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Reconstruction of tsunami initial form
via water level oscillation

T.A. Voronina and V.A. Tcheverda

The paper is devoted to reconstruction of the movement of the ocean bottom
when the water elevation is known at the finite set of points. For this ill-posed
problem the technique using r-solutions is suggested; it is based on the singular
value decomposition of the compact operator. The dependence of results on the
number and disposition of receiving stations is studied in numerical experiments.

1. Statement of the problem

The paper deals with the problem of tsunami source reconstruction using
water level records at the set of stations. The process of tsunami propagation
is considered within the scope of the shallow water theory, when the water
elevation 7(z, y; t) satisfies the following Cauchy problem for the scalar wave
equation:

?n 0*f .
o div (h(z,y) gradn) + a;(t, z,y); (1)
Nlt=0 = Ntlt=0 = 0. (2)

In equation (1), h(z,y) is the known function that describes the depth of
the ocean. The function

flz,y; t) = g(t)¢(m1 y)' (3)

describes the movement of the ocean bottom (see, for example, [1]) and is
supposed to be unknown except of the Heaviside function #(t). The inverse
problem is to recover the function ¢(z,y) by input data being water level
oscillation given at the set of the points (stations) M = {M; = (z;,y;),
j=1,N}k

U(m:y;t)iM,- = m‘(t), 0<t<T. (4)

The function ¢(z, y) is supposed to be supported over rectangle 1 = {(z,y) :
0<z<X;0<y<Y} and being from L,(II).

The inverse problem (1), (4) can be formulated as the problem of reso-
lution of the linear operator equation of the first kind:
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m(t)

apem=ve=| " |. B

v (t).
Its solution will be searched for in the least-squares formulation®:

¢« (2, y) = arg min || A($(z, ¥)) — U)l| Lo(mx (0,7))-

The linear operator A : Ly(IT) = La(M X (0,T)) is defined by the following
way: for each given ¢(z,y) we should resolve the Cauchy problem (1) and
take patterns of its solution at the points from the set M.

The “data space” is defined as follows:

N T 1/2
LqumJn=%mnmmw=(z]ﬁm) <m}

J=1y
and can be treated as the Hilbert space with the scalar product

N T
(U, Ur) = me,j(t)ng,j(t) dt.
j=19

The “model space” is usual La(II).

By means of the standard technique of integral inequalities (see [2]) we
can conclude that the operator A : La(II) = L2(M) is the compact one
and, so, does not possess bounded inverse. It follows that every attempt
to resolve equation (5) numerically should be followed by some regulariza-
tion procedure. In the paper, this regularization is performed by means of
truncated singular value decomposition (SVD) that leads to the notion of
r-solution (see [3]). Shortly the notion of r-solution can be described as
follows.

Let us consider the linear operator equation (5) with the compact oper-
ator. Each compact operator possesses the singular system {s;, u;, v}, i.e.
singular values s; >0 (s; > s >...>s; > ...) and left (v;) and right (u;)
singular vectors:

.A'u_,' = §;v5, .A*vj = §;Uj.

The very important property of singular vectors is that they form bases
in the model and data spaces, that is each functions ¢(z,y) € Lo(IT) and
U(t) € La(M x (0,T)) can be presented as the Fourier series

1The most significant reason to search for the solution to (5) in least-squares formula-
tion is possibility to deal forever with consistent system of linear algebraic equations
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oz, y) =) diui(z,y), U)= inUj,

=1 i=1

with ¢; = (é(z,y),uj(z,y)), U; = (U(t),v;(t)). Taking into account these
properties we can rewrite equation (5) in the “diagonal” form:

A(Z ¢jﬂj) = le_,'quvj = Z;(U, v,-)v_.,- = Z U,-v,-,
j= i=

i=1 =1
or, finally,
89 = L.y, ©)

=1 %

The solution given by (6) is nothing else but the “normal general” solution
and operator, given by the right-hand side of (6), is the normal general
pseudoinverse for A (see [4]).

As we can see from (6) the ill-poseness of the operator equation of the
first kind with the compact operator is due to the fact that s; — 0 with
J — 00, s0, we can perturb the right-hand side U(t) in such a way that some
its vanishing perturbation (t) can lead to rather large perturbation of the
solution?. It should be noted that operator perturbation also leads to the
solution instability.

The regularization procedure based on truncated SVD leads to the notion
of r-solution given by the relation

(U,

¢'r($s9') = Z ;-:JJ) ’U.j(:l‘.‘, y)' (7)

i=1

This truncated series is stable for each fixed parameter r with respect to
perturbations of the right-hand side and operator itself (see [3]).

Any numerical method to resolve (5) should prevent its finite-dimen-
sional approximation. The usual way to do this is the projective methods.
Let us suppose {9;(z,y)} and {ex(t)} to be bases in the model and data
spaces respectively. As the operator A is the compact one, it possesses
matrix presentation and the operator equation (5) can be rewritten as an
infinite system of linear algebraic equations

3 (A, ) (6, 95) = (Uyer), k=T,

i=1

with respect to unknown coefficients (¢, ¥;} with the matrix

2For example, e(t) = £;U;(t), with £; — 0 for j = oo in such a way that s;/e; — 0.



130 T.A. Voronina and V.A. Tcheverda

(A¢l! el) (A¢2! 61) e (A¢N: el)

(Av1,e2)  (Avg,er) ... (AYn,ez)
A= : : :
(A¢11 EM) (A¢21 eM) v (-Ad’N’ eM)

Obviously, numerically we can resolve only its finite-dimensional subsystem
with N x M submatrix. As the operator A is the compact one, its every
finite-dimensional approximation by N x M matrix will converge to the
operator itself for N, M — co. So, we should search for r-solution to finite-
dimensional system of linear algebraic equations. Its convergence to the
r-solution of operator equation is carefully investigated in [3].

2. Numerical experiments: description and
discussion

2.1. Finite-dimensional approximation

The main goals of presented below numerical experiments were to analyze
the influence of the. observation system on the quality of the recovering of
the tsunami initial form. In order to avoid influence of other factors we
supposed that ocean depth is constant: h(z,y) = ho, so the tsunami wave
propagation velocity is constant as well and is equal to ¢y = y/ghy. Next,
after the Fourier transformation with respect to time, we have the following
inverse problems: to recover the function ¢(z,y) € Lo(I1) by the data

ﬁ(msy;w)le =Vj(w), w1 Sw<wy, (8)

with #(z, y;w) being a solution to the Helmholtz equation

w?

LR
Aﬂ"’ho _h0¢( ?y)a (9)

satisfying the Sommerfeld radiation condition.
Solution to equation (9) can be presented as

e ue) = - [ 66 OB (S\a- 07+ u=02) dedc, (10
II

and inverse problem is to recover ¢(z,y) from the equations

—% r{ B(€, Q) HS (:—0\/(31-6)2+(3}j—02) ded¢ = Vy(w), j=T,N, (11)

where N is the number of stations.
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In order to obtain the system of linear algebraic equations by means
of the projective method, in the model space was chosen the trigonometric
basis, i.e. the unknown function ¢(z,y) was searched for as

sNﬂ

d(z,y) = Z Z“mn sin — :csmE (12)

m=1n=1 Y

while in the data space with respect to frequency w the steps were chosen
for the basis. This leads to the following system of linear algebraic equations
with respect to the coefficients a,,:

> 5% e / HY (2 flan =7+ (- 07 ) sin Sesin rcdedc

m=1n=1

= —-w-—ij(wj), i=1,M, k=1,N. (13)
It is necessary to pay attention to that @, in (13) here is a solution to be
searched for, while matrix of the system should be computed via numerical
integration of integrals with Hankel’s function. In order to compute these
integrals the uniform grid was introduced over the rectangle IT and within
each elementary rectangle Hankel’s function was bilinearly approximated
and explicit integration formulas next applied.

2.2. Discussion of numerical results

Synthetic data for numerical experiments presented below were computed
for the function

(—z0)? (Yy—w)? .. (z—20)%, (y—w)®
1-—
#e.y) mtmo L ® T®B
z,y) =
0 ’ f (I - mﬂ)z + (y y0)2 > 1.
' R2 R’Z

with R, = 50 km, R, = 25km. Next this function was searched for over the
rectangle I1 = {(z,y) : —100 < z < 100 km, 100 < y < 200 km} as the series
(12) with Ny = Ny = 21. Over this rectangle the uniform grid 201 x 101 was
introduced in order to calculate integrals in 0 (13). The time frequencies
were taken within from 0.001 Hz up to 0.01 Hz. Forever the parameter r in
(7) was chosen in order to provide the inequality s,/s, < 1078,

The first series of numerical experiments dealt with 3 stations placed
onto the circle with radius 150 km centered at the ellipse center. These
stations were placed uniformly with respect to the central point for a range
of angles (—a, @). Some results -are shown in Figure 1.
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In the second series, the number of stations was 5; they were placed onto
the half-circle (o = 7/2) and the entire circle (& = 7). The results are in
Figure 2.

The third series (Figure 3) dealt with 3, 5 or 7 stations placed on the
segment (—100 < 2°< 100) of the straight line {y = 0}.

Since the maximum of the true function ¢(z,y) equals to 1.0, the maxi-
mum of every approximate solution is written under the figures. The differ-
ence between them shows the degree of accuracy.

After the experiments we can make the following conclusions:

1. Using the r-solutions we get an effective instrument for solving this
ill-posed problem.

2. The distance from the stations to the tsunami source does not have
any visible influence on the quality of reconstruction. This quality
depends mainly on the range of angles of observation. The best range
is the entire circle.

3. The quality of a solution is improving when a number of stations in-
crease up to 10-15. The further increase is useless.

4. Since the calculations were really made in the time—spectral domain,
we can conclude that for solution being satisfactory the shortest wave-
length should be less than a half of a characteristic size of the tsunami
source. The number of frequencies used in calculations should not be
large; it is enough to use about 15 frequencies.

References

(1] Kaistrenko V.M. Inverse problem for reconstruction of tsunami source //
Tsunami waves: Proc. Sakhalin Compl. Inst. ~ 1972. - Iss. 29. — P. 82-92.

[2] Ladyjenskaya O.A. Boundary-Value Problems of Mathematical Physics. —
Moscow: Nauka, 1973 (in Russian).

[3] Cheverda V.A. and Kostin V.I. r-pseudoinverse for compact operators in Hilbert
space: existence and stability // J. Inverse and 1ll-Posed Problems. - 1995. —
Vol. 3, Ne 2. - P. 131-148.

[4] Zuhair Nashed M. Aspects of generalized inverses in analysis and regularization
// Generalized Inverses and Applications. - 1988. — P. 193-244.



