Joint NCC & IIS Bull., Comp.Science, 5(1996), 101-114
© 1996 NCC Publisher

Equivalence notions for event structures
and refinement of actions®

A. Votintseva

We consider different equivalence notions for prime event structures introduced
in [6] which explicitly reflect causality, concurrency and conflict relations between
oceurrences of events in the structures. The intention of the paper is to establish
whether or not these equivalences are preserved under refinement of actions. An
operator of refinement [2] replaces actions on a given level of abstraction by more
complicated processes on a lower level.

1. Introduction

The formalism of event structures has been proposed to describe and study
the behaviour of distributed systems. An event structure consists of a set
of event occurrences partially ordered by a causality relation. In addition,
the structure contains a conflict relation between the events. Two events
that are neither causally related nor in conflict are said to be concurrent.
Thus the event structure model permits us to explicitly talk about the three
basic relations — causality, conflict, and concurrency — between events of
distributed systems.

Over the past several years various bisimulation equivalences [2, 5] have
been defined on event structures. It is known that variants of forth and
back bisimulations [3] capture intuition concerning causality and (implicitly)
concurrency but not conflict between event occurrences in the structures.
Attempting to get around this lack, we have introduced (6] a number of
variants of bisimulations which explicitly reflect all the relations between
events. As a particular case, we consider a number of bisimulations which
are defined on the domain of local configurations of event structures.

In this paper, we investigate whether or not the introduced bisimulations
are preserved under refinement. We give examples showing that variants of
interleaving, step and pomset bisimulations are not preserved under refine-
ment. It has turned out that the local bisimulations, being coarser than
the corresponding history preserving bisimulations and incomparable with
interleaving, step and pomset bisimulations, are also preserved under refine-
ment.

*This work is suppoted in part by the Volkswagen Foundation (grant No 1/70 564) and
the Russian Foundation of Basic Research (grant No 96-01-01655).

102 A. Volintseva

The paper is organized as follows. Section 2 introduces the basic frame-
work, labeled prime event structures, and related notions. Section 3 defines
the notion of action refinement. Sections 4, 5 and 6 suggest a number of
interleaving, step and pomset (respectively) bisimulation equivalences which
reflect not only causality and concurrency but also conflict between event
occurrences. We show that all these equivalences are not preserved under
action refinement. Sections 7 and 8 consider the variants of stronger equiv-
alences, namely history preserving and back bisimulations which are shown
to be invariant under refinement of actions. Section 9 introduces the notions
of local bisimulation which are defined on the domain of local configurations
of event structures. In the section, we show that all variants of local bisim-
ulations are preserved under the operation of action reﬁnement Finally,
some concluding remarks are made in Section 10.

2. Event structures

In this paper we consider the systems that are capable of performing ac-
tions from a given set Act of action names. We will use event structures
(more precisely, labeled prime event structures [4]) as a fundamental model
for computational processes. We will not distinguish external and internal
actions here.

Definition 2.1. A (labeled) event structure over an alphabet Act is a
4-tuple £ = (E, <,#,l), where

e E is a countable set of events,

e < C E X E is an irreflexive partial order (the causality relation) sat-
isfying the principle of finile causes:
Ve€ E.{d€ E|d< e} is finite,

e # C EXE is asymmetric and irreflexive relation (the conflict relation)
satisfying the principle of conflict heredity:
V€1,62,€3 €eE. €e; < ey & € # €3 = €y # €3,

¢ l: E — Act is a labeling function.

Through the paper, we assume Act to be a fixed set of action names
(labels). The components of an event structure £ are denoted by E,, <., #.
and [.. If it is clear from the context, the index £ is omitted. For an event
structure £, we let: id = {(e e)| e € E}; < = < Uid; <* C < (transitivity);
— = (Ex E)\(£U<"'U #) (concurrency); co = — U id.

In graphic representations only immediate conflicts — not the inherited
ones — are pictured. The <-relation is represented by arcs omitting those
derivable by transitivity. Following these conventions, a trivial example

Equivalence notions for event structures and refinement of actions 103

of an event structure is shown in Figure 1, where £ = {e;,e;,€3,e4}, <

= {(e1,e3),(€1,€4),(€2,€3),(€2,€4)}, # = {(e3,e4),(€4,€3)} and l(e;) = a,
l(e2) = b, l(e3) = a, l(es) = b.

a b

b7 e # . Ta
Figure 1

We will frequently give algebraic expressions (see [1]) for our examples, to
make them easier to understand. The algebraic syntax includes the primitive
constructs: sequential composition (;), parallel composition (]|), and sum
(+). The operation ; (||, +, respectively) may be easily ‘interpreted’ by
indicating that all events in one component are in the <-relation (~—-relation,
#-relation, respectively) with all events in the other.

The event structures £ and F are isomorphic (£ = F) iff there exists a
bijection between their sets of events preserving <, # and labeling.

The states of an event structure are called configurations. An event can
occur in a configuration only if all the events in its past have occurred.
Two events that are in conflict can never both occur in the same stretch
of behaviour. Before formalizing the notion of a configuration it will be
convenient to adopt the following notation. Let £ be an event structure and
CCE, Then |C={e€ E. |3 €C.e<ce}. Foree€ E, we wil
write | e instead of | {e}. C is said to be a configuration of £ iff C =| C
(left-closed) and #, N (C x C) = 0 (conflict-free). Let C(£) denote the set
of all configurations of £. It is clear that | e is a configuration of £ for
all e € F,. We now define LC(E) = {l e | e € E.} to be the set of local
configurations of £. Let LCo(€) denote the set (LC(E) U {0}).

For C' C C € C(£) we define the following: C’ is called a step if Ve, e, €
" s =(e) <, €2); the restriction of £ to C’ is defined as £ [C' = (C', <. N
(C'"x C"), #: n (C'"xC"), l; |¢/). We denote by ' not only the set
itself. but also the labeled partial order it induces by restricting <, and [,
to C'. It will (hopefully) be clear from the context what we mean. We
use pom (C) = {(£ [(C"\C))/ = | C C C" € C(£)} to denote the set of
pomsels of C.

Definition 2.2. Let £ be an event structure and C. C’ € C(£). Then

S C—-.C & ccc.
We use —; to denote —, - .

104 A. Votintseva

e Ch ¢ & ¢ —¢; C"and C'\C = p, where p € pom,(C).
We use ¥, to denote '5:|ccg(s)-
def

e C1.C" <= 3IC"€C(E).(C>.C"& " -, C").
We use 1, to denote 1, £c3(£)-
def

¢ OV C' & ~(C1.C).
We use ¥, to denote Veleeace)-

def

¢ C1C E (CHC VCa OV C =)
We use l:_ to denote T:.[ch(g).

Lemma 2.1. [6] Let £ be an event structure, C,C" € C(€) and | d,| d €
LC(E). Then

(i) C1.C" < CUC €C(€);
(ii)) CY.C' <= 3e€C I €C ve #, ¢

(iii) C 1, C' <= Ve € C\C' £0Ve' € C'\C £ o —, ¢;
(iv) ldo ld <= d<, d;

(v) ld} |d < d#.d;

(vi) L1d1 |d < d—,d.

An event structure £ is called an event structure without autoconcurren-
cy, if Ve,e' € E; o ((e co. € & I.(e) = I ,(¢)) = e = e'). In the following, we
will consider only event structures without autoconcurrency and will simply
call them event structures.

3. Refinement of actions

One of the most important features of equivalence notions is its preservation
by refinement of actions. We use the definition of refinement from [2]. This
operator allows one to design systems in a top-down style, changing the
level of abstraction by interpreting actions on a higher level by more com-
plicated processes on a lower level. A refinement function will be a function
RF specifying, for each action a, a finite, conflict-free and nonempty event
structure RF(a) which is to be substituted for a. Interesting refinements
will mostly refine only certain actions, hence replace most actions by them-
selves. However, for uniformity we consider all actions to be refined. Given
an event structure £ and a refinement function RF, we construct the refined
event structure RF(£) as follows. Each event e labeled by a is replaced by a
disjoint copy, £., of RF(a). The causality and conflict structure is inherited
from £: every event which was causally before e is causally before all events

Egquivalence notions for event structures and refinement of actions 105

of £, all events which causally followed e will causally follow all the events

of £, and all events in conflict with e are in conflict with all the events of
..

Definition 3.1. Let £ be an event structure and RF be a refinement
function (for £) which associates a finite, conflict-free, non-empty event
structure RF(a) with each action a € Act. Then the refinement of £ by RF
is the event structure RF(£) = (E, <, #,1) defined as follows:

. ERF{E) = {(e,e') | e € E, € € Errgc(ep}s
(e,e') <RF(£) (d,d') <= (e<, dVe=d&e¢ <RF(le(e)) d'),
° (e,‘-") #rre) (d,d) <> (e #. d),

o lrreey(e:€) = lrrggey(€).

Lemma 3.1. (2] Let £ be an event structure and RF be a refinement func-
tion.

) Egrp(e) s a configuration of RF(E) iff
Ueec{e} x C,, where
C is a configuration of £,
C. is a configuration of RF(l.(e)) for e € C,
C. = ERr(e)), if € is not mazimal in C with respect to <e-
C is a refinement of C,
i) IfC’ —RF(¢) 5’, then prl(C~’) -, prl(é') (pr, denotes a projection to
the first component).

QY Qa

c

4. Interleaving semantics

In this section, we investigate bisimulation notions in the context of event
structures. In order to get equivalences which nicely fit the model under
consideration, we introduce some new variants of bisimulations, explicitly
expressing all the relations between occurrences of events in the structures.

The aim of this section is to consider whether or not these bisimulations are
preserved by refinement.

Definition 4.1. Let £ and F be event structures, B C C(£) x C(F) and
3 € {a.c}". Then
(i) Bis an i-bisimulation between £ and F iff the following holds:
(0.0) e B.
~if(C.DYeBand C &, (.
then there is D' such that D =, D’ and (C', D') € B.

and vice versa.

106 A. Votintseva

(ii) B is an ta-bisimulation between £ and F iff B is an i-bisimulation
between £ and F and for all (C, D) € B the following holds:

—if C' ¥c C’, then there is D’ such that D ¥, D’ and (C',D’) € B,
— and vice versa.

(iii) B is an ic-bisimulation between £ and F iff B is an i-bisimulation
between £ and F and for all (C, D) € B the following holds:

—if C 1, C', then there is D' such that D 1), D' and (C", D’) € B,

- and vice versa.

£ and F are i3-bisimilar, denoted £ =, F, if there exists an i3-bisimulation,
i.e. a relation B which is an ¢y-bisimulation for all ¥ € 3.

Proposition 4.1. Let 3 € {a,c}*. Then =;; is not preserved under
refinement.

Proof. Let us first consider the event structures £ and F:

The composed event structures £ = & + Fand F, = F + F are
i3-bisimilar. However, when refining the action b by the sequence b, — b,,
we get & #i5 Fi.

5. Step semantics

A more discriminating view of concurrent systems than that offered by inter-
leaving semantics is obtained by modelling concurrency as either arbitrary
interleaving or simultaneous execution. The word step originates from Petri
net theory where it denotes a set (or multiset) of concurrently executable
transitions. Step semantics give a more precise account of concurrency than
interleaving semantics, e.g., the systems a||b and a;b+ b;a are distinguished.
We will formalize some step equivalence notions and then discuss an example
which shows that these equivalences are not also preserved by refinement.
Step semantics are defined by generalizing the single action transitions

C % C' to transitions of the form C & C', where A is a multiset over

Equivalence notions for event structures and refinement of actions 107

Act, representing actions which occur concurrently. Using this kind of tran-
sitions, we get different variants of step bisimulation being straightforward
generalizations of the corresponding interleaving equivalences.

Definition 5.1. Let £ and F be event structures, B C C(£) x C(F) and
B € {a,c}*. Then
(i) B is an s-bisimulation between £ and F iff the following holds:
- (0,0) € B,
- if (C,D) € Band C &, C' such that p is a step,
then there are D' and g such that
DL, D, (C',D')YeBand p™q,
— and vice versa.

(ii) B is an sa-bisimulation between £ and F iff B is an s-bisimulation
between £ and F and for all (C, D) € B the following holds:

-—if C ¥ C', then there is D’ such that D ¥> D' and (C', D') € B,
— and vice versa.

(iii) B is an sc-bisimulation between £ and F iff B is an s-bisimulation
between £ and F, and for all (C, D) € B the following holds:
- if C 1, C’, then there is D’ such that D 1. D' and (C’,D’) € B,
- and vice versa.

£ and F are sf-bisimilar, denoted £ =,z F, if there exists an sB-bisimul-
ation, i.e. a relation B which is an sy-bisimulation for all ¥ € 3.

Proposition 5.1. Let 8 € {a,c}*. Then =~,; is not preserved under
refinement.

Proof. Let us consider the event structures & = & + F + (a||b) and
Fo=F + F + (a||b) (where £ and F are from Proposition 4.1) which are
sf3-bisimilar. However, when refining the action b by the sequence b; — b,,
we get & #,g Fi.

6. Partial order semantics

In [7] it was suggested to generalize the idea of bisimulation by considering
transitions labeled by pomsets. So we consider now transitions C = C’,
where u is a pomset over Act.

Definition 6.1. Let £ and F be event structures, B C C(€) x C(F) and
B € {a,c}*. Then

108 A. Voliniseva

(i) B is a p-bisimulation between £ and F iff the following holds:
- (0,0) € B,
-if (C,D)eBand C 5, ',
then there are I and g such that
DL, D, (C',D')eEBand p™gq,
- and vice versa.

(ii) B is a pa-bisimulation between £ and F iff B is a p-bisimulation be-
tween £ and F and for all (C, D) € B the following holds:

- if C ¥ C', then there is D’ such that D ¥, D’ and (C',D’') € B,
~ and vice versa.

(iii) B is a pc-bisimulation between £ and F iff B is a p-bisimulation be-
tween £ and F, and for all (C, D) € B the following holds:
- if C 1, C’, then there is D’ such that D 1. D’ and (C', D') € B,

— and vice versa.

£ and F are p@3-bisimilar, denoted £ ~,5 F, if there exists a pf-bisimulation,
i.e. a relation B which is a py-bisimulation for all v € 3.

These equivalences are evidently stronger than the corresponding step bi-
simulations: £ &,5 F implies £ ~,5 F; moreover, £; X, Fi and &; #pqc F).

Proposition 6.1. Let 3 € {a,c}*. Then ~,5 is not preserved under
refinement.

Proof. Let us first consider the event strucrures &£, £ and &£":

a a a a
S! / \ # gﬂ E"' 1
b # ¢ ‘ b

b b # b

The composed structures & = £ + £ and F, = £ + &' are p3-bisimular,
but when refining the action a by the sequence a, — a, we get & #,5 Fo.

7. History preserving bisimulations

Another equivalence notion based on the idea of bisimulation with partial
orders that might he preserved by refinement has been suggested in [8]. It
has turned out that this notion coincides with the NMS partial ordering
equivalence suggested earlier in [9]. We give here the definitions of history

Equivalence notions for event structures and refinement of actions 109

preserving equivalencesin terms of event structures. We will show that these
equivalences are preserved by refinement.

Definition 7.1. Let £ and F be event structures, B C C(£) x C(F), and
B € {a,c}*. Then

(i) Bis an h-bisimulation between £ and F iff the following holds:
- (0,0) € B,
- if (C,D) € B, then
-E[C=2F[D,
-if C 5, C’, then there are D' and g such that
DL, D,(C',D')eBand pgq,
- and vice versa.

(ii) B is an ha-bisimulation between £ and F iff B is an h-bisimulation
between £ and F and for all (C, D) € B the following holds:

—if C ¥, C’, then there is D’ such that D ¥, D’ and (C", D’) € B,
— and vice versa.

(iii) B is an he-bisimulation between £ and F iff B is an h-bisimulation
between £ and F, and for all (C, D) € B the following holds:

- if C' 1 ', then there is D’ such that D 1°. D' and (C',D") e B,

— and vice versa.

£ and F are hf3-bisimilar, denoted £ x5 F, if there exists an h3-bisimul-
ation, i.e. a relation B which is an hy-bisimulation for all y € 3.

Note that the isomorphism requirement guarasees that the labels of the
events in C"\ C correspond to those in D'\ D. In [6] it Tras been shown that
& mpp F implies & =5 F.

Proposition 7.1. Let 3 € {a,c}". Then =x,; is preserved under refine-
ment. ‘

Proof. Assume £ and F to be event structures, RF be a refinement
function and B be an ~h,6-bisi~n1u]ation between £ and F. We make some
preparations. Define B = {(C, D) € C(RF(£)) x C(RF(F))| 3(C.D) € B
2f:C —=D.pr(C)=C, pry(D) = D,and fis an isomorphism satisfying
Ve € C.C. = Dy} It has been shown in [2] that B is an h-bisimulation
between RF(£) and RF(F). For D € C(F) such that (C,D) € B, we
define re fx(D) = Uy p{d} x D, with D, = Ci-1(a for all d € D and some
wsomorpkism f from C onto D. Due to Definition 3.1 and Lemma 3.1(i)

"

110

A. Votintseva

it is easy to see that refz(D) € C(RF(F))- By construction of B, we get
(é,ref&-(D)) €B.

_ We now show that B is an hB-bisimulation between £ and F. Assume
(C,D) € B. Then (C,D) € B, by construction of B. We consider two cases.

B = a.

Assume C Yrr(e) C'. Due to Lemma 2.1(ii), there are (e,g) € C and
(¢,9') € C' such that (€,9) #rr(c) (¢',g'). This implies e € C, ¢’ € ¢
and e #, ¢ by Definition 3.1 and Lemma 3.1(i). Hence C ¥, C’ once
again by Lemma 2.1(ii). Since (C,D) € B, there exists I’ such that
D ¥ D' and (C', D') € B by Definition 7.1(ii). Take D' = ref(D’).
Then (C',D’) € B. Due to Lemma 2.1(ii), there are d € D and
d’' € D' such that d #, d'. By Definition 3.1, (d,g9) #rr(») (d',g') for
all g € Egp(,(ay) and ¢’ € ERrr(,(ay). Due to Lemma 3.1(i), we have
(d,g) € D and (d',g’) € D' for some g € Err(5 () and ¢' € Epr(is(ay)-
Once again from Lemma 2.1(ii), it follows that D Yrrs) D'.

. Assume C TRF(e) C'. Due to Lemma 3.1(i) and Definition 2.2, the

three cases are admissible:

- C b, C'. By Definition 7.1(i), there are D' and q such that
DL, D, p~qand (C',D') e B.

- C" &, C. Due to Definition 7.1(i), there are D’ and q such that
D', D, p™gqgand (C',D')eB.

= C 1% C'. By Definition 7.1(iii), there exists D’ such that D 1% D'
and (C',D') € B.

Let D' = refz (D). Then (€', ') € B. By Lemma 2.1(iii), we have
(¢,9) —rr(e) (¢',9') for all (e,9) € (C\C") and (¢',g") € (C'\€). Take
arbitrary (e,g) € (C' \ ') and (¢,9') € (C'\C). Let f:C — D and
[C'" — D' be isomorphisms. By Lemma 3.1(i) and_construction
of B, we have (f(e),g) € (D \ D') and (f(¢'),q') € (D'\' D). It is
sufficient to show that (f(e),g) —rr(r) (f(€'),g’). Suppose a contrary,
i.e. +((f(€),9) ~rr(») (f(¢'),9'). Clearly, (f(e),9) #rr(r) (f(€),g").

Then three cases remain to be considered.

= (f(e),9) #rr(») (f(¢),9'). This implies f(c) € D, f(¢) € D"
and f(e) #, f(e') due to Definition 3.1 and Lemma 3.1(i). By
Lemma 2.1(ii), we have D ¥, D’ contradicting Definition 2.2.

— (f(€),9) <rr(x) (f(¢),9'). This contradicts D' € C(RF(F).
= (f(€),9') <mrr(sy (f(e),g). This contradicts D € C(RF(F).

Therefore D TRF() D’ due to Lemma, 2.1(iii).

Thus =4 is preserved under refinement, due to Definition 7.1.

Equivalence notions for event structures and refinement of actions 111

8. Back bisimulations

In this section we introduce back variants of the bisimulations defined above.
It was shown in [6] that interleaving, step, pomset and history preserving
back bisimulations coincide. So &), is the strongest equivalence considered
so far (except for event structure isomorphism, of course).

Definition 8.1. Let £ and F be event structures, B C C(£) x C(F),
a € {i,s,p,h} and B € {a,b,c}*. Then B is an ab-bisimulation between £
and F iff B is an a-bisimulation between £ and F and for all (C,D) € B
the following holds:

- I C" B, C such that
— p has at most one element, if a = 1,
- pis a step, if a = s,
then there are D’ and ¢ such that
D4, D,(C',D)eBandpgq,

- and vice versa.

£ and F are af3-bisimilar, denoted £ =, F, if there exists an af-bisimul-
ation, i.e. a relation B which is an ay-bisimulation for all vy € 8. m]

Proposition 8.1. [6] Let £ and F be event structures, a,o’ € {i,s,p,h}
and 8 € {a,c}*. Then

£ za.ﬁb F €& Xagb F.

Proposition 8.2. Let a € {i,s,p,h} and B € {a,c}*. Then =g is
preserved under refinement.

Proof. Let £ and F be event structures, RF be a refinement function
and B be an hbS-bisimulation between £ and F. Define B = {(C,D) €
C(RF(£))XC(RF(F))|3(C,D)eB3f:C — D.pri(C)=C,pri(D) = D,
and f is an isomorphism satisfying Ve € C' » C, = Cy(,)}. By Proposition
7.1, B is an hB-bisimulation between RF(£) and RF(F).

We have to show that B is an hb-bisimulation between £ and F. Let
(C.D)e B.

Assume C’ LRP(E) C. It is necessary to show that there exist D' and
g such that D’ L rr(n) D and (C',D') € B. Since C = pri(C) and C' =
pri(C7). we have C' —, C, by Lemma 3.1(ii). Let C\C' = p’. Then C’ 3;5 C
according to Definition 2.2. Since (C, D) € B, there exist D' and ¢’ such that
D -, Dand (C'.D') € B, due to Definition 8.1. Take D’ = {J,p.{d} x D%,
where IV, = (;._, ; for all d € D' and some isomorphism f’' : C' — D'.

112 . A. Votintseva

Then D' € C(RF(¥)) and (C',D’) € B. Since &' £ rrey C, we have
C; C C. for all e € C’ due to Definition 2.2 and Lemma 3.1(i). Hence

D} C D, for all d € D', from construction of B. Moreover, since D’ —q:», D,
we have D' C D by Definition 2.2. Thus D’ C D with D \ D = q. This
implies D4 RF(5) 13, once again by Definition 2.2.

Thus =24 is preserved under refinement by Definition 7.1. Due to Propo-
sition 8.1, it follows that ~, is also preserved under refinement.

9. Local bisimulations

We now introduce a number of bisimulations which are directly defined
on the domain of local configurations of the event structures. As it has
been shown in [6], these notions are useful for discovering a match for the
equivalence induced by the logic Z, in [10].

Definition 9.1. Let £ and F be event structures, B C LCo(£) X LCo(F)
and 3 € {a,b,c}*. Then

(i) Bis a local bisimulation between £ and F iff the following holds:
-(0,0) € B,
—-if (C,D)e Band C %, C,
then there are D’ and q such that
D&, D', p™qand (c',D") e 3,
- and vice versa.

(ii) Bis a local b-bisimulation between £ and F iff B is a local bisimulation
between & and F, and for all {C, D) € B the following holds:

—if C' ¥, C, then there are D’ and q such that
D', D,p=gqgand (C',D') €B,
— and vice versa.

(iii) Bis a local a-bisimulation between £ and F iff B is a local bisimulation
between £ and F, and for all (C, D) € B the following holds:

- if C ¥ C", then there is)’ such that D Y D" and (C',D') € B,
- and vice versa.

(iv) Bis a local c-bisimulation between £ and F iff B is a local bisimulation
between &£ and F, and for all (C, D) € B the following holds:

~if €' 1/.C", then there is D’ such that D 1.D" and (C', D) € B.

- and vice versa.

Equivalence notions for event structures and refinement of actions 113

£ and F are locally 3-bisimilar, denoted & =5 F, if there exists a local 8-
bisimulation, i.e. a relation B which is a local y-bisimulation for all v € 3.

Before formulating the main result of the section, we point out the prop-
erties of local bisimulations.

Lemma 9.1. [6] Let £ and F be event structures, B be the minimal I- -
bisimulation between & and F, and (C,D) € B. Then £[C = F[D.

Lemma 9.2. [6] Let £ and F be event structures and 8 € {a,c}*. Then
£ =~ ~ia F <= €=~ g F.

Proposition 9.1. Let 3 € {a,b,c}*. Then =5 is preserved under refine-
ment.

Proof. Let £ and F be event structures, RF be a refinement function and
B be the minimal labe-bisimulation between &£ and F. Let B = {LC' D) e
LCo(RF(E)) x LCo(RF(F))| AC,D) € B3f : C — D . pri(C) = C,
pri(D)= D and fis an isomorphism satisfying Ve € C « C, = Cj(g)}

We first show that B is an [-bisimulation. Obviously, (0,0) € B. Let
(C,D)eBand C 2 —RE(e) C'. By construction of B, we have C = pri(C) €
LC(E) and D = pri(D) € LC(F). Then C' = pri(C") € LC(E) due to
Lemma 3.1 and Definition 3.1, and C &, ¢’ due to Definition 2.2. Since

(C.D) € B, there exists D’ E EC(}') such that D »——», D' and (C',D") € B
by Definition 9.1(i). Let D' = (Jyp {d} x D}, where D} = Chimi(qy for
all d € D' and some isomorphism f' : " — D’ From Definition 3.1 and
Lemma 3.1, it is easy to see that D e LC(RF(F)). By construction of B,
we get (C/,D') € B. It remains to show that D W RF(F) D and p & q.
Due to Definition 2.2, we have D C D’. From Lemma 3.1, it follows that
Cq C C’ for all d € D. This means that D C D' with D’ \ D = q. Hence
D |—~;H.(,.) D', once again by Definition 2.2. Since (C, D), (C’,D') € B and B
is the minimal labe-bisimulation, E]C = F[D and £[C' = F[D' by Lemma
9.1. Thus RF(E)[C = RF(F)[D and RF(E)C = RF(}')[D’ Hence
P=gq. ‘

Thus B is an [-bisimulation between RF(&) and RF(F). Then B is also an
lb-bisimulation due to Lemma 9.2. Reasoning analogously to the proof of
Proposition 7.1, it can be shown that B is an la- and lc-bisimulation between
REEY and RF(J") This means that ~,; is preserved under refinement.

10. Concluding remarks

lrn this paper we have established what kinds of bisimulations, introduced
i u. are preserved under refinement. In order to get equivalence notions

114 A. Votintseva

nicely adapted to peculiarities of event structures, we have introduced a
number of variants of bisimulation notions which reflect all the relations
between event occurrences in the structures. We have shown that forth”
bisimulations based on interleaving of atomic actions, steps or pomsets are
not preserved when changing the level of atomicity of actions. However, we
have managed to show that bisimulations, keeping causal structures of runs
(perhaps implicitly) under consideration, are indeed preserved by refinement
of actions,

It is clear that the main difference between the logical equivalence and
any behavioural one known from the literature is that the former uses only
local configurations, whereas the latter as a rule considers all configurations
of event structures. Therefore a number of variants of bisimulations which
are defined on the domain of local configurations of event structures were put
forward. In this paper we have shown that all variants of local bisimulations
are preserved under refinement of action.

References

[1] G. Boudol, I. Castellani, Concurrency and atomicity, Theoretical Computer
Science, 59, 1988, 25-84.

[2] R. Glabbeek, U. Goltz, Equivalence notions for concurrent systems and refine-
ment of actions, Lectures Notes in Computer Science, 379, 1989, 237-248.

[3] R. deNicola, U. Montanari, F. Vaandrager, Back and forth bisimulations, Lec-
tures Notes in Computer Science, 458, 1990.

[4] M. Nielsen, G. Plotkin, G. Winskel, Petri nets, event structures and domains,
Theoretical Computer Science, 13, 1981, 85-108

[5] W. Vogler, Modular construction and partial order semantics of Pelri nets,
Lecture Notes in Computer Science, 625, 1992.

(6] 1.B. Virbitskaite, A.V. Votintseva, Comparing logical and behavioural equiva-
lences for event structures, Hildesheimer Informatik-Berichte, 27, 1996.

[7] G. Boudol, I. Castellani, On the semantics of concurrency: partial orders and
transition systems, Proc. TAPSOFT 87, I, Lecture Notes in Computer Science,
249, 1987, 123-137.

(8] R. Devillers, On the definition of a bisimulation notion based on partial words,
Petri Net Newsletter, No. 29, 1988, 16-19.

[9] P. Degano, R. De Nicola, U. Montanari, A distributed operational semantics
for CCS based on condition/event systems, Acta Informatica, 26, 1988, 59-91.

[10] M. Mukund, P.S. Thiagarajan, An Aziomatization of Event Structures, Lec-
ture Notes in Computer Science, 405, 1989, 143-160.

