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On the condition number
of interpolation and collocation method
for Symm’s equation for some
quasiuniform grids*

V.V. Voronin

The paper contains the proof of theorem estimating the condition number of
matrix after discretization of the integral equation of the first kind with logarithmic
singularity on the closed curve by the collocation method with piecewise-linear
approximation of unknown function. It is based on a new approach using convex
properties of images of the basic functions, so it gives the opportunity to study a
quasi-uniform sequence of grids. If the initial integral equation is uniquely solvable,
the quasiuniform parameter does not exceed 4.25 and the step is sufficiently small,
then the norm of finite-dimensional inverse operator is not greater than a constant
divided by the step.

1. Introduction

This article is devoted to theoretical foundation of a direct numerical method
for the integral equation of the 1-st kind, known as “Symm’s equation”.
Equations of this type are met very often in boundary equations methods
for elliptic problems; particularly, in diffraction problems for elastic and
electromagnetic wavefields ([1]). Saying “direct” we mean a method based on
a direct discretization of a given equation without any procedures of explicit
regularization. In this paper we consider the method using the piecewise-
linear interpolation of unknown function and the collocation conditions.

Previous works on the subject ([2-5]) concern the case of uniform grids
only; that approach used decomposition into trigonometric functions which
are eigenfunctions both of integral and of finite-dimensional operator. But
it is true for the uniform grid only. Later some properties of special ma-
trices were used ([5-6]). Now we develop the approach using the convex
properties of the images of basic functions. As we hope, this approach is
mostly universal and can be generalized onto arbitrary quasiuniform grids
and multi-dimensional equations.

In this paper the letter “c” (with or without subscripts) will denote
different positive constants whose precise value is of no importance. The
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statements of the form “the inequality ¢(t) < cy(t) is valid” will automat-
ically mean that there exists such a positive constant ¢ that this inequality
is true, and this constant is independent on the step of the grid (but it
may depend on the quasiuniform parameter and other parameters of the
problem).

2. Symm’s equation and interpolation
and collocation method

Let us suppose that after the parametrization Symm’s equation defined ini-
tially on a smooth closed curve may be written in the form:

f [K(t,7) + K:1(t, 7)) f(T) dT = g(t), te€[0,1], (2.1)
0

where' all functions are periodic with period 1, and the kernel consists of a
“standard” logarithmic part K (¢, 7) and the “junior” term K (¢, ) without
the singularity. As it will be clear lately, we can separate the logarithmic
part by different ways, so let us assume that the first term of the kernel is
of the form:

K(t,7) Elog-—-l-—

|r =t
where
|7 —t], if —1/2<1-t<1/2,
Ir=t'=<¢ |r—t+1f, if r—t<-1/2, (2.2)
|lr=t—1f, if 1/2< 7t

So, |7 — t| denote the quantity, that is equal to |r —¢|, if |t - t] < 1/2
and periodically continued onto the case |7 — ¢| < 1.

Equation (2.1) will be called general equation. If we eliminate the junior
part, we get model equation:

1 |
(KNO= [lg—rpfndr=90), tebl. @3
0

The numerical method used now, is the following. -Let us consider a
grid, i.e., an ordered sample of points {7;}, 7 = 1,..., N on the segment
[0,1). Let {¢;(7)}, j = 1,..., N be the basic functions of piecewise-linear
interpolation from this grid, that is

(tit1 = 1)/ (Ti41 — 75), if 7 €[5, Ti41], (2.4)

(r = 1i-1)/ (15 = 15-1), i T € [, 7],
pi(r) =
0, elsewhere.
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The approximate solution to the arbitrary linear equation (K f)(t) = g(t) is
presented in the form

N
f(r) =) ajpi(n), (2.5)
=
where the unknown coefficients a; have to be found from the collocation con-
ditions; the collocation points are chosen coinciding with the interpolation
ones, therefore the conditions are: '

Kf(re)=g(rx), k=1,...,N.

Since the operator is linear, these conditions are equivalent to the linear
algebraic system with respect to {a;}:

N
Z a;(Ke;)(tx) = g(7k), k=1,...,N. (2.6)

j=1

If the operator is not degenerate, the images of the basic functions are
linearly independent. The main problem is to prove this property for their
restrictions onto the grid and, what is desirable, to estimate the condition
number of the matrix. We shall do this under the following conditions.

Let us suppose that there is a quasiuniform family of grids. If we denote
by h;ji1/2 the steps of some grid h;y, /2 = Tj+1 — Tj, and A is the minimum
of them for the given grid, then let us require

maxh;; 2 < Qh,
7

where the quasiuniform parameter Q) is the same for every grid of the family.

Since we consider the periodical case, the grid and the basic functions
are suggested to be periodical with period 1.

We shall estimate from above the norm of finite-dimensional inverse op-
erator of system (2.6), corresponding to uniform norms in vector spaces. It
will be firstly done for the model equation without the junior term and then
generalized for equation (2.1). The desired result is the following

Then~rem 1. Let f(r) be of the form (2.5), max; |a;j| = 1, the quasiuniform
parameler salisfies the condition Q < 4.25, and g = K f. Then for sufficienly
small h there ezists such a gridpoint 7;, that |g(r;)| > ch.

3. Formulation of the theorem in terms of finite
differences

Let us begin the proof with the new formulation of the theorem. If g(r) is
some function, then the symbol D;(g;, j, k) (where i < j < k) will denote
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the second finite difference calculated from the values at the gridpoints 7;,
Tj, Tk, Namely:

.. Tk —T; Ty — T3
Do(giirdik) = T— 2g(ri) + ri —g(n) - g(73)
t 1
Tk — Ty —Ti

= —%[g(ﬂ) - g9(m)] + [g(re) — g(r3)].  (3.2)

Tk — T — T

In this formula the coefficients o = (i, — 7;)/(7x — 7i) and 8 = (1; — 1)/
(T — ;) satisfy the conditions @, > 0; a+ 8 = L. Therefore if for some
function g the inequality |Dz(g;i,j,k)| > ch is valid, then at least one of
modulus of differences [g(7;) — g(r;)] and [g(7k) — g(7;] is greater than ch,
and hence at least one of values of g(r) at the gridpoints has the modulus
greater than ch/2.

So, if it is shown that modulus of at least one second difference of the
function ¢ = Kf is greater than ch, then the statement of Theorem 1 is
true.

The same is valid, if we replace the difference D, by the “simplified”
second difference

Dalgsivik) = 397 + 39(m) - 9(73)
= ';:[9("*’) - g(m)] + %[Q(Tk) - g(m5)]- (3.2)

As it is known, the second difference D; can be expressed in terms of
the second derivative

Dy(gsiiik) = [ 4"(©)7(€) e EE)
where
T—Dg-n), i £<my
J() = Ti—Ti :
Tk—T.‘(Tk_E)’ if &> ;.

As a consequence of this formula:

Tk

Dalgs ) 2 min g"(€) - [ 4(€)de = min g7 =T, (3.

Now we can transform the formulation of the theorem once more. Let
the function fy(7) be identically equal to 1. Since the kernel of the model
operator in (2.3) is periodical and invariant with respect to shift, then the
image of fo under K is identically equal to the constant -
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1 1/2
: 1 1
K:fo:AQE/logmd‘r: / lOngT>0- (35)
0 -1/2

According to the condition of Theorem 1, max|e;| = 1, so it is possible
to choose one of such numbers j that |a;| = 1. Let us assume that this coef-
ficient a; is equal to (—1). For our convenience, we change the numbering.
The gridpoint corresponding to this chosen coefficient gets the number 0; the
rest of gridpoints are numbered in accordance with their order from number
(—=Nj) to Na; Ny + N3 = N. Let us give a shift to the variable 7, namely:
the gridpoint 7o will correspond to the value 7 = 0, and the interval, where
T varies, will be [-1/2;1/2]. After that one of basic functions (number —N;
or N;) can be broken to pieces: one part of its support is disposed in the
beginning of the segment [—1/2;1/2] and the other - in the end.

Now we replace the function: f(r) = f(‘r) — fo(7). Since K fg = const,
the second differences of K f and K f are the same.

The new function f has the same structure

N2
fir)= 3" biwi(r), (3.6)
j==N
where b; = a; + 1; hence 0 < b; < 2; bp=0.

As it will be shown later (Lemma 2), if integral of f differs from 0 (or
integral of f differs from 1) by more than ch, then the average value of K f
in the gridpoints exceeds ch too, so the statement of Theorem 1 is obviously
true. So, looking forward, we formulate the following statement, whose
validity will imply the validity of Theorem 1.

Theorem 1'. Let the function f be of the form (3.6), where by = 0,
0<6; <2, and
1/2

[ f(r)dr > 1-C.h. (3.7)
-1/2
If the quasiuniform parameler () does not exceed 4.25, then for sufficiently
small h there exist two gridpoints T_;, 7, (1,7 > 0) such that

|D2(K f;~1,0,5)| > ch or | Dy(Kf;-i,0,5)| > ch. (3.8)
4. Some properties of the images of the basic
functions

For further exposition we need some information about the images of the
piecewise-linear basic functions ;. Denoting ¥; = K¢;, we can write
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Ti+1 .
vi) = [ itr)log = dr. (41)

Tj=1

Assuming that |t — 7| < 1/2 we write this function in the explicit form:

h:l ,2) +hiprp x p(1- ) (4.2)

Yi(ri+n) =a;+ hj_yy x M(l + -
j+1/2

where 1
a; = _E(hj-—llz logh;_ 12+ hjy1p2 loghj:}-lﬂ)a

B(E) = ~5€ loglél + 5(€ - 1)logle — 1+ LEZ.

The key point in our consideration is a convexity of the functions VY,
themselves and also of their restrictions onto the grid. We understand the

latter property as a positiveness of second differences; it may be called dis-
crete convezity. The following lemma describes these properties.

(4.3)

Lemma 1.

1. Ift ¢ supp pj, then

, ch
¥i(t) 2 W (4.4)
2. Ift e [Tj_g;Tj+2], then
ch
1,b;'(t) < _[t T (4.5)

3. The difference between values of v; at two points from one of the
segments [Ty; Tk41] does not exceed ch.
4. Ifm#35—-1,5,7+ 1, then

ch?

Da(yp;;m—1,m, )y> — .
2("1’1 m m+ )— le—Tj|’2

(4.6)

5. If m=j—1 orm = j+1 and quasiuniform parameter Q < 4.25, then

Dy(j;m—1,m,m+ 1) > ch. (4.7)

Proof. The integration with respect to 7 and calculation of derivatives or
finite differences with respect to t are commutative, so these latter operations
can be applied to the logarithmic kernel under the integral sign in (4.1). So,
the first two statements of Lemma can be easily deduced from (4.1). Indeed,
under these conditions (taking into account the quasiuniformity of the grid)
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the second derivative of the kernel is of order |t — 7;|' =2, the basic function
@; is positive and its integral is of order ch.

Statement 3 follows from the explicit formula (4.2), because function
p(€) is bounded.

Statement 4 is a consequence of estimate (3.4) and the reasons written
above. The break of the derivative of the kernel at points t = 7 + 1/2 may
only increase the value of the second difference. 7

Property 5 is the most complicated. Moreover, it is valid under sig-
nificant restriction for Q; if the ratio of steps is arbitrary then the second
difference may become negative for the gridpoint neighbouring to 7;. Let
us assume that m = 0 and j is a neighbouring number, namely, j = 1.
Denoting the ratios of steps :

a=h_yp2fhipa; b= hap/hyy, (4.8)

we can conclude that a,b > 1/Q > 1/4.25 > 0.235. Under these conditions
we have to verify a validity of estimate (4.7) for the quantity written in the
form:

h h_
D(1;-1,0,1) = ty(roy) ——L— 4 4y (1) L2

r — (T
! hija+h_y/2 hij2+h_y/2 Yi(mo)
hij2
= ml/(a, b),

where

v(a,b) = —(14+a+b)’log(l+a+b)+ (1+a)*(1+b) log(1+a) +
(14 a)(1+b)?log(1 4 b) — a’bloga — ab®log b.

Let us verify the positiveness of v(a,d). Its derivatives are:

7]
B% = =2(1+ a+b)log(1+ a+b)+2(1+ a)(1+b) log(1+a) +
(1+ b) log(1 + b) — 2abloga + b%log b;
v 1+a+bd l1+a
E”? = -—210g—1-|:'—+2610g a H (49)
v 1+b 1
0adb? 2[10g b 1+a+b]'

Since the inequality log((1+ z)/z) > 1/(1+ z) can be verified by the usual
way, the latter of this expressions is positive. Estimating log((1+a+ b)/(1+
a) < b/(1+a), we can also apply the same inequality to the second quantity
(4.8), therefore it is positive too.
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Let us denote ag = bg = 0.235. The direct calculation gives
a
v(ag, bo) = 2.4369 x 1072 > 0; g—y(ao, bo) = 3_;(%' bo) = 0.07305 > 0;

5 ab(ag,bo) ~ 0.63344 > 0.

As it can easily be deduced from facts written above, all first and sec-
ond partial derivatives of v are positive for all a,b > 0.235, so v(a,b) >
v(ag, bg) > const. Lemma 1 is proved. O

Let us prove the following important fact based on the properties of ;:

Lemma 2. There ezists a positive constant C, independent on h such that
the following statement is valid: if f(7) is a function of the form (1.5), where
max |a;| = 1, and the inequality

1/2

| f fr)dr| > Cuh

-1/2
is true, then under sufficiently small h there exists a gridpoint T; such that
lg(m)| = IKf(75)| > ch.

Proof. Since the kernel of operator K is periodical and invariant with re-
spect to shift, we have

1/2 1/2 1/2
l/g(‘r)drl: |f floglt =20 ) de |
-1/2 —1/2 -1/2
1/2 1/2 X
= | f dtf(t) /‘logmdfl
~1/2 -1/2
1/2
= |40 ] f(r)dr| > AoC.h, (4.10)
-1/2

where Ag is the constant defined in (3.5). Let us now consider the differ-
ence E between the precise value of integral of g and its approximation by
trapezoidal quadrature formula on the grid {7;}.

Let us denote 8; = (hg—1/2 + hr4172)/2. Since g(7) = 3 a;9;(r), this
difference is
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1/2

N2
B= [ gmar- 3 g
-1/2 k==N
N2 1/2 N2 N,
= 2 ﬂj[] vir)dr— Y $i(m&] = Y aE;. (411)
i==Ni  _y2 k=-N, i==N;

The bracket denoted by E; is exactly the error of trapezoidal quadrature
formula for the integral of 4;(r). This error is equal to a sum of errors Eji
for segments [Tx—1,7¢] (k = =Ny, ..., Ng). If [k — j| > 2, then this error has
the estimate

h}_1/2
|Ejk| £ TW;’(&UL
where £} is any point in [Tk_1, Tk]-

As one can see from formula (4.1},

Tk
1
WIED < f 1 __ar
J( k) 2 ‘TJ _T|l2

Therefore the sum of these errors Eji for |k — j| > 2 can be estimated

1/2
> Bl s | f—z < ch?. (4.12)
2h

k:|k—j]>2

As to segments neighbouring to 7;, the variaton of 1;(r) on each of them
does not exceed ch, according to Statement 3 of Lemma 1, and the lengths

of these segments do not exceed Qh, hence the sum of these errors is less
than ch?. So,
|E;| € ch?.

Returning to (4.11), we see that

|E| < 3 lajl - |Ej| < ch® Y lag| < ch®N < coh.
; ;

Consequently, because of (4.10), if we choose C' > co/Ao, then

1/2
lzg(Tk)6k1 P4 I ] g(7) df| — coh > (AoCx — co)h > ch.
k -1/2

But the quantities &5 are positive and their sum equals to the length
of [-1/2,1/2], i.e., it equals to 1; so the sum in the left-hand side of the
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inequality is some weighted average of g(ri), therefore modulus of at least
one of them is greater than ch. Lemma 2 is proved. ' 0

Corollary. In the view of Lemma 2, in order to prove Theorem 1 it is
sufficient now to consider the situation when

| f f(r) dr| < C.h.

Taking into account that
[#wydr= [myar+1,

we have to prove Theorem 1' under condition (3.7).

5. .Proof of the continual analogue of Theorem 1’

First of all, let us note that

-~ N’
Da(Kfi=1,0,1) = 37 b;Dy(v;;-1,0,1). (5.1)
j==N;

Since by = 0, in the view of Lemma 1, all members in the right-hand side
are positive. If there exist two constants k, > 0 and v > 0 independent on
h such that the following statement is valid:

at least one of coefficients b; corresponding to gridpoints
7j € [~k.h, k.h) is greater than v,

then, according to Statements 4, 5 of Lemma 1, the sum in (5.1) contains
members that are greater than ch. Indeed, if this gridpoint is neighbouring
to 79, Statement 5 provides the desired estimate, else, Statement 4 gives

3 ch3

ch
biDy(v;;~1,0,1) > v — > 4.

— > .
il 27 TeQap 2

Hence the statement of Theorem 1 is true. So, it is sufficient to consider
the situation when for gridpoints from [—k.h, k.h] all coefficients b; are less
than v. Then the second difference for the three neighbouring points r_;, g,
71 does not satisfy the desired estimate. Now we shall consider the second
differences for far distant gridpoints. Namely, it will be the “simplified”
second difference D;, defined by (3.2).

We shall firstly prove the “continual” statement, when endpoints in a
second difference do not belong to grid. N amely, we shall study the second
difference :
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d(],8) = 5K7(0) + 3K (~0) - K(0). (5.2)

Theorem 1”. Let f(r) be of the form (3.6), where 0 < b; < 2; b = 0, and
condition (4.7) is valid. Then there erist constants k. and v independent on
h such that if for |7j| < k.h quantities b; < y and h are sufficiently small,
then for any 6

da(f,8) > ch. (5.3)

Beginning the proof, let us take the quantity H > 2-max hj,;/; and study
the weighted average value of function da(f, ) on the segment [H,1/2); the
weight function is 1/67:

1/2
M) =5 [[5K70) + 5K7(-0 - KfO) 50, (5.4)
H

where
1 1-2H
W:[Ew= S
H

Substituting the expression of A f(6) and changing the order of integra-
tion, we get

1/2
M@= [ fnewar, (55)
-1/2
where
1 1y 1 1 1 1 111
(I)(T) = W H/ [5 log m -+ -2—log I—_—m — log E—;I—’}ﬂ_z dé. (5.6)

The function ®(r) is obviously even, therefore integral (5.5) may be
written in the form
’ 1/2

M(f)= [ Fje() 5.7

where F(7) = f(r)+ f(—7). As it follows from the conditions of Theorem 1/,
0 < F(7) < 4, and the integral of F(r) on the segment [~1/2,1/2] is not
less than 1 — C.A.

Let us study now the function ®(r). Calculating integral (5.6), we write
the result in the following form:
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1
- For0<r<§—H:

B(r) = o= {Bo(r) + &1(r) + &a(r)},

-‘

where

®o(7) = 2H log —-1—1—;

T -2-—-7')
H 1 2 1
t?l(r) = r(T—T—)—[-— log2 — 4(§ - ‘r) log ,5 - TI],
H 1-H/r|l 1 H?
‘I’Q(T) = glog’m - -2—iog’1 - —;:; . (5.8)
1
For—--H<71< 3
1 1 2H 1
®(r) = 1—2H{_H1°5H'2-r(1—r)+ (r-1)(§" l°g|"’l+
H 27(r - —) + H(1
—log|‘r—H|+ log|1+ -7 H I—
H
mlog?— mloglr-i- H -~ ll}. (5.9)
Let us now verify some properties of &(r).
Lemma 3.
If re [%~ H, %] then @(r) = O(H|logH]).  (5.10

The proof can be fulfilled by the trivial consideration of every member
in (5.9).
The behaviour of functions (5.8) will be studied more attentively.

-

Lemma 4. The function ®y(1)

® is even with respect to point T = 1/4;

® decreases on the segment [0,1/4];

e increases on the segment [1/4,1/2];

e for € [H,1/2 ~ H] satisfies the inequlities

H -8log2 = ®(1/4) < $o(7) < 2H|log H| + O(H). (5.11)
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The proof is obviuos in the view of the first formula (5.8).

Lemma 5. The following inequalities are valid:
—4log2-H < P,(1) <0. (5.12)

Proof. Verifying the second inequality in (5.12), let us show that the bra-
cket in the second formula (5.8) is not positive. Denoting 1/2 — 1 = z, let
us study the function ¢(z) = - log 2~ 42%log z on the segment z € [0, 1/2].

Since ¢'(z) = ~4z(2logz + 1), for z < 1/2 we have logz < log(1/2) <
—1/2. Therefore ¢'(z) > 0, hence, ¢(z) has a maximum at z = 1/2. But
©(1/2) = 0, so the second inequality (5.12) is true.

Verifying the first inequality (5.12), we rewrite the second formula (5.8)
in the form

1 1 2 log(1 -2 1
&, (r) = H 4log§+4(§_7-) . og|( "')_ ]

T r—1
= H 4log%+ :b(_r)l],

(5.13)

where

2log(1l - 27)
——

¥(r)=4(3-7)

At the end of the segment [0, 1/2] we have ¢(7) — 0 under 7 — 1/2. Let us
show that (7) increases on [0, 1/2]. Indeed,

(1 - 27)[log(1 — 27)(—27 ~ 1) — 27]

P(r) =
But |log(1 ~27)| > 27; |- 27— 1] > 1, so the bracket in the latter expression
is positive, therefore ¢'(7) > 0. Then ¢(r) is not positive everywhere in
[0,1/2]. Since 7 — 1 < 0, we get the first inequality (5.12) from (5.13). O

The properties of the function ®,(7) are formulated in the next lemma.

Lemma 6. The function ®3(r) is negative elsewhere on [0,1/2], and for
7 > VH satifties the inequalities

2
~3H < ®a(r) <o. (5.14)
Proof. Denoting H/7 = , we rewrite formula (5.8) for ®; in the form

T 1-2 1
®o(7) = ¢(z) = §logim{ - §log|1—:n2[, 0<z<VH.
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Hence

$(0) = 0; ¢(z) = 5 log]

l-x ) Yy . 1" — 2
Tl FO=0 ¢'(2) = -1/(1-3?),
According to Tailor’s formula with the residual in the Lagrange form

—z?

¢(z) = ';'45"(5) ¥ = - T}g, where £ € [0, z].

Since || < 1/2, then 1/(1 - £2) < 4/3, i.e.,
—ng <¢(z) 0.

Since z < V/H, this is equivalent to the statement of the lemma. a
And finally let us note the following trivial property of ®(r).

Lemma 7.
1/2

j ®(r) dr = 0. (5.15)
0

Proof. If f(r) = const, then also Kf = const, so all second differences
equal zero; because of that the integral (5.4), is zero, together with integrals
(5.5), (5.7). @]

Now we have got the following. There is the function ®(r) which is
positive on the segment [v/H, 1/2], as it follows from the lower estimates of
Lemmas 4-6:

Bo+ &, + B > H(8log2 — 4log2 — 2/3) > H(4log2 — 2/3) > 2H (5.16)

(because log2 > 2/3). But the integral of & on the entire segment
[—1/2,1/2] equals to zero, therefore the integral on the beginning segment
[0,\/}?] must be negative and neutralize the positive part. We shall show
later that, in fact, the negative part of integral is “almost completely” con-
centrated.on the segment, whose length is I, H, where [, is a constant inde-
pendent on H.

After that, comparing integral (5.7) with integral (5.15), we can show
that, if F(7) < 2y on the beginning segment [0, /. H], then the negative part
of (5.15) is multiplied by the factor less than 27, and its positive part - by
the quantity which is greater than some constant. So, integral (5.7) will be
positive and it can be estimated from below in desired manner.

Let us fulfil this study. Let us firstly represent ®(r) in the form ®(7) =
@, (1) + (1), where
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1

By (r) = 1—_1W(<I»o(-r) +@u(n)) () =155

®y(r). (5.17)

Lemma 8. For every constant m € (0,1) there exists such a constant I,
independent on H that

lH
| t 0/ o_(r)dr

Proof. Omitting the factor, we can replace ®_(7) by ®2(7) in (5.18). The
desired inequality is obviously equivalent to the inequality

|‘£ &, (7) dr

Let us make the same substitution H/7 = z, as it was done in Lemma 6,
and write

> (1-m)- ’7¢_(T) drl. (5.18)
0

< m|/(1>2('r) dr
0

7 H[T1, (1-z wlog|1—a:2|. Hr?
.O/QZ(T)dT:?[_(J/;logiu-_mldx—\!_-;?_dz] "_-—-T'_

Denoting by ¢(z) the same function, as in Lemma 6, and taking into
account that |¢(z)] < 22 -2/3, we get

1/l.

o0 /
o(z) 2 1
l /Qg(r)dr =Hj p dx SH'E'z_Z'
lH 0
Under choice I, > 8/(372m) the statement of the lemma is true. o

Corollary. The following inequalities are true, as they are more weak than
(5.18)

LH RV

‘Df ®_(r)dr| > (1-m)- 0j<1>,(«r)dr; (5.19)
1/2 1/2

‘ /@-(T) dr <m-|]<I>_(1') dr. (5.20)
luH 1]

To estimate the integral (5.7) from below, let us divide it into several
members
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1/2 vH 1/2
j F(r)®(r) dr = [ F(r)®(r) dr+ / F(r)®,(r) dr +
0 _ 0 vH

L.H 1/2

/F('r)@..(r)d*r+ ] F(r)®_(r)dr
0 «H

= L4(F)+ Ly(F)+ Lo(F)+ L_(F).  (5.21)

If we replace the function F'(7) by 1 in these integrals, we get new inte-
grals which will be denoted by I14(1), I24(1), I3—(1), I4-(1).
According to Lemma 7

L (1) + Ly (1) + I3-(1) + 14-(1) = 0. (5.22)
In view of the properties

1/2
0< F(r) <2, ] F(r)dr>1~-C.h, and F(r) <2y for T € [0,lH],
0

we can derive the following statements from Lemmas 4-8:

2.
1
Ly (F) > -2—‘15(1 — Cuh = 4VH) 4 (1). (5.23)
Indeed,
1/2 H 1/2 VH
Ly(F) > min &,(r)- / F(r)dr > (/+ /)
[\/71,1/21 JH 1-2H 3 3
H
> . - - .
> T "4log2(1-Cuh 4vH)
From the other side, we can estimate
) 1/2
hi(l) = T /(@o(r)+@1(r))dr
VA

1 i 2H o 1 1
< T—2H 6/tIh,(‘r)c:.{*r:1_*2H J [log;+log’§~—rl]dr

H
TS (log2+1). (5.24)
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Because of that

I+ (F) 2log2 . _
) >log2+1(1 C.h - 4V/H).

Since
2 3 2log2 _ 2-2/3 _ 16

g <log2< g, then G r1<1¥3/a 21

3. |I,_(F)| < 4m|I3~(1)|, or, because of the negativity of these quanti-
ties, Iy (F) > 4ml3_(1). It is the consequence of the inequality F(r) < 4
and inequality (5.20).

4. Is_(F) > 2yI5_(1). It is the consequence of inequalities ®_ < 0 and
F(r) < 2y for € [0, ,A].

5. I+ (1) < CvVH|log H| - I4(1). Indeed, according to (5.11), (5.12)

VA

he() = [ @y(r)dr< (4H|logH|+O(H))-%;
0
1/2 ) 1

(1) = j @y (r)dr> ——— (5 - VA)-4Hlog2.  (5.25)
vH

These two inequalities imply Statement 5.

Let us substitute all these estimates into (5.21):

1/2

f F(r)®(r) dr > gu _ Cuh - VH) 4 (1) + (27 + 4m) T (1).
0

From the other side, (5.22) and Statement 5 give us
Is_(1) = =14 (1) = L4 (1) = L= (1) > —(1 + CVH|log H|) L4 (1).

So, we can conclude

1/2

M) j F(r)®(r) dr
0

If

> 12+(1)[§(1—c,h—4\/ﬁ) - (2y+m)(1+CVH| log Hl)] (5.26)
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If m and v are not too grea.te, the bracket is not less than some constant;
in the view of (5.24), now we get: M(f) > ch. We would remind that it is
true under the following conditions: A is sufficiently small, I, depends on m
according to Lemma 8 and for |7] < I, H the values of f(r) are less than 7.

So, we have to choose small constant m, find /. according to Lemma 8
and then to take v in order to make the bracket in (5.26) be greater than
some constant.

Let us remark that because of the quasiuniformity of the grid there exists
k. such that k.h = LLH

The quantity M(f) deﬁned by (5.4) is an average of dg( £;9), and so our
result provides the existence of @ € [k.h,1/2] such that

da(f;6) > ch.

Theorem 1” is proved.

6. The concluding part of the proof
of Theorem 1’

As we have seen, the second difference dj( f, 0) has the desired estimate
from below for some three points {—6,0,0}. We should prove now that
the simplified second difference for some three gridpoints 7_;, 0, 7; satisfies
the same estimate. But we shall not compare the values of K f(8) with its
values at nearest gridpoints. Approximately speaking, we shall compare
a weighted average (with the weight 1/6%) of the function Kf(#) and its
weighted average for the gridpoints.

Let us introduce the following notation. If ¢(%) is an arbitrary function,
then L(1;6) will denote the value at the point # of the function which
interpolates 1(0) linearly from its values at the gndpomts Namely, if 6 €
[T” T;+1], then

L30) = 9(r) B2 4 (i) 2

hjv1/2 hivie’

(6.1)

We shall consider together with the average M(f) the similar discretized
average: so, let us denote

1/2

() = [ [GUCH0)+ SLKT -0 - Kf0)]%. (6
H

_ Besides the notation ¢;(8) = Ky;(8), we define $;(0) = L(Kpj;8). Since
f(r) = X bjp;(r), where by = 0, and the integration with respect to 7 is

commutative with the integration or summation with respect to 6, then the
difference & = M(f) M(f) may be written in the form
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5= b

1/2 .
1L [ $;(0) —¥;(6)
. {’2—147] Aot

J#0 H

(6-3)

1/2 .
1 $;(—0) — ¥;(—0)
27! 9 =% de}.

Let us assume that j > 0, therefore 7; > 0. We shall study the quantity

Ji= %—M do.
6l>H

We divide the set D = {6 : H < |8} < 1/2} into two sets
D; = DN {rj_2,Tiya); D} = D\ D;.

Correspondingly, the integral J; is now represented as a sum J; = J} + J7.

As it have been noted in Lemma 1, the variation of 1;(7) on the nearest

to 7; four segments does not exceed coh, therefore
. 1 d
[; = 95l < cohi 23 < 3

i

and lengths of these segments do not exceed Qh. Hence
2

C’ °4Qh S cl'}if-
T

, h-(8) — (6
|Jj|=’/&’82_”’i(_)da|gcoh-;% (6.4)
D'

_ J

1
Let us estimate the quantity
" 5400) - ,0)

J;: - k %: _J—_W—J—_ do.

1T D;Tk-—l ‘
According to Lemma 1, if 8 € [rx—y, 7], where k # j—1,7,7+ 1,7+ 2, then
|%;(8) - ¥;(8)] < max ¢7(6) - 1p2 <c W
] J = ] ] 2 k=12 = 2'9_.,-3_2'!2'

[Tk—tv7

(6.5)

So,
dé
" 2
D"

This latter integral can be easily estimated.
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1. On the segment [H,7;—2/2] (which is absent if 7,_,/2 < H) we have
1/16 — 5|’ < 1/|7j/2|* = 4/7}, so the integral on this segment does
not exceed

"’z‘-zﬁd

T2 62

H

7

)

c3
<T

2. On the segment [1j_3/2,T;_3] (it can be absent too) we have 1/6% <
4/7? ; < cq4/7?, and, besides that, | — 7;| > eh, so the integral does
not exceed o

o [ _db o
TJ? |6 — 751’2 — rfh'

Tj-2/2

3. On the segment [rj42,1/2] we have 1/62 < 1/77, and the estimate is
the same. The segment [-1/2, — H] should be considered similarly.

Substituting these latter estimates into (6.5), we get the result similar to

(6.4) 2

) |
1S ey (6.6)

So, the integral J; has this estimate too.
Using it in (6.3), we get

(4 h2
0] < 38 2 6.7)
W#o 4 T}

Let us divide the set of subscripts j into two subsets: M’ consists of j
such that the corresponding gridpoint 7; belongs to the segment [—k.h, k.h],
and then b; < 2v; the set M” contains the rest of values of subscript.
According to tha.t the sum (5.7) will be divided into two sums, denoted by
&' and 4",

Since .

%Sczfﬁ and sz,
J

-
L]
-

we can estimate

6’<csh2bhj <c97h2/kh—

jEm K72
yeoh < 701112+(1), _ (6.8)

because of estimate (5.25) for I24(1). From the other side,

IA
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1/2
d
< o Y bh/ S <ash? [
TV T

cl3h2
k.h

IA

< 0 (1), (6.9)

And so,

|M(f) - M(f)] < (‘ch+ % )Iz+(1)
This implies together with (5.26)

Mf) > 12+(1)[ (1-C.h - aVH) -
(27 +4m)(1 + CVH|log H|) — ye; — %i]

It is clear now that after proper choice of k., m,~y and for sufficiently
small A and H the quantity in the latter bracket will become greater than
some constant. So, in the view of (5.25), we have now M(f) > ch.

According to (6.2), M(f) is the average of second differences of the
piecewise-linear function (#), which interpolates the function § = K f. If this
average is estimated from below, then there exist some values 6 € [H,1/2]
such that

D(10) = 31(6) + 3(~0) = 1(0) > ch. (6.10)

Let one of these points (f) be disposed between the gridpoints 7,1,
Ty, and its opposite point (—8)- between the gridpoints 7_y,, T_p, 41. Since
|6] > H = 2maxhjy,/2, no one of these gridpoints does coinside with 1o =
0. But every value I(f), I{(—8) is an average of values at its neighbouring
gridpoints

1(8) = agn,—1 + (1 = A)dny,  1(~0) = BG-n, + (1 = B)§n,+1,

where a, 8 € [0, 1], and gx denotes the value of § at the gridpoint Tk. As it
can be easily verified, if we take the quantity u = min(e, 8), then dy(l,8) is
the following average of four second differences calculated from gridpoints:

5 1, 1, - rl_ 1. -
@(1,6) = w50 + 5hna-1 = o] + (B~ 1) [39-m + 33m — 0] +
1, 1, .
(0" - f-") [‘2'9—ﬂ1+1 + 59'712-1 - 90] +
1. 1. .
(1-a-pB+p) [59—n,+1 + 39n, - go]-

(The coefficients are positive and their sum equals 1; the brackets contain
the second differences.) So, it follows from (6.10) that at least one of the
brackets is not less than ch.
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So, the proof of Theorem 1’ is completed and, hence, the statement of
Theorem 1 is true.

7. The proof for general Symm’s equation

Finally, let us consider the general case when the integral equation includes
also junior terms. We shall assume now that our equation is:

1 1
(k+K)f©) = [log s/ dr+ [ Katn) () dr =g, (@)
1} 0
where the kernel K;(t,7) is of the form

alr =t
I(](t,’!‘) = log m

sign(t—r)-|z(t)—z(7)| log|z(t)—z(7)|-Pa(t, 7) + P3(t, 7). (7.2)

In this formula z(r) is a periodical vector-function which describes a
parametrization of any curve.

Let us denote by C®* the Banach space of functions (or vector-functions)
of one variable satisfying the Hélder condition of degree A; C' is the space
of functions whose derivative belongs to C%*.

+2(t) - 2(r)| - log|z(t) — z(7)| - At 7) +

Theorem 2. Let equation (7.1) be uniguely solvable for every right-hand
side from C°?, vector-function z(t) belongs to CY*, and derivatives of the .
functions Py, Py, Py with respect to t belong to C®* with respect to each
variable. If f() is of the form (2.5), where max |a;| = 1, and h is small
enough, then there ezists such a gridpoint 7; that |g(7;)| > ch.

Proof. Let X3 be a linear space of functions of the form (2.5). We have to
show that if f € X, and max|f| = 1, then :

max |(K + K1) f(75)] > ch. (7.3)

Let us introduce the operator IIj, that carries out a projection of space coA
onto X; by the following way.

Let A; = supp @; = [Tj-1,Tj+1], and let J; be an integral of @; on this
set, that is 8; = (hj—1/2 + hjp1/2)/2. If P(7) is any function, let 3; be the
weighted average of 1 on A;:

B = é— A] B(r)p5(r) dr.

Then we define _
Mab(r) = 3 di (7). (14)
J
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Let us remark that, by the definition,
/ [$(r) = B;)e; () dr = 0. (7.5)

Let ¢ = (K+ K1) f, where f satisfies the conditions of Theorem. We have to
prove that max |g(7x)| > ch. It would be true, if we find a function § such
that

max |§(re)| 2 ch;  max|g(me) — §(7e)| = o(h)- (7.6)
We shall define this function by the formula
§=KILK (K +K))f. (7.7

If f € X, then I,f = f. So, introducing the notation ¥ = K~1K; f and
taking into account that K(f + ¢) = g, we can rewrite (7.7) in the form

§=KILi(f+¢)=K[f+v+ (I -¥)l=g+K(lIpp —¢).  (7.8)

In order to substantiate this construction and to verify properties (7.6), let
us prove two lemmas.

Lemma 9. If ¢ € C%*, then for every gridpoint 7y
[KTae(ri) — Kb(Ti)| < ch*¥!|log . (7.9)
Proof. To be definite, let us consider the gridpoint 7¢. Since

¥(r) =3 $(r)ei(r),
we can write

5 = KTa() - k(o) = |3 [[8(r) - dilesr)log — dr|

7 A; |T!
< Zl/(“l’(f)—@}%(f) IOg’i—ldr|.
J Aj

Because of (7.5), if we subtract the constant from logarithm in the latter
integral, its value does not vary, so

§<y°
i

(If j = 0, we do not subtract anything.) Now, if j = -1,0,1, then for the
function from C%* we have |9(7) — ;| < ch?, therefore these integrals do
not exceed the quantity

f [%(7) — $;lei(r) [log 1—}_—| - log i—] dr

|7;]
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ch? 7log % dr < ch"*¥log .
T-2

If {7] > 2, then the difference of logarithms may be estimated as the deriva-

tive of logarithm multyplied by the length of the segment; so it does not

exceed (¢/|r]) x |7 = 75| < ¢/|j| for T € supp ¢;.

So,
§ < ch'"*logh|+ ¥ ch* -k < ch'|log |,
lil>2 |
because Y (1/|j]) < clog N < c|logh. w

Lemma 10. The operator K has the inverse operator K=, which is con-
tinuous from C'* in C% for every X € (0,1).

Proof. Let us compare the operator K with the standard Hilbert operator
on the unit circle (see {7]); it may be written after parametrization on the
segment [—1/2,1/2] in the form
1/2
a
= log —————— dr.
Loult) f/ 8 ema(r— g "
2

Its inverse operator Ly exists under a # 1 and is continuous from C'
in C9*; it is defined by the formula

1/2 1/2
£3M(0) =~ f com(r-t)u'(r)dw@ [ emyar. (110)
-1/2 -1/2

Since the operator K can be written in the form K = Lo + £, where £, is
the following operator:

1/2
2sinw(r -t
Elu(t) = / log [T(:—t'i-;ﬂu(f) dT,

-1/2

then the operator K is inversible, if and only if the operator (7 + £5'L,) is
inversible; and then
K='=(I+£5'Ly)~'cyt. (7.11)

The operator Lg 1£, is a compact one from C%* in C 0 and so, accord-
ing to the Fredholm theory, if the operator (I + £5'L;) is not degenerate
(i.e., if no one function is mapped into zero), then its inverse operator exists
and is continuous. But this condition is equivalent to the condition that the
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operator K is not degenerate. So, the desired fact is true, if there does not
exist such a function ¢ € C%* that Ky = 0.

We can assume that max|p| = 1.

Then |ap(7) — ¢(7)| < ch*, therefore max|[lzp(7)| > 1 — ch*. But
Ire(7) is a function from X3, and the maximum of its modulus is not less
than a constant; then, according to Theorem 1, max; |[KIIpp(r;)| > ch.

From the other side, according to Lemma 9, the values of K¢ at the
gridpoints differ from the values of KII¢ by the quantity which is o(h). So,
max |K@(rk)] > ch. This implies the propetry of K to be not degenerate,
and therefore, according to (7.11), the operator K~! exeists and has the
same properties as L5, i.e., it is continuous from C** in C%*. 0

Remark. According to the general theory (see [8]), the operator (I +
Ly 1£,)71 is also the integral operator of the second kind with a weak sin-
gularity in kernel.

As we can see after this Lemma, the definition of § is correct. It is easy to
verify that the operator Ky with a kernel of the form (7.2) maps the function
f € Xy on the function with the modulus of derivative of order k|logh|,
hence K, f belongs to C1* for every A € [0,1], and ¥ = K~1K,f € C%,
As the consequence of (7.8) and Lemma 9, the second inequality in (7.6) is
valid.

As to the first inequality (7.6), let us take into account that the oper-
ator (K + K;) is inversible according to the conditions of Theorem 2, so
the operator K=}(K + K;) = (I + K~'K;) is inversible too. This latter
operator is a Fredholm operator of a second kind, therefore its inversibil-
ity in the Holder spaces implies its inversibility in uniform norms. So,
max |[K~Y(K+K;) f(r) > const, and this function is of class C%*. Therefore,
its proection after applying Il differs from the function itself by the small
quantity, according to Lemma 9, hence the uniform norm of I, K1 (K+K;) f
is not less than a constant. But it is a function from X}, i.e., a function of a
form (2.5), and, applying Theorem 1 for it, in the view of (7.7), we get the
first inequality (7.6),

So, Theorem 2 is proved.

Finally we should remark that there was the only point where the restric-
tion for the quasiuniform parameter played its role. Namely, it is a latter
statement of Lemma 1, concerning the discrete convexity of the image of the
basic function at the neighbouring gridpoint. Indeed, this restriction is not
connected with the essence of the problem; this is due only to a technique
of our consideration. In order to weaken this restriction or to avoid it com-
pletely, we can vary the definition of discrete convexity. Namely, we can use
as a criterium of convexity the positiveness of some combinations of second
differences. This approach is not fulfilled completely.
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