.3. Search

The search algorithm is a recursive algorithm and it embodies backjumping
and Branch&Bound techniques, which are two of the most efficient search
methods in the area of scheduling, together with forward checking algo-
rithm [7].

The algorithm continually tries to go deeper in the search tree if no
conflicts arise.

First the algorithm checks, whether the lecturer of the currently sched-
uled block is overloaded for that day or not. To find it out, the algorithm
calls a function Lecturer_QOuver_Schedule, which checks the previous schedules
of the lecturer. If the lecturer is not overloaded, then forward checking oc-
curs and domains of the other variables are reduced. If any future variable
domain becomes empty, no further labeling will be done (forward checking).
The algorithm rolls back and tries to make another schedule for the current
block. If the domains of other variables are reduced successfully, then the
partial solution score is computed. If it is higher than the bound (the best
solution score), then the operations described above work for the next vari-
able. If not, a new labeling is done for the current variable (Branch&Bound).

5. Results and performance

The system is developed under Borland Delphi 5.0 programming environ-
ment. The first tests were toy problems, which helped us to test the stability
of the system and to inspect the behavior of the system under some certain
constraints.

Real data obtained from the previous semesters were used in performance
testing. These tests were also used to determine the quality of solutions
found.

During the development, many methods had been tried to improve the
search performance and the quality of the solution. We’re running the system
during 2 months to collect the results and, on this basis, to improve the
heuristics that guide the search.

Although Branch&Bound and forward checking helps a lot to prune the
search tree, the search process still needs 7 days. But the solution was found

Application of constraint hierarchy to timetabling problems 77

after the 5" day. The rest of the search was just pruning. Since we cannot
know whether the last found solution is the optimum, we cannot cut off the
rest of the search, although it is sometimes useless to continue.

6. Conclusions and future work

Implementation of the final version of the system took 4 months. Most of
this time was consumed in a search for good heuristic function parameters.
Unlike most of the systems developed so far, this system tries to do a more
complete scheduling for the university. It tries to allocate not only the blocks
to the hours, but also the classrooms. When this is the case, the search tree
grows wider, in other words, the number of candidate solutions increases,
which in turn affects the search time in a negative way.

It is certain that the hardware development, especially the CPU tech-
nology, will help the search process to be carried out more effectively. But
in a problem having a huge search space, relying on the power of hardware
is not wise. The developed system works well and can handle many different
situations. But this is not enough. More efforts, especially on the scoring
mechanism, should be made. The possibility of a parallel search process
should also be considered.

References

[1] F. Azevedo, P. Barahona, Timetabling in Constraint Logic Programming,
Proc. of the 2nd World Congress on Expert Systems, 1994.

[2] P. Baptiste, C. Le Pape, W. Nuijten, Incorporating Efficient Operations Re-
search Algorithms in Constraint-Based Scheduling, Proc. of the First Inter-
national Joint Workshop on Artificial Intelligence and Operations Reseach,
1995.

[3] A. Borning, B. Freeman-Benson, M. Wilson, Constraint Hierarchies, LISP and
Symbolic Computation: An International Journal, 5, 1992, 223-270.

[4] T.B. Cooper, J.H. Kingston, The Complexity of Timetable Construction
Problems, Proc. of the First International Conference on the Practice and
Theory of Automated Timetabling (ICPTAT ’95), 1995.

[5] B.N. Freeman-Benson, A. Borning, Integrating Constraints with an Object-
Oriented Language, Proc. of the 1992 European Conference on Object-
Oriented Programming, 268-286.

[6] J.I. Lustig, J. Puget, Constraint Programming and its Relationship to Mathe-
matical Programming, The Institute for Operations Research and Management
Science (INFORMS), Maryland. 2000.

78 T. Yakhno, M. E. Tekin

[7] K. Marriott, P. Stuckey, Programming with Constraints, The MIT Press, Cam-
bridge, UK, 1998.

[8] S.J. Russell, P. Norvig, Artificial Intelligence — A Modern Approach, Prentice
Hall, 1995.

[9] E. Tsang, Foundations of Constraint Satisfaction, Academic Press, 1993.

[10] C. Yeung, S. Leung, H. Leung, Applying Constraint Satisfaction Technique in
University Timetable Scheduling, The Practical Application of Prolog: Proc.
of the 3rd International Conference on the Practical Application of Prolog,
1995, 683-695.

