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1. Introdution

Dataow networks are a well-known mathematial tool extensively used for representing, analyzing

and modelling onurrent omputing systems and their software. Formal dataow models reported in

the literature may be divided in two groups | stati and dynami. Stati models [4℄ admit at most

one token on an ar. This assumption severely limits the possibilities of onurreny. Dynami models

are free from this restrition due to program ode opying [10℄ and token oloring [2, 11℄.

To get better understanding of the nature of onurrent omputations, di�erent approahes to

representation of the semantis of dataow networks presented in the literature have been studied. In

the lassial work by Kahn [6℄, the denotational semantis of dataow omputations was represented

by �xed point equations. Using the Kahn priniple, artile [12℄ set forth the denotational semantis

of real-time dataow networks. The operational semantis in terms of �ring sequenes was given

for stati dataow networks in [4℄ and for dynami ones in [2, 11℄. The possibility of modelling the

operational semantis of stati dataow networks by ACP-terms was presented in [3℄. Modularity and

the Kahn priniple were investigated in [8, 9℄ for dataow networks whose semantis was represented

by pomsets and trae languages. A fully abstrat trae-model for dataow networks was given in [5℄.

In paper [1℄ the event struture semantis was developed for a lass of olored dataow networks and

formal relationships were established between a number of semantis notions, suh as �ring sequenes,

trae languages, dependene graphs and event strutures. Our aim is to establish a full orrespondene

between these two models. We use algebrai spei�ations for this purpose. In [1℄ the lass of well-

formed olored dataow networks was de�ned using algebrai operations. For the model of event

strutures we take the proess algebra BPA (Basi Proess Algebra) as a starting point. We onsider

an extension of BPA with a parallel operation jj and a binary Kleene star �, and denote it as PBPA

�

.

We adapt operators from PBPA

�

to prime event strutures and obtain a lass of well-formed event

strutures whih is shown to be orresponding to well-formed olored dataow networks.

The paper is organized as follows. In Setion 2, we present the basi terminology onerning event

strutures. Setion 3 de�nes the struture of a oloured dataow network (for brevity, -network).

Then the operational semantis of a marked -network in terms of �ring sequenes is given. In Setion

4, we introdue a notion of deorated event strutures, taking into aount a ontext presented in

omputations, e.g., olors, time or something else. Further the notion of well-formed event strutures

is presented and the orrespondene between the model just mentioned and well-formed -networks is

established. In the �nal setion, some onluding remarks are given.

2. Basi notions of the event strutures theory

Event strutures have been �rstly introdued in [7℄ being represented via sets of events with relations

expressing ausal dependenes and onits between them. The subsets of events representing exe-

utions in the event struture are alled on�gurations. They have to be onit-free and left-losed

with respet to the ausality relation (all prerequisites for any event ourring in the exeution must

also our).

�
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De�nition 2.1. A labeled prime event struture over an alphabet At (event struture for brevity) is

a quadruple S = (E;�;#; l), where

(i) E is a ountable set of events;

(ii) � � E �E is a partial order (the ausality relation) satisfying the priniple of �nite auses:

8e 2 E : fd 2 E j d � eg is �nite;

(iii) # � E �E is a symmetri and irreexive relation (the onflit relation) satisfying the priniple

of onit heredity:

8e
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; e
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; e
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(iv) l : E ! At is a labeling funtion.

For an event struture S = (E;�;#; l), we assume that

id = f(e; e) j e 2 Eg;

< = � nid;

<
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Two event strutures are alled isomorphi (E

�

=

F) i� there is a bijetion between their sets of events

E

E

and E

F

preserving the relations � and # and labeling l.

The restrition of E to C � E

E

is de�ned as EdC = (C;�

E

\ (C � C);#

E

\ (C � C); l

E

j

C

).

We onsider an algebrai spei�ation to selet a lass of event strutures orresponding to a lass

of olored dataow networks. As a representative we introdue a variant PBPA* of the known system

BPA ( Basi Proess Algebra from [13℄) with the parallel operator jj and the binary Kleene star �.

We hoose the proess algebra BPA, sine it has been proved in [14℄ that the axioms of BPA* (i.e.,

BPA extended by the binary Kleene star) an ompletely haraterize bisimilarity between proesses.

The PBPA* terms speify strutures with all basi relations inherent in onurrent systems that an

be represented by the model of event strutures. Thus,

� the operator \jj" means that all events in the �rst omponent are onurrent to all events in the

seond one;

� the operator \+" means that all events of one system are in onit with all events of another

one;

� the operator \;" means that all events of the �rst omponent are ausally preedent to all events

of the seond one;

� the operator \�" means in�nite iteration of two oniting omponents with �xpoint semantis.

We de�ne a set of onit-free terms over an alphabet At as follows:

PBPA

�

f

(At) = a j (� jj �) j (�;�), where a 2 At; �; � 2 PBPA

�

f

(At)

Then the following rules speify the set of PBPA*-terms over the alphabet At:

PBPA

�

(At) = a j (�jj�) j (�+ �) j (;�) j ( � �);

where a 2 At; �; � 2 PBPA

�

(At) and  2 PBPA

f

(At).

Now we an de�ne the event struture E

PBPA

�

(p) = (E;�;#; l) for a term p 2 PBPA

�

(At) by

indution on the term onstrution:

1. Let p = a 2 At. Then E

PBPA

�

(p) = (feg; ;; ;; f(e; a)g;

2. Let p = p

1

jj p

2

with E

1

= E

PBPA

�

(p

1

) and E

2

= E

PBPA

�

(p

2

). Then
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�
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5. Let p = p

1

� p

2

, p

(0)

= p

1

+ p

2

and p

(i+1)

= p

1

;p

(i)

+ p

2

. Then E

PBPA

�

(p) is de�ned as the

minimal event struture suh that E

PBPA

�

(p

(n)

)vE

PBPA

�

(p) for all n 2 N.

By onstrution of PBPA

�

-terms it is lear that E

PBPA

�

(p) is a prime event struture for all

p 2 PBPA

�

(At). Further we establish a orrespondene between a lass of PBPA

�

-event strutures

( i.e., event strutures onstruted for PBPA

�

-terms with the above rules) and the lass of olored

dataow networks introdued in [1℄.

De�nition 2.2. A on�guration of an event struture S = (E;�;#; l) is a subset X � E suh that:

(i) 8e; e

0

2 X � :(e # e

0

) (onit-free);

(ii) 8e; e

0

2 E � e 2 X & e

0

� e) e

0

2 X (left-losed).

We shall denote by C(S) the set of on�gurations of an event struture S.

In the gra�al representation of an event struture, only immediate onits | not the inherited

ones | are pitured. The immediate neighbourhood relation is represented by ars, omitting those

derivable by transitivity. Following these onventions, an example of an event struture is shown in

Fig. 2.1.
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Figure 2.1.

3. Coloured dataow networks

In this setion, we onsider oloured dataow networks [1℄ and their operational semantis in terms

of �ring sequenes.

A dataow network (a network) is haraterized by nodes and ars. The nodes onsist of links

and ators. There are four kinds of ator nodes (operators, deiders, gates and olour ators) and two

kinds of link nodes (data and ontrol links). The ars onneting links with ators and ators with

links are alled data and ontrol ars aording to the type of link. The nodes and ars are represented

by two sets N and E whih have to be nonempty, �nite and disjoint.

De�nition 3.1. A network is a pair N = (N;E), where

(i) N is a set of nodes onsisting of a subset A of ators and a subset L of links with A\L = ;. The

ators are of the following types: operators (A

F

), deiders (A

R

), gates (A

G

) and olour ators

(A

C

= New [Next [Old). The links are of two types: data links (L

I

) and ontrol links (L

R

);

(ii) E � ((A [!)�L) [ (L� (A[ !)) is a set of ars onsisting of a subset E

I

of data ars and a

subset E

R

of ontrol ars. Here ! 62 N and E

I

\E

R

= ;.

Fig. 3.1(a) shows the types of links. The types of ators are shown in Fig. 3.1(b):
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Figure 3.1.

At least one data (ontrol) ar must terminate on and at least one data (ontrol) ar must originate

at eah data (ontrol) link. An operator has an ordered set of input data ars and a single output

data ar. A deider has an ordered set of input data ars and a single output ontrol ar. A gate has

one input data ar and one input ontrol ar and two output data ars labelled by `+'- and `{'-signs.

A olour ator: either new 2 New or next 2 Next or old 2 Old (allowing loop omputations to be

modelled). A olour ator has a single input data ar and a single output data ar.

For a node n 2 N , we use in(n) and out(n) to denote the set of its input ars and the set of its

output ars, respetively. We suppose In = f(!; l) 2 E j l 2 Lg (the set of input ars of N ) and

Out = f(l; !) 2 E j l 2 Lg (the set of output ars of N ). We also �x L

In

= fl 2 L j (!; l) 2 Ing (the

set of input link nodes of N ) and L

Out

= fl 2 L j (l; !) 2 Outg (the set of output link nodes of N ).
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For two nodes n; n

0

2 A, we shall write n ,! n

0

, i� there exists l 2 L suh that out(n) \ in(l) 6=

; & out(l) \ in(n

0

) 6= ;. By n

�

,! n

0

we denote the following fat: n ,! n

1

& : : : & n

m

,! n

0

, where

n; n

0

2 (A

F

[A

R

), fn

1

; : : : ; n

m

g = � � A n (A

F

[A

R

) and m � 0.

The omponents of a network N = (N;E) are subsribed by the index N , for example: N

N

and

E

N

. If lear from the ontext, the index N is omitted.

In order to get a lass of networks suitable for our purpose, we introdue a notion of a well-formed

network. Before doing so we need to de�ne some additional notions and notations.

We onsider the following elementary networks: operational (o-networks)

^

f , alternative (a-networks)

+

r

and iterative (i-networks)

�

r

0

shown in Fig. 3.2. a), b) and ), respetively.
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Figure 3.2.

Let O denote the set of all o-networks, A denote the set of all a-networks and I denote the set of

all i-networks.

Now we an speify operations over nets:

(i) jj-operation (parallel omposition)

Let N

1

and N

2

be networks suh that (N

N

1

\N

N

2

) = ; and (E

N

1

\E

N

2

) = ;. Then

(N

1

jj N

2

) = (N;E) is de�ned as: N = N

N

1

[N

N

2

; E = E

N

1

[E

N

2

.
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(ii) �-operation (merging of links)

Let N

1

be a network and

b

L = fl

1

; : : : ; l

m

g � L

I

N

1

. Let l = <l

1

; : : : ; l

m

> be a link suh that

in(l) = [(in(l

i

) j l

i

2

b

L) and out(l) = [(out(l

i

) j l

i

2

b

L). Then �(N

1

;

b

L) = (N;E; T;C) is

de�ned as:

N = (A

N

1

[ ((L

N

1

n

b

L) [ flg));

E = (E

N

1

n (in(l) [ out(l)))[

f(n; l) j n 2 N

N

1

& 9l

i

2

b
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i

) 2 E

N

1

)g[

f(l; n) j n 2 N

N

1
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2

b
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i

; n) 2 E
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1

)g[

f(!; l) j 8l

i

2

b

L : (!; l

i

) 2 E

N

1

)g[

f(l; !) j 8l

i

2

b

L : (l

i

; !) 2 E

N

1

)g.

(iii) ;-operation (sequential omposition)

Let N

1

and N

2

be networks suh that (N

N

1

\ N

N

2

) = ;, (E

N

1

\ E

N

2

) = ; and j Out

N

1

j = j

In

N

2

j = 1.

Then (N

1

;N

2

) = �((N

1

jj N

2

); (L

Out

N

1

[ L

In

N

2

)).

(iv) +-operation (alternative omposition)

Let N

1

and N

2

be networks and

+

r

be an a-network with a deider r suh that (N

N

1

\ N

N

2

) [

(N

N

1

\N

+

r

)[ (N

N

2
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+

r

) = ;, (E

N
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\E

N

2
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N

1

\E

+

r

)[ (E

N

2

\E

+

r

) = ;, j In

N

1

j=j In

N

2

j= 1

and j Out

N

1

j=j Out

N

2

j= 1. Let g 2 A

G

+

r

and l

r

3

; l

r

4

2 L

I

+

r

be suh that (g; l

r

3

) is the output `+'-ar

and (g; l

r

4

) is the output `{'-ar of g.

Then (N

1

+N

2

)

r

= �(�(�(((N

1

jj N

2

) jj

+

r

); (L
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N
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g)); (L
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N

2

[ fl

r

4

g)); (L

Out

N

1

[ L
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N

2
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(v) �-operation (iterative omposition)

Let N

1

be a network and

�

r

0

be an i-network with a deider r

0

suh that (N

N

1

\ N�

r

0

) = ;,

(E

N

1

\ E�

r

0

) = ;, j In

N

1

j = j Out

N

1

j = 1. Let g 2 A

G

�

r

0

, next 2 A

C

�
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0

, l
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3

; l

r

0

5

2 L

I

�

r

0

be suh that

(g; l

r

0

3

) is the output `+'-ar of g and (l

r

0

5

; next) is the output ar of next.

Then (�N

1

)
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0

= �(�((N
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�
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); (L
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The examples of applying the operations (i)|(v) to nets are shown in Appendix.

We all a net N well-formed if it is de�ned as follows:

N =

^

f j (N

1

jj N

2

) j (N

1

;N

2

) j (N

1

+N

2

)

r

j (�N

1

))

r

0

, where

N

1

;N

2

are well-formed networks,

^

f 2 O,

+

r

2 A

�

r

0

2 I.

We are now ready to de�ne a notion of a oloured network.

De�nition 3.2. A oloured network (-network for brevity) is a quadruple CN = (N ; T; �; C), where

(i) N is a well-formed network;

(ii) T is a set of tokens onsisting of two disjoint subsets T

I

(data tokens) and T

R

(ontrol tokens)

(T

I

\ T

R

= ;);

(iii) � is a set of olours. Eah olour is a triple  = (x; y; z), where :x is the unique name of the

loop, :y is the number of the loop iteration, and :z is the ontext that may be a olour itself;

(iv) C : T �! � is a olour funtion.

The omponents of a -network CN = (N ; T;�; C) are subsribed by the index CN . If lear

from the ontext, the index CN is omitted. As an example, the well-formed network CN

0

(with

N

CN

0

= ((�

b

f

1

)

r

;

b

f

2

)) is shown in Fig. 3.3.
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Figure 3.3.

For the sake of onveniene, we �x a -network CN = (N ; T;�; C) (with N = (N;E)) and work

with it throughout the paper.

A marking of CN is a funtion M de�ned from E into 2

T

suh that the tokens must have a type

idential to the type of the ar. A marking M is alled initial (denoted as M

in

), i�

(i) 8e 2 In 8t; t

0

2M(e) � (t 6= t

0

) C(t) 6= C(t

0

));

(ii) 8e 2 (E n In) � M(e) = ;.

Let a pair (CN ;M

in

) denote the initially marked -network.

We further speify an interpretation for (CN ;M

in

) in order to provide a omplete representation

of the modelled omputation.

De�nition 3.3. An interpretation I of (CN ;M

in

) is de�ned as follows:

(i) a domain D of values,

(ii) an assignment of a total funtion ' : D

m

�! D to eah operator f 2 A

F

, where m =j in(f) j,

(iii) an assignment of a total prediate  : D

m

�! ftrue; falseg to eah deider r 2 A

R

, where

m =j in(r) j.

Besides we introdue a valuation funtion V that assigns a value V (t) 2 D (V (t) 2 ftrue; falseg,

respetively) to eah token t 2 T

I

(t 2 T

R

, respetively). Let I denote the set of all possible interpre-

tations of (CN ;M

in

). We use a triple (CN ;M

in

; I) to denote the interpreted (CN ;M

in

).
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For (CN ;M

in

; I), we de�ne the �ring rule assoiated with a node n as follows:

(i) An ator (a link) n is enabled with a olour  in a marking M if there is a token with a olour 

on eah (at least one) input ar of n.

(ii) An ator (a link) n enabled with a olour  in a marking M may be hoosen to �re with a olour

 yielding a new marking M

0

spei�ed as follows:

1. One token with a olour  is removed from eah (one) input ar of an ator (a link) n.

2. The tokens are added to the output ars of n in the following way:

2.1. For a data (ontrol) link n, one data (ontrol) token with the olour U(n; ) and the value

V (t) is added to eah output ar of n, where t is the data (ontrol) token removed from an input

ar of n.

2.2. For an operator (a deider) n, one data (ontrol) token with the olour U(n; ) and the value

'(V (t

1

); : : : ; V (t

m

)) ( (V (t

1

); : : : ; V (t

m

))) is added to the output ar of n, where t

1

; : : : ; t

m

are the data tokens removed from the input ars of n and m =j in(n) j.

2.3. For a gate n, one data token with the olour U(n; ) and the value V (t

1

) is added to the

`+'-ar, if V (t

2

) = true, or to the `{'-ar, if V (t

2

) = false, where t

1

and t

2

are respetively the

data and ontrol tokens removed from the input ars of n.

2.4. For a olour ator n, one data token with the olour U(n; ) and the value V (t) is added to

the output ar of n, where t is the data token removed from the input ar of n.

Here

U(n; ) =

8

>

>

>

<

>

>

>

:

(n; 0; ); if n 2 New,

(:x; :y + 1; :z); if n 2 Next,

:z; if n 2 Old,

; otherwise.

For (CN ;M

in

; I), a �ring with a olour  of a node n is de�ned as a triple M

(n;)

�! M

0

suh that a

transition from the markingM to the markingM

0

is onsistent with the �ring rule assoiated with n.

We shall denote a �ring with a olour  of a node n as just a pair (n; ), if information about markings

M and M

0

is not signi�ant.

From now on, we shall use R = (N � �) and R

0

= ((A

F

[A

R

)� �).

A �ring sequene in (CN ;M

in

; I) is a string � over the alphabet R de�ned as:

(i) � = � is a �ring sequene in (CN ;M

in

; I) and M

in

�

�!M

in

,

(ii) Suppose �

0

is a �ring sequene in (CN ;M

in

; I), M

in

�

0

�!M and M

(n;)

�!M

0

, then � = �

0

(n; ) is a

�ring sequene in (CN ;M

in

; I) and M

in

�

0

(n;)

�! M

0

.

LetR(CN ;M

in

; I) denote the set of all �ring sequenes in (CN ;M

in

; I), andR = [(R(CN ;M

in

; I) j

I 2 I).

The spei�ation of the behaviour of an initially marked -net (CN ;M

in

) by means of a labeled

prime event struture has been desribed in [1℄. To sketh it out, we �rst need to introdue the notion

of a dependene graph and its projetion de�ned for a �ring sequene.

De�nition 3.4.

Let � 2 R. Then the D-graph assoiated with � is the triple

e

G

�

= (

e

V

�

;

e

E

�

;

~

l

�

) suh that:

� = �. Then

e

G

�

= (;; ;; ;).
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� 6= �. Let � = �

0

(n; ) and assume that

e

G

�

0

= (

e

V

�

0

;

e

E

�

0

;

~

l

�

0

) is de�ned. Then

e

G

�

= (

e

V

�

;

e

E

�

;

~

l

�

) for

e

V

�

=

e

V

�

0

[ f((n; );X)g, where

X = f((n

0

; 

0

);X

0

) 2

e

V

�

0

j out(n

0

) \ in(n) 6= ; if U(n

0

; 

0

) = g,

e

E

�

=

e

E

�

0

[ (X � f((n; );X)g) and

8((n

0

; 

0

);X

0

) 2

e

V

�

�

~

l

�

(((n

0

; 

0

);X

0

)) = (n

0

; 

0

).

In order to generalize some insigni�ant dependenes in a d-graph, we de�ne the notion of its

projetion onto R

0

.

De�nition 3.5.

Let � 2 R. Then the projetion of D-graph

e

G

�

= (

e

V

�

;

e

E

�

;

~

l

�

) on the set R

0

is the triple

b

G

�

= (

b

V

�

;

b

E

�

;

^

l

�

)

suh that:

b

V

�

= f((n; );X) 2

e

V

�

j (n; ) 2 R

0

g;

b

E

�

�

b

V

�

�

b

V

�

suh that (((n; );X); ((n

0

; 

0

);X

0

)) 2

b

E

�

()

9(((n; );X); ((n

1

; 

1

);X

1

)); : : : (((n

m

; 

m

);X

m

); ((n

0

; 

0

);X

0

)) 2

e

E

�

suh that (n; ),(n

0

; 

0

) 2R

0

, (n

1

; 

1

); : : : ; (n

m

; 

m

)2 (R n R

0

) if m � 1;

8((n

0

; 

0

);X

0

) 2

b

V

�

�

^

l

�

(((n

0

; 

0

);X

0

)) = (n

0

; 

0

).

Now we an give the event struture semantis for -networks from [1℄.

De�nition 3.6.

The event struture for (CN ;M

in

) is a quadruple E((CN ;M

in

)) = (E;�;#; l), where

� E = [

�2R

(

b

V

�

);

� �= [

�2R

(

b

E

�

)

�

;

� 8((n; ); X); ((n

0

; 

0

);X

0

) 2 E � ((n; );X) # ((n

0

; 

0

);X

0

) , 8� 2 R �

f((n; ); X); ((n

0

; 

0

);X

0

)g 6�

b

V

�

;

� 8((n; );X) 2 E � l

E(N )

(((n; );X)) = (n; ).

Let us onsider the initially marked -net (CN

0

;M

in

) (shown on Fig. 3.4), where M

in

((!; l

r

0

)) =

ftg. Fig. 3.4 shows the �nal fragment of the event struture for (CN

0

;M

in

), where 

0

= (0; 0; 0),



1

= (new; 0; 

0

), 

2

= (new; 1; 

0

) and 

3

= (new; 2; 

0

).

(r; 

2

)(r; 

1

) (f

1

; 

1

)

(f

2

; 

0

)

#

(f

1

; 

2

)

#

(f

2

; 

0

)

(r; 

3

) (f

1

; 

3

)

#

(f

2

; 

0

)

-

�

�

�

��

- -

�

�

�

��

- -

�

�

�

��

Figure 3.4.

4. Well-formed event strutures

In this setion we introdue a new version of event strutures, namely, the ontext event strutures

over a separated alphabet

d

At = At

f

[ At

r

[ f

p

g, where At

f

\ At

r

= ;. Ations from At

f

are

alled basi and ations from At

r

are auxiliary for onstruting well-formed event strutures. We

superindue the notion of a ontext whih is a ountable set. When modeling a data domain by event

strutures, the ontext plays the role of an additional attribute, for example, time limitation or the

set of olours.
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De�nition 4.1. A ontext event struture (over an alphabet

d

At = At

f

[At

r

[f

p

g with a ontext

K ) is a 5-tuple E = (E;<;#; l; ), where

� E is a ountable set of events;

� <� E �E is a (nonreexive) partial order ausality relation;

� # � E �E is a symmetri nonreexive relation (onit relation);

� l : E !

d

At is a labeling funtion;

�  : E ! K is a ontext assigning funtion.

We use E

t

E

= fe 2 E

E

j l

E

(e) =

p

g to denote the set of terminate events, E

nt

E

= E

E

nE

t

E

to denote

the set of nonterminate events, and minE = fe 2 E

E

j

.

e = ;g to denote the set of minimal elements.

We now introdue the notions of a free term p, the set of its ations V ar(p), and the lass of

isomorphi ontext event strutures [p℄ determined by this term. Let Term

K

(At) denote the set of

free terms over the alphabet At = At

F

[At

r

with the ontext K onstruted as follows.

1. p = O 2 Term

K

(

d

At), V ar(p) = ; and E 2 [p℄ ) E = (feg; ;; ;; f(e;

p

)g; f(e; k

0

)g).

2. p = a 2 At

f

) p 2 Term

K

(

d

At), V ar(p) = fag and

E 2 [p℄) (fe; e

0

g; f(e; e

0

)g; ;; f(e; a); (e

0

;

p

)g; f(e; k

0

); (e

0

; k

0

)g):

Let p; q 2 Term

K

(

d

At) suh that V ar(p)\V ar(q) = ;. Then the following operators are used to build

terms :

(A) Parallel omposition.

p jj q 2 Term

K

(

d

At), V ar(p jj q) = V ar(p) [ V ar(q) and E 2 [p jj q℄ ) 9E

1

2 [p℄; E

2

2 [q℄ :

E

E

1

\E

E

2

= ; and E

E

= E

E

1

[E

E

2

, <

E

=<

E

1

[ <

E

2

, #

E

= #

E

1

[#

E

2

, l

E

= l

E

1

[ l

E

2

, 

E

= 

E

1

[ 

E

2

(B) Sequential omposition.

p; q 2 Term

K

(

d

At), V ar(p; q) = V ar(p) [ V ar(q) and E 2 [p; q℄)

) 9E

0

2 [p℄; E

1

; E

2

; : : : ; E

n

2 [q℄, where n =j E

t

E

0

j, suh that E

t

E

0

= fe

1

; e

2

; : : : ; e

n

g, minE

i

=

fe

i

g; for all 0 � i � n, E

E

i

\ E

E

j

= ;for0 � i 6= j � n, E

E

0

\ E

E

i

= fe

i

g for 1 � i � n and

E

E

=

S

0�i�n

E

E

i

. Then:

<

E

=

S

0�i�n

<

E

i

S

f(e; e

0

) j e 2 E

E

0

; e

0

2 E

E

i

81 � i � ng,

#

E

=

S

0�i�n

#

E

i

S

f(e; e

0

); (e

0

; e) j e 2 E

E

0

; e

0

2 E

E

i

and e#

E

0

e

i

; 1 � i � ng

S

f(e; e

0

) j e 2

E

E

i

; e

0

2 E

E

j

for 1 � i; j � n; i 6= jg, l

E

=

S

1�i�n

l

E

i

S

l

E

0

j

E

nt

E

0

, 

E

=

S

1�i�n



E

i

S



E

0

j

E

nt

E

0

.

(C) Alternative omposition.

p

a

+ q 2 Term

K

(

d

At) with a 2 At

r

n(V ar(p) [ V ar(q));

V ar(p

a

+ q) = V ar(p) [ V ar(q) [ fag and E 2 [p

a

+ q℄ ) 9E

1

2 [p℄; E

2

2 [q℄; d 62 E

E

1

[ E

E

2

:

E

E

1

\E

E

2

= ;,

j minE

1

j=j minE

2

j= 1 and

E

E

= E

E

1

[E

E

2

[ fdg,

<

E

=<

E

1

[ <

E

2

[f(d; e) j e 2 E

E

1

[E

E

2

g,

#

E

= #

E

1

[#

E

2

[ f(e; e

0

) j e 2 E

E

i

; e

0

2 E

E

j

; i 6= jg,

l

E

= l

E

1

[ l

E

2

[ f(d; a)g,



E

= 

E

1

[ 

E

2

[ f(d; k

0

)g.

(D) Context substitution.

p = q[k

0

1

=k

1

; : : : ; k

0

n

=k

n

℄ 2 Term

K

(

d

At), where k

i

; k

0

i

2 K for 1 � i � n. Then V ar(p) = V ar(q)

and E 2 [p℄) 9E

0

2 [q℄ : E = (E

E

0

; <

E

0

;#

E

0

; l

E

0

; ),

with

(e) =

(

k

0

i

; if 

E

0

(e) = k

i

for some 1 � i � n ;



E

0

(e); otherwise.

for all e 2 E

E

0

.
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(E) Iterative omposition.

p

a

�2 Term

K

(

d

At), where a 2 At

r

nV ar(p); V ar(p

r

�) = V ar(p) [ fag and E 2 [p

r

� ℄ ) E is a

minimal ontext event struture suh that 8n 2 N9E

n

2 [p

(n)

℄: E

n

v E , ( E

n

is a substruture of

E), where the term p

(n)

is built indutively as follows :

p

(0)

= O,

p

(n)

= (O

a

+ (p; p

(n�1)

))[k

1

a

=k

0

; k

2

a

=k

1

a

; : : : ; k

n

a

=k

n�1

a

℄.

In the set of free terms we onsider a subset of basi terms Term

K

0

(

d

At) � Term

K

(

d

At):

Term

K

0

(

d

At) = b j (p jj q) j (p; q) j (p

a

+ q) j (p

a

�), where

b 2 At

f

, a 2 At

r

, p; q 2 Term

K

0

(

d

At).

De�nition 4.2. A ontext event struture E is alled a well-formed event struture if E 2 [p℄ for some

p 2 Term

K

0

(

d

At).

Two ontext event strutures E

1

and E

2

with ontexts K

1

and K

2

, respetively, are alled isomorphi

(E

1

�

=

E

2

) i� there is an isomorphism f between E

1

and E

2

with a substitution h : K

1

! K

2

, i.e. f :

E

E

1

! E

E

2

is a bijetion suh that 8e; d 2 E

E

1

: (e <

E

1

d, f(e) <

E

2

f(d)) & (e#

E

1

d, f(e)#

E

2

f(d))

and 8e 2 E

E

1

; d 2 E

E

2

: d = f(e) ) (l

E

1

(e) = l

E

2

(d)) & 

E

1

(e) = h(

E

2

(d))) It an be noted that the

isomorphism just introdued for ontext event strutures orrelates with that onsidered in Setion 2

for prime event strutures, assuming that prime event strutures have the null ontext K

null

= fOg

(i.e., k

i

a

= k

0

= O for all i 2 N and a 2 At

r

s.t. k

i

a

2 K

null

). Thus, we an onsider an isomorphism

between a ontext event struture E and a prime event struture E

0

(E

�

=

E

0

) with the substitution

h : K

E

! K

null

: In other words, we an onsider suh isomorphisms simply without a substitution.

Proposition 4.1. Let E

0

be a well-formed event struture (over the alphabet

d

At). Then there is

q 2 PBPA

�

(

d

At) suh that E

PBPA

�

(q)

�

=

E

0

.

Proof. We prove it by indution on the struture of a term p. Assume p 2 Term

K

0

(

d

At) to be suh

that E

0

2 [p℄. We onstrut the orresponding PBPA

�

-term q (onsidering an isomorphism without

substitution by indution on the number of ;-operator used in the term p).

1. Suppose that the term p does not inlude a sequential omposition. We prove the ase by

indution on the struture of p.

Four ases are possible:

p = a 2 At

f

. Then learly q = (a;

p

) 2 PBPA

�

(

^

At). It is easy to see that E

PBPA

�

(q)

�

=

E

0

.

p = (p

1

jjp

2

). Assume q

1

; q

2

2 PBPA

�

d

(At) to be onstruted so that E

PBPA

�

(q

1

) = F

1

�

=

E

1

2 [p

1

℄

and F

2

= E

PBPA

�

(q

2

)

�

=

E

2

2 [p

2

℄. Then obviously q = (q

1

jjq

2

) 2 PBPA

�

d

(At). It is neessary

to show E

PBPA

�

(q)

�

=

E

0

. Let f

1

and f

2

be an isomorphism between F

2

and E

2

. We an take

F

1

;F

2

; E

1

and E

2

suh that E

F

1

\E

F

2

= ; and E

E

1

\E

E

2

= ;. It is lear that f

1

[f

2

: E

F

1

[E

F

2

!

E

E

1

[E

E

2

is an isomorphism between F = E

PBPA

�

(q) and E

0

.

p = p

1

; p

2

. Assume q

1

; q

2

2 PBPA

�

d

(At) to be onstruted so that E

PBPA

�

(q

1

) = F

1

�

=

E

1

2 [p

1

℄

and F

2

= E

PBPA

�

(q

2

)

�

=

E

2

2 [p

2

℄ and a 2 At

r

�

d

At. Then q = a; (q

1

+ q

2

) 2 PBPA

�

d

(At).

It is neessary to show that E

PBPA

�

(q)

�

=

E

0

. Let f

1

be an isomorphism between F

1

and

E

1

and f

2

be an isomorphism between F

2

and E

2

. We onsider F

1

;F

2

; E

1

and E

2

suh that

E

F

1

\ E

F

2

= E

E

1

\ E

E

2

= ; and d 62 E

E

1

[ E

E

2

, where d 2 E

E

0

suh that l

E

0

(d) = a. Let

e 62 E

F

1

[ E

F

2

be suh that l

E

PBPA

�(q)

(e) = a. Then it is lear that f = f

1

[ f

2

[ f(e; d)g is an

isomorphism between E

PBPA

�

(q) and E

0

.

p = (p

1

a

�). Assume q

1

2 PBPA

�

d

(At) to be onstruted so that E

PBPA

�

(q

1

) = F

1

�

=

E

1

2 [p

1

℄. Then

q = a; (q

1

; a �

p

) 2 PBPA

�

(

d

At). It is neessary to show that E

PBPA

�

(q)

�

=

E

0

. Let us onsider

the sequene of PBPA

�

-terms:
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q

(0)

=

p

,

q

(1)

= a; (q

1

;

p

+

p

),

q

(2)

= a; (q

1

; (a; (q

1

;

p

+

p

)) +

p

); : : :, q

(n)

= a; (q

1

; q

(n�1)

+

p

). It is easy to see that

q = lim

n!1

q

(n)

and E

PBPA

�

(q

(i)

)

�

=

E

n

2 [p

(n)

℄. Hene, E

PBPA

�

(q) is the minimal event

struture suh that E

PBPA

�

(q)

�

=

E

0

..

2. Let p = (p

1

; p

2

). Sine the term p

2

inludes less sequential omposition operators than p, we

an onstrut the term q

2

2 PBPA

�

(

d

At) suh that E

PBPA

�

(q

2

)

�

=

E

2

2 [p

2

℄. We build the term q 2

PBPA

�

(

d

At) orresponding to p 2 Term

K

0

(

d

At) by indution on the struture of p

1

. It is lear from

the de�nition of the sequential omposition that (p

1

; p

2

); p

3

= p

1

; (p

2

; p

3

)8p

1

; p

2

; p

3

2 Term

K

0

(

d

At).

Thus, the following four ases are only worth to be onsidered.

p

1

= a 2 At

f

. Then q = (a; q

2

) 2 PBPA

�

(

d

At)

p

1

= p

0

1

jj p

00

1

. This ase is invalid sine 8E

1

2 [p

1

℄: j minE

1

j� 2 due to the de�nition of the parallel

omposition. This ontradits the sequential omposition for Term

K

0

(

d

At).

p

1

= (p

0

1

a

+ p

00

1

). Sine p

0

1

and p

00

1

are less than p

1

, we an onstrut the terms q

0

1

; q

00

1

2 PBPA

�

(

d

At)

suh that E

PBPA

�

(q

0

1

)

�

=

E

1

2 [p

0

1

; p

2

℄ and E

PBPA

�

(q

00

1

)

�

=

E

1

2 [p

00

1

; p

2

℄. Let us onsider the

term q = a; (q

0

1

+ q

00

1

) 2 PBPA

�

(

d

At). By the reasoning analogous to that in ase 1() of the

present proof, one an establish that E

PBPA

�

(q)

�

=

E

0

.

p

1

= (p

0

a

�). Sine the term p

0

2 Term

K

0

(

d

At) is less than p

1

, we an onstrut the term q

0

2

PBPA

�

(

d

At) suh that E

PBPA

�

(q

0

)

�

=

E

1

2 [(p

0

; a)℄. Let us onsider the term q = a; (q

0

� q

2

).

By the reasoning analogous to that in ase 1(d) (replaing q

2

instead of

p

) of the present proof,

one an establish that E

PBPA

�

(q)

�

=

E

0

.

From Proposition 4.1 it obviously follows that a well-formed event struture is a prime event

struture, sine E

PBPA

�

(p) is a prime event struture for all p 2 PBPA

�

(

d

At).

The ation

p

is not signi�ant indeed, sine it is only used to denote a possible exit from an iterative

yle in a well-formed event struture. By this reason we onsider the notion of weak isomorphism

de�ned as follows: E

�

=

!

F (this means that E and F are weakly isomorphi) if Ej

E

nt

E

�

=

Fj

E

nt

F

, what

means that this equivalene notion takes into onsideration only non-terminate events.

Theorem 4.1.

(i) Let (CN ;M

in

) be an initially marked -network suh that 8e 2 In : t 2M

in

(e)) C(t) = 

0

. Then

there is a well-formed event struture E

0

suh that E

0

�

=

!

E(CN ;M

in

).

(ii) Let E

0

be a well-formed event struture over the alphabet

d

At with a ontext K. Then there

is an initially marked -network (CN ;M

in

), where 8e 2 In : t 2 M

in

(e) ) C(t) = 

0

suh that

E(CN ;M

in

)

�

=

!

E

0

.

Proof.

(i) We take the following alphabet At

r

= A

R

, At

f

= A

F

and a substitution h suh that k

0

= h(

0

)

and k

i

a

= h(new(a); i; ), where new(a) 2 New suh that new(a) ,! a. We prove the ase by indution

on the struture of the formula for N

CN

:

1. Let N =

^

f . Then for any E 2 [f ℄ it is obvious that E

0

�

=

!

E(CN ;M

in

).

2. Let N = N

CN

1

jj N

CN

2

. By the indution hypothesis, there are terms p (for N

CN

1

) and q

(for N

CN

2

) and well-formed event strutures E

1

2 [p℄ and E

2

2 [q℄ suh that E

E

1

\ E

E

2

= ; and

E

1

�

=

!

E(CN

1

;M

in

), E

2

�

=

!

E(CN

2

;M

in

). Then, learly, E = E

1

[ E

2

2 [p jj q℄ 2 Term

K

(

d

At) built

aording to the rule (A) satis�es the following: E

�

=

!

E(CN

1

;M

in

) [ E(CN

2

;M

in

) = E(CN ;M

in

).

3. Let N = N

CN

1

;N

CN

2

. By the indution hypothesis, there are terms p (for N

CN

1

) and q (for

N

CN

2

) and well-formed event strutures E

0

2 [p℄ and E

1

; : : : ; E

n

2 [q℄ suh that E

E

i

\E

E

j

= ;, while i 6=

j and E

0

�

=

!

E(CN

1

;M

in

), E

i

�

=

!

E(CN

2

;M

in

) for 1 � i � n. Then, learly, E 2 [p;q℄ 2 Term

K

(

d

At)

built aording to the rule (B) satis�es the following: E

�

=

!

E(CN ;M

in

).
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4. Let N = (N

CN

1

+ N

CN

2

)

r

. By the indution hypothesis, there are terms p (for N

CN

1

) and

q (for N

CN

2

) and well-formed event strutures E

1

2 [p℄ and E

2

2 [q℄ suh that E

E

1

\ E

E

2

= ; and

E

1

�

=

!

E(CN

1

;M

in

), E

2

�

=

!

E(CN

2

;M

in

). Then, learly, E 2 [p

r

+ q℄ 2 Term

K

(

d

At) built aording to

the rule (C) satis�es the following E

�

=

!

E(CN ;M

in

).

5. N = (�N

CN

1

)

r

. By the indution hypothesis, there is a term p (for N

CN

1

) and a well-formed

event struture E

1

2 [p℄ suh that E

1

�

=

!

E(CN

1

;M

in

). Then, learly, E 2 [p

r

�℄ 2 Term

K

(

d

At) built

aording to the rule (D) satis�es the following: E

�

=

!

E(CN ;M

in

).

(ii)We take A

F

=At

f

, A

R

= At

r

and a substitution h built as follows: h(

0

) = k

0

, h(new

i

; j; ) = k

j

a

with new

i

,! a. We prove the ase by indution on the struture of p:

1. Let p = a. Then N

CN

= â. From the de�nition of o-nets we have

R(CN ;M

in

) = f(l

a

1

; 

0

)(a; 

0

)(l

a

2

; 

0

)g:

Then, by onstrution of E(CN ;M

in

), we get the following E

E(CN ;M

in

)

= f((a; 

0

); ;)g, <

E(CN ;M

in

)

= ;,

#

E(CN ;M

in

)

= ;, l

E(CN ;M

in

)

((a; 

0

); ;) = (a; 

0

). Obviously, E(CN ;M

in

)

�

=

!

E

0

.

2. Let p = p

1

jj p

2

. Then we have N

CN

= N

CN

1

jj N

CN

2

, where N

CN

1

is a -network for p

1

and

N

CN

2

is a -network fpr p

2

. By the de�nition of the jj-operation for networks, it follows that

R(CN ;M

in

) = R(CN

1

;M

in

) [R(CN

2

;M

in

):

Therefore,

E

E(CN ;M

in

)

= E

E(CN

1

;M

in

)

[E

E(CN

2

;M

in

)

;

<

E(CN ;M

in

)

= <

E(CN

1

;M

in

)

[ <

E(CN

2

;M

in

)

;

#

E(CN ;M

in

)

= #

E(CN

1

;M

in

)

[#

E(CN

2

;M

in

)

;

l

E(CN ;M

in

)

= l

E(CN

1

;M

in

)

[ l

E(CN

2

;M

in

)

:

By onstrution, it is easy to see that E(CN ;M

in

)

�

=

!

E

0

.

3. Let p = p

1

; p

2

. Then we have N

CN

= N

CN

1

;N

CN

2

, where N

CN

1

is a -network for p

1

and N

CN

2

is a -network fpr p

2

. By the de�nition of the ;-operation for networks, it follows that

R(CN ;M

in

) = maxR(CN

1

;M

in

) ÆR(CN

2

;M

in

) = f��

0

j � 2 maxR(CN

1

;M

in

); �

0

2 R(CN

2

;M

in

)g;

where

maxR(CN

1

;M

in

) = f� 2 R(CN

1

;M

in

) j 8�

0

2 R(CN

1

;M

in

) � �

0

= ��

00

) �

00

= �g

and j maxR(CN

1

;M

in

) j= n =j E

t

E

0

j for E

0

2 [p

1

℄: Therefore,

E

E(CN ;M

in

)

= E

E(CN

1

;M

in

)

[

[

1�i�n

E

E

i

(CN

2

;M

in

)

;

where E

E

i

(CN

2

;M

in

)

\E

E

j

(CN

2

;M

in

)

= ; with i 6= j and E

i

(CN

2

;M

in

)

�

=

E

j

(CN

2

;M

in

) for all 1 � i; j � n;

<

E(CN ;M

in

)

= <

E(CN

1

;M

in

)

[

[

1�i�n

<

E

i

(CN

2

;M

in

)

[f(e; e

0

) j e 2 E

E(CN

1

;M

in

)

; e

0

2 E

E

i

(CN

2

;M

in

)

and

e <

E(CN

1

;M

in

)

d

i

2 maxE

E(CN

1

;M

in

)

g;

#

E(CN ;M

in

)

= #

E(CN

1

;M

in

)

[

[

1�i�n

#

E

i

(CN

2

;M

in

)

[ f(e; e

0

) j e 2 E

E

i

(CN

2

;M

in

)

; e

0

2 E

E

j

(CN

2

;M

in

)

;

i 6= jg [ f(e; e

0

); (e

0

; e) j e 2 E

E(CN

1

;M

in

)

; e

0

2 E

E

i

(CN

2

;M

in

)

and

e#

E(CN

1

;M

in

)

d

i

2maxE

E(CN

1

;M

in

)

g;

l

E(CN ;M

in

)

= l

E(CN

1

;M

in

)

[

[

1�i�n

l

E

i

(CN

2

;M

in

)

:
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By onstrution, it is easy to see that E(CN ;M

in

)

�

=

!

E

0

.

4. Let p = p

1

r

+ p

2

. Then we have N

CN

= (N

CN

1

+N

CN

2

)

r

, where N

CN

1

is a -network for p

1

and

N

CN

2

is a -network fpr p

2

. By the de�nition of the +-operation for networks, it follows that

R(CN ;M

in

)=f(l

r

1

; )(r; )(l

r

2

; )(g; )(l; )� j � 2 R(CN

1

;M

in

) [R(CN

2

;M

in

)

and

l 2 f< l

r

3

; l

N

CN

1

1

>;< l

r

4

; l

N

CN

2

1

>gg:

Therefore,

E

E(CN ;M

in

)

= E

E(CN

1

;M

in

)

[E

E(CN

2

;M

in

)

[ f((r; );X)g;

<

E(CN ;M

in

)

= <

E(CN

1

;M

in

)

[ <

E(CN

2

;M

in

)

[f(e; e

0

) j e

0

2 E

E(CN

1

;M

in

)

[E

E(CN

2

;M

in

)

; e = ((r; );X)g;

#

E(CN ;M

in

)

= #

E(CN

1

;M

in

)

[#

E(CN

2

;M

in

)

[ f(e; e

0

); (e

0

; e) j e 2 E

E(CN

1

;M

in

)

; e

0

2 E

E(CN

2

;M

in

)

g;

l

E(CN ;M

in

)

= l

E(CN

1

;M

in

)

[ l

E(CN

2

;M

in

)

[ f(((r; );X); (r; ))g:

By onstrution, it is easy to see that E(CN ;M

in

)

�

=

!

E

0

.

5. Let p = p

1

r

�. Then we have N

CN

= (�N

CN

1

)

r

, where N

CN

1

is a -network for p

1

. By the

de�nition of the �-operation for networks, it follows that

R(CN ;M

in

) =

[

i2N

f�

i

j � 2 R(CN

1

;M

in

)g;

where �

0

= �, �

n

= ��

n�1

. Therefore,

E

E(CN ;M

in

)

=

[

i2N

E

E

i

(CN

1

;M

in

)

;

where

E

E

i

(CN

1

;M

in

)

\E

E

j

(CN

1

;M

in

)

= ;; i 6= j

and

E

i

(CN

1

;M

in

)

�

=

E

j

(CN

1

;M

in

) 8i 2 N;

<

E(CN;M

in

)

=

[

i2N

<

E

i

(CN

1

;M

in

)

[

[

i<j

f(e; e

0

) je2E

E

i

(CN

1

;M

in

)

; e

0

2E

E

j

(CN

1

;M

in

)

g;

#

E(CN ;M

in

)

=

[

i2N

#

E

i

(CN

1

;M

in

)

;

l

E(CN ;M

in

)

=

[

i2N

l

E

i

(CN

1

;M

in

)

:

By onstrution, it is easy to see that E(CN ;M

in

)

�

=

!

E

0

.

5. Conlusion

In this paper we have formalized a possibility for algebrai spei�ation to establish a orrespondene

between event strutures and -networks. We propose a new variation of the event struture model.

We have enrihed this well-known formal model by adding a notion of ontext. This allows us to

inrease the expressiveness of the event struture model. Moreover, we de�ne a number of algebrai

operations over reently introdued ontext event strutures whih are shown to be orresponding to

the operations of the earlier known algebra BPA

�

de�ned over event strutures. The main result

of the paper establishes a mutual orrespondene between the lasses of these two models (oloured

dataow networks and ontext event strutures) de�ned by algebrai operations.
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It is worth remarking that the obtained results have been formulated in terms of �nite objets (�nite

algebrai formulas representing in�nite systems). Suh investigations allow us to lassify and unify

di�erent abstrat models of onurrent proesses. Further researh ould inlude di�erent equivalene

notions over -networks and their relations to the similar ones over event strutures.
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6. Appendix

The examples of the algebrai operations over dataow networks.

(a) jj-operation (parallel omposition)

An example of using the jj-operation to o-net

^

f

1

and

^

f

2

:

^

f

1

jj

^

f

2

f

1

?

u

?

?

u

?

l

f

1

2

l

f

1

1

f

2

?

u

?

?

u

?

l

f

2

1

l

f

2

2

(b) �-operation (merging of links)

An example of using the �-operation to net (

^

f

1

jj

^

f

2

) and set (L

Out

f

1

[ L

Out

f

2

):

f

1

f

2

?

u

?

l
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() ;-operation (sequential omposition)

An example of using the ;-operation to o-net
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(d) +-operation (alternative omposition)

An example of using the +-operation to o-net
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(e) �-operation (iterative omposition)

An example of using the �-operation to o-net
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