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The relative strength of
topological properties
for event structures

[.B. Virbitskaite

The intention of the paper is to characterize and examine density and crossing properties
of prime event structures. We show the coincidence of L-density and L-crossing for this
class of event structures. It has turned out that any configuration in an M-dense prime
event structure is full (i.e., at least one successor (if it exists) for any event occuring in
the configuration must also occur). The structural restrictions which guarantee M-density
are determined.

1. Introduction

Behavioral properties of concurrent processes can be formulated and stud-
ied in terms of acyclic Petri nets, posets, event structures, e.a., as evidenced
in the literature [2, 6, 11]. However, not all instances of these models are
suitable for the purpose of an adequate representation of "reasonable” con-
current processes. In [1, 9, 10] and earlier works, a number of properties
has been proposed to be satisfied by suitable classes of the models. K-
density and crossing properties have been defined very nicely and elegantly
for causal nets and posets. L- and M-density as special properties for gen-
eralized processes represented by acyclic Petri nets with nondeterministic
choices have been introduced in [7].

The strength and significance of these properties are not self-evident
for event structures which are reminiscent of many partial ordering mod-
els. The advantage of event structures is that the nondeterministic aspects
of concurrent processes are explicitly described and the choices can be nat-
urally expressed. Some modifications of N-density for flow event structures
in the context of algebraic specifications are developed in [3].

In these notes, we try to convey an understanding and evaluate the
power and limitations of density and crossing properties for prime event
structures (here, event structures for the sake of brevity).
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The notes are organized as follows. In Section 2 we shortly recall some
basic notions of event structures. A number of density and crossing prop-
erties for event structures is treated in Section 3. As could be assumed
the finiteness of event structures guarantees their K- and L-crossing prop-
erties. The coincidence of L-density with L-crossing for event structures is
established. We show that in M-dense event structure all of the executions
are completely "successful”, i.e., at least one successor (if it exists) for any
event occurring in the execution must also occur. The structural restric-
tions which imply M-density of event structures are determined. In Section
4 we end with concluding remarks where the future lines of research are
pointed out.

2. Event structures

Our framework is event structures introduced by Nielsen, Plotkin and
Winskel in [8] as a model for computational processes. Event structures
are represented via sets of events with relations expressing causal depen-
dencies and conflicts between them. The subsets of events representing
executions in the event structure are called configurations. They have to
be conflict-free and left-closed with respect to < (all prerequisites for any
event occurring in the execution must also occur).

Definition 2.1. An event structure is a triple § = (E, <,#), where
e E is a set of events,

¢ < C E x FE is a partial order (the causality relation) satisfying the
principle of finite causes: Ve € E: {d € E | d < e} is finite,

o # C E x E is a symmetrical and irreflexive relation (the conflict
relation) satisfying the principle of conﬂlct heredity: VYe;,ez,e3 € E :
81<€2&81 #e3=>82 #83

The components of an event structure S will be denoted by Eg,<g
and #gs. If clear from the context, the index S will be omitted. Let S
denote the domain of event structures. An event structure § = (E, <, #)
is finite iff E is finite, S is conflict-free (CFF-structure) iff # = 0, i.e.,
Ve,e' € E: -(e # €'), S is concurrency-free (COF-structure) iff co = 0, i.e.,
Ve,e' € E: =(e co €).

Let § = (E,<,#) be an event struture, then id = {(e,e)|e € E};
< = <\ id; <% C < (tramsitivity); 4 = <\ <%, li = < U >; co =
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(ExE)\(<U>U#)e={e€E|ede}ande ={e'€ E|ede};
e diffe#pd& Ve, deE:e'<e&d<d&e#d=>e=e&kd=d
Definition 2.2. Let § = (E, <, #) be an event structure and C C E. Then

.o C is left-closed iﬂ'Ve,_dEE:eGC& d<e=deC.

o C is conflict-free iff Ve, e’ € C : ~(e # ¢€).

e C is a configuration of § iff C is left-closed and conflict-free.

o A conﬁgqr#.tidn Cis comblete ifVde E:d¢C>3eecC:d #e

A configuration C is maximal iff for a.ny. configuration C’ of § such
that C C C' is valid that C = C’. Let C(S) denote the set of
maximal configurations of S.

e A maximal configuration C is full if Vee C:e* #0=>e* .0 C #0.

Now we establish the fullness property of maximal configurations of
CFF- and COF-structures.

Lemma 2.3. Let S = (E, <, #) be an event structure and C be a marimal
configuration of S. Then C is full if either condition holds:

(i) S is a CFF-structure,

(i) S is a COF-structure.

PRrOOF. (i) Straightforward. (ii) We suppose the contrary. Let C € C(S)
be not a full configuration. This means that there exists an event e € C
such that e* # @ and for any ¢’ € e* is valid that ¢’ ¢ C. Since C is a
maximal configuration then there exists an event d € C such that d # ¢'.
Proceeding from the definition of COF-structure we have d < e. Since
d # ¢ and d < e 4 ¢ we get a contradiction. (]

We introduce now some auxiliary notions which will be useful through-
out the paper.

Definition 2.4. Let S = (E, <, #) be an event structure.

e L C Eis ali-set iff Vej,e; € L :e; li eg, L is a li-section iff L is a
maximal li-set. The set of li-sections in § is denoted by LI(S).

e RC F is a co-set iff Ve;,e2 € R : e; co ez, R is a co-section iff R is
a maximal co-set. The set-of co-sections is denoted by CO(S).
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o ACFEis acfset iff Ve;,es € A:e; # €3, A is a cf-section iff A is a
maximal cf-set. The set of cf-sections is denoted by CF(S).

For an event structure § we give some informal comments concerning
substructures of §. CFF-substructures of S contain only concurrent events
and events to be in the causal relation. Hence, maximal CFF-substructures
of S are closely associated with maximal configurations of § in an obvious
way. The set of maximal CFF-substructures of § characterizes the projec-
tion of S to a plane formed by li- and co-axes, whereas COF-substructures
of S contain only conflicting events and events to be in the causal relation.
The set of maximal COF-substructures of S represents the projection of §
to a plane formed by cf- and co-axes.

Definition 2.5. Let § = (E,<,#), §' = (E',<', #') be event structures.

e 5’ is a substructure of S(S'C S)iIf E'CE, <’ C <N E”? #'C
#nE?

e §'is a CFF-substructure (COF-substructure) of S iff S’ is a CFF-
structure (COF-structure) and a substructure of §.

e §' is a maximal CFF-substructure (maximal COF-substructure) of
S if for any CFF-substructure (COF-substructure) S” of S such that
S’ C §” is valid that 5’ = S”.

It is known that in any event structure there is no infinite li-section, be
it ascending or descending between any pair of events, i.e., event structures
are discrete models of processes. The following auxiliary lemma exhibits
this fact and connects up any cf-section of an event structure with its
maximal COF-substructure.

Lemma 2.8. Let S = (E,<,#) be an event structure. Then
(i) Vey,e2 € E,NL € LI(S):|[er,e2)NL| < o0,
where [e1,e3] = {e € E | e; < e < e3}).
(i1)) YA € CF(S): there erists a mazimal COF-substructure
S' = (E'" <',#') of § such that AC E'.

Proor. (i) follows from the finite causality axiom of an event structure.
(ii) Straightforward. o

In such a way, we have recalled basic terminology of event structures and
defined some additional notions needed to introduce density and crossing
concepts for event structures. -
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3. Density and crossing properties of event
~ structures

First we rephrase the concepts of K-, N-density and, the so-called, K-
crossing [10] in terms of event structures. K-density (N-density,K-crossing)
of an event structure is defined by K-density (N-density,K-crossing) of every
of its maximal CFF-substructure. Before formalizing these notions it will
be convenient to adopt the following notations.

Let S = (E,<,#) be an event structure and X C E. Then | X = {€|
edecE&3ecX:e<e},and X ={e'|€E& Jec X :e<Le}.

Definition 3.1. Let § = (E, <, #) be an event structure and 5’ = (E’, <)
be a maximal CFF-substructure of §. Then

e §'is K-dense iff VL € LI(S'), YRe CO(S"):|LNR| =1.

o S is N-dense iff Veg,e1,e3,e3 € E : if (eg < e1 & eg co e3) and
(e2 < e3 & €1 coe3) then g9 < e3 => €3 < eg.

S’ is K-crossing iff YL € LI(§'), VRECO(S):LN|R#0& L N
TR#0.

S is K-dense (N-dense, K-crossing) iff any maximal CFF-substructure
of § is K-dense (N-dense, K-crossing). '

The next result states a connection between the properties defined -
above. :

Proposiﬁon 3.2. Let S = (E,<,#) be an N-dense event structure. Then
S is K-dense, iff § is K-crossing.

Proor. It follows from Theorem 2.3.11 in [2] and part (i) of Lemma 2.6.
a

The following proposition establislies some basic relations between sev-
eral finiteness and K-crossing.

Proposition 3.3. Let § = (E,<,#) be an event structure. Then S is
K-crossing, if either condition holds:

(i) S is finite,

(i) any li-section in S is finite,

(iii) any co-section in S is finite.
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PRrOOF. (ii) follows from Proposition 3.2 (5) in [10]. (iii) follows from
Proposition 3.2 (6,8) in [10]. (i) and (ii1) imply (7). O

Now we formulate the definitions of L-density and L-crossing properties
of event structures as follows. '

Definition 3.4. Let § = (E, <,#) be an event structure and
S' = (E',<',#') be a maximal COF-substructure of §.

e S’ is L-dense iff VL € LI(S'), VAECF(S)|A#0:|LNnA|=1.

e §' is L-crossing iff VYL € LI(S'),YA € CF(§) | A#0:L n
IAZQ0& LNTA#0D. '

e S is L-dense (L-crossing) iff any maximal COF-substructure S’ of S
is L-dense (L-crossing).

Proposition 3.5. Let S = (E,<,#) be an event structure. Then S is
L-dense iff S is L-crossing.

PRrROOF.

(=): This is obvious.

(«): Let §' = (FE',<',#') be a maximal COF-substructure of S. Let
L € LI(S"), A € CF(S'). According to the L-crossing property there
exists a maximal element e € L A | A and a minimal element d € L N T A.
Assume e # d, then e < d. '

o If e 4 d, then there exist a,a’ € A such that e<aandd <d.

1. fe=a=a' ord=a=ad, then the result is proved.

2. If a =a' and e # a, d # d/, then this contradicts the definition
of 4. = -

3. If a # d/, e # a and d # d’, then it contradicts the definition
~ of a COF-structure.

o If ~(e d d), then there exists a € L such that e < a < d. If a €
| A, then it contradicts the maximality of e. If a € 1 A, then it
contradicts the minimality of d. But no other cases remain because
TAU|A=F. Hencee=de |ANTA=A. o

A number of the structural restrictions which imply L-crossing is estab-
Lished by the following proposition.
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Proposition 3.8. Let S = (E,<,#) be an event structure. Then § is
L-crossing, if either condition holds:

(i) S is finite,

(ii) any cf-section in S is finite,

(iii) any li-section in § is finite.

Proor. (ii) follows using the obvious fact that if any cf-section in § is
finite, then VL € LI(S), VA € CF(S): (L C | A = Ja € A such that
LC |{a}) & (L C 1A= Ja € A such that L C {{a}).

(1#i) We assume that § is not L-crossing. Then there exists a maximal
non-L-crossing COF-substructure S’ = (E/,<',#') of 5. Let A # 0 €
CF(S"), L#0 € LI(S")such that LN TA=0or LN |A=0. Then
LC{lA}\ A,or L C {tA}\ A, respectively. Let L = {z1,...,2,}.

o If L C {| A}\A, then according to the definition of | A there exists
a € A such that z, < a. Hence L is not a li-section.

o If L C {TA}\A, then the proof is analogous.
(i) is a consequence of (7)) and (7). . O

The concept of M-density was developed in [5, 7] as a nice property
of generalized processes represented by acyclic (possibly infinite) Petri nets
with conflicts. M-density is formulated in terms of the intersection of planes
formed, on the one hand, by li- and co-sections and, on the other hand, by
li- and cf-sections. The definition below rephrases this property by event
structures as follows. '

Definition 3.7. Let § = (E, <, #) be an event structure. Then § is M-

dense iff the intersection of any maximal CFF-substructure of .§ with any
maximal COF-substructure of S results in some (unique) li-section of §.

We establish now fullness of maximal configurations in an M-dense event
structure. It has turned out that in L- and M-dense event structure the

intersection of every of its maximal configuration with every of its cf-section
contains one element.

Proposition 3.8. Let S = (E,<,#) be an M-dense event structure. Then
(i) any mazimal configuration of S is full. 7
(i1) S is L-dense = VC € C(S), VA€ CF(S):|CnA| =1.

PROOF. (i) It is straightforward to show that any li-section in any CFF-
substructure or in any COF-substructure is a li-section in S as well. Hence
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any maximal configuration of S is full.
(#) We will prove by contradiction. Let C' be a maximal configuration and
A be a cf-section of S. Two cases are possible.

e If CNA = 0. From the left-closed principle follows that C N TA = 0.
Clearly for any maximal configuration C there exists a maximal CFF-
substructure §' = (E’, <’,#') such that C = E’. According to part
(i) of Lemma 2.6 for any cf-section A in S there exists a maximal
COF-substructure §” = (E”, <", #") such that A C E”. From M-
density follows that E” N E’ is a li-section L in §. Since E'N TA = 0,
we have L N 1 A = 0. It means that for a maximal COF-substructure
S" is also valid that L N T A = 0. This contradicts the L-crossing
of S.

o If |CN A| > 1. This contradicts the definition of a maximal config-
uration. . a

Now one may characterize the structural restrictions which define plain
event structures for which M-density holds as shown below.

Definition 3.9. Let § = (E, <,#) be an event structure. S is called plain
iff for all e,d € E such that e # d the following is valid:

(i) Ve,e"e{d | d+# e}:(e coe”),

(ii) Ve',e" € (teUe)U(*duUd): (e coe").

Let us see some consequences of Definition 3.9. The first observation
is that any event being in conflict with another one has unique immedi-
ate predecessor. Another consequence says that any two events being in
immediate conflict have the same predecessors. These are formulated as
follows.

Lemma 3.10. Let S = (E,<,#) be a plain event structure. Then for all
events e,d € E the following holds:

(i) e#td=>]|%e |<1& |d]|<]1,

(i) e#1d=(e="d) & (Ve',d' € Te UT d: (e cod')).

ProoOF. Straightforward. a

Proposition 3.11. Let § = (E,<,#) be a plain event structure. Then S
it M-dense.

Proor. This follows from Lemma 3.10. - e (]
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Now we establish the relationship between M-density and some proper-
ties introduced in [3].

Definition 3.12. Let S = (E,<,#) be an event structure.

o Sis called vy-free if it does not contain the following: Ve,e',e"” € E :
e<e # e coe.

o §is called N#-dense iff Veg,e;,es,es€ E : if (eo # €1 & eg co €2)
and (ez # e3 & ey co e3) then eg # €3 = ¢ # e

Proposition 3.13. Let S = (E, <,#) be an event structure.
(i) If § is 7-free then any mazimal configuration of S is full.
(ii) If S is \7-free and N#-dense then S is M-dense.

PRrooF. (i) Straightforward. (ii) Suppose S is not M-dense. Then there
exist its maximal CFF-substucture § = (E’,<’,#') and maximal COF-
substructure §” = (E”,<",#") such that E'N E" = [ is not a li-section
in S. '

® Let I =0. Then there exit at least four events eg, ey, €9, €3 € E such
that eg,e; € E' and ez,e3 € E”, i.e., eo # €3, ¢ # €3 and e; # e3.
We get a contradition to N#-density of §. :

o Let I = {ep,...,en} is a li-set.

1. If there exits an event ¢’ such that e’ < ey then ¢’,eq € E' by
Definition 2.5 and there is an event ¢” € E” such that e # ep
and €” co €’. This contradicts the v7-freeness of S.

2. If there exits an event ¢’ such that e, < ¢ then the reason-
ing is analogous to the one in the previous case. We get a
contradiction to the principle of conflict heredity. a

4. Concluding remarks

In these notes we have tried to present some density and crossing properties
of event structures and discuss why these properties might be useful.

The work presented here is by no means complete. Regarding future
works, two lines of research may be pointed out. So far we have limited
ourselves to prime event structures. We expect that our results may be
generalized by the concept of flow event structures introduced in [4]. The
second line of research to pursue should be to provide dense and crossing
event structures with a concrete interpretation. This would enable us to
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evaluate the power and the weakness of these properties of event structures.
A concrete interpretation would add some insight to the vague explanations
of the various concepts which we have provided within the notes.
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