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Investigating nondeterministic processes*

I.B. Virbitskaite and E.N. Bozhenkova

Event structures have widely been proposed as a basis for constructing models of nonde-
terministic processes. However, not all event structures are turned out to be suitable for
this purpose. One way to get around this problem is to adapt Petri’s concurrency axioms
(including K-density and related properties) to event structures. In this paper we study
the above properties in the context of flow event structures [5].

1. Introduction

Many models (Petri nets, posets, event structures, etc.) are currently
used to describe the possible behaviours of concurrent /distributed systems.
However, not all instances of these models are suitable for an adequate rep-
resentation of ‘reasonable’ concurrent processes. To overcome this problem
there has been a line of research originating from [10] such as [1], (2], [7],
where interest has mainly concentrated on concurrency axioms (namely
the density, crossing and discreteness versus continuity properties) of oc-
currence nets. In [10], a property called K-density has been defined, moti-
vated by intuitive idea that every sequential subprocess of a process should
always be in a well-defined state. [1] characterizes K-density in terms of
other related properties and some consequences of this are proved in [2].
The remaining axioms (including the D-continuity, coherence and reduced-
ness properties) of occurrence nets have been investigated in [4], [7]. L- and
M-density as meaningful properties for the Petri nets with nondeterministic
choices have been introduced in [8]. Finally, Pliinnecke [11] proved a variety
of results on the relationship between K- and N-density in the context of
posets in general. The interdependencies between these and other related
properties of posets have been summarized in [3].

Event structures are reminiscent of many poset models. The advantage
of event structures is that the nondeterministic aspects of concurrent pro-
cesses are explicitly described and the choices can naturally be expressed.
The relative strength and significance of the mentioned above axioms are

*This work was suppoted by Russian Fund of Fundamental Research



80 L B. Virbitskaite, E.N. Bo:henkova

not self-evident for event structures. To clarify these issues we have consid-
ered it desirable to obtain a characterization of the properties in terms of
prime event structures [9] and have shown how the properties fit together
in [13]. From our point of view, an investigation of K-density and related
concepts for event structures is interesting for several reasons. First, it is
always intriguing to see what are the consequences of small modifications
and generalizations of important definitions. Algebraically, these properties
lead to elegant and simple laws [5], [12]. Moreover, we expect that event
structures possessing the properties have a good characterization in terms
of temporal logic languages [14].

The present paper is devoted to furthering the study of the power of
K-density and related properties in the context of a more extended class of
event structures — flow event structures [5]. In Section 2 we shortly recall
some basic notions of flow event structures. This model allows us to give
a unified characterization of the density, reducedness, coherence properties
which are presented in Section 3. We give sufficient and necessary condi-
tions for these properties to hold. The final section contains our concluding
remarks and directions to future work.

2. Preliminaries

Our framework is flow event structures (here, event structures for the sake
of brevity) introduced by Boudol and Castellani in [5] as a fundamental
model for nondeterministic processes.

Definition 1. An event structure is a triple § = (E,<,#), where

e F is a set of events,
¢ < C EX Eis a partial order (the causality relation),

o # C E x F is a symmetrical and irreflexive relation (the conflict
relation).

In graphic representations the <-relation is drawn by arcs (omitting
those derivable by transitivity), and conflicts are also pictured. Following
these conventions, a trivial example of the event structure is shown in
Figure 1.

* From now on for an event structure § = (E,<,#), let — = (E x E)\
(€U 2> U #) (the concurrency relation). In order to avoid many useless
repetitions we shall name each of the relations <, #, — a connective of a
given structure §.
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€1 — €3
#

€2 — €4

Figure 1

Let us introduce some notions and notations which will be useful
throughout the paper. Let R C E x E be a relation on a set E. Then
* R = RUR™! is the symmetrical closure of R,

o R* = R°U RO is the reflexive and symmetrical closure of R, which
we shall call the R-comparability relation,

e {R = (E x E)\ R® is the symmetric, irreflexive R-incomparability
relation,

o R°= R\ R?is the irreflexive, intransitive relation.
For instance, the comparability relation determined by — is simply its

reflexive closure, } < = # U -, and #® = #. For the event structure
shown in Figure 1:

< = {(e1re3), (€3, e1), (€1, €1), ..., (eq, e4)},
= {(ela62),(82,61),(62,83),(63,-‘32),(63,64),(64,63)},

= {(61, 83), (61, 64), (325 34)}-

}

I\ IA
I

Let § = (E, <, #) be an event structure, let V be a connective of §. Then
ACFEisa Vesetiff Vej,eg € A :e; V© ez, A is a V-section iff A is a
maximal V-set. The set of V-sections in § is denoted by V(S). An event
structure § = (E, <, #) is V-finite iff any V-section in § is finite.

We shall call § = (E,<,#) discrete iff Vey,e; € E, VA € <(5) :
| [e1,€2]N A | < 00, where [en,e2] ={e€ E|e; <e< e2}. This means that
in a discrete event structure there is no infinite <-set:between any pair of
events. In the following we will consider only discrete event structures and
will call them simply event structures.

Lemma 1. Let § = (E, <, #) be an event structure, let V, V' be connectives
of S (V#V'). Then VA€ V(S), VB ¢ VI(S):|AnB| <1.

Proof. This follows from the definitions of the connectives of §. ]

Definition 2. Let § = (E, <, #), §' = (E',<',#') be event structures, let
V be a connective of S and S’. Then
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e 5’ is a substructure of § (S’ C §)iff E'! C E, <'C (< NE?), #' C
(#0n E?),

e S’ is a mazimal substructure of § iff for any substructure §” of §
such that §' C §” is valid that §' = §”,

o 5 is a mazimal VF-substructure of § iff §' is a maximal substructure
of Sand Vi =0 in 9.

For the event structure shown in Figure 1 we draw its maximal VF-
substructures in Figures 2(a), 2(b) and 2(c) for V among #, — and <,
respectively.

() (b) (<)
€3 €1 ——€3 €1 €] —€3 €1 €3 €3
#\_ #
€2 — » €4 €4 €2 —» €4 €2 €2 €4
Figure 2

Lemma 2. Let § = (E, <, #) be an event structure, let V,V' be connectives
of § (V #£ V'). Then for any V-section A in S there ezists a mazimal
V' F-substructure S’ of S such that A is the V-section in S’.

Proof. It immediately follows from the definitions of a V-section and a
maximal V/F-substructure of S. (m)

In such a way, we have recalled basic terminology of event structures
and defined some additional notions needed to introduce the density and
related concepts for event structures.

3. Some properties of event structures

3.1. Density and crossing

Our aim in this section is to introduce a hierarchy of density and cross-
ing properties which are motivated by the wish to exclude unreasonable
processes and to give a few key results pertaining to the properties. In so
doing it will be convenient to adopt the following notations.

Let § = (E,<,#) be an event structure and X C E. Then | X = {¢'|
feEE&3ecX:e<e}l,and [ X ={e'|e€E & Jec X :e<e}.

Definition 3. Let S = (E,<,#) be an event structure, let V be a con-
nective of S, let §' = (E', <', #') be a maximal VF-substructure of S , let
V', V" be connectives of § and S’ (V/, V" €1V, V' # V"). Then
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S§"is Kv-dense iff YA € V!(5'),YB € V"(§") : |ANB| =1,
o §'is V-crossingiff VA€ V'(5'), VB e V"(§"): ANTB£0& AN |
B #90,

S is Ky-dense (V-crossing) iff any maximal VF-substructure of S is
Ky-dense (V-crossing),

S is Ny-dense if it satisfies

for any eg,ey,e3,e3 € E
if eg V" €1 and e V" ¢,
if 2 V" e3 and e; V" e,

then eg V' e3 = ¢; V"e,.

According to the above definition, the event structure shown in Fig-
ure 3(a) is Ky-dense, Ny-dense and V-crossing for V =<, whereas the
event structure shown in Figure 3(b) is V-crossing, but neither Ky-dense
nor Ny-dense for V = #,

(a) (b)
€ €3 —p €y €] €x
:ﬁ \!ﬁ—-—bﬁs 6#2—--34

Figure 3

The following result states a connection between the properties defined
prior to that.

Proposition 1. Let § = (E,<,#) be an Ny-dense event structure, let V
be a connective of §. Then S is Ky -dense iff § is V-crossing.

Proof.

(=) : Trivial.

(<) : Let V', V" be connectives of S such that VI,V" €tV and V' # V*,
Suppose S is not Ky-dense. This means that there exists a maximal VF-
substructure §’ = (E’, <';#') of § in which there are a V'-section A and
a V"-section B such that [4 N B | = 0. Three cases are admissible.

o If V = <. Trivial.

e If V=, Wlog assume V/ =< and V" =, According to
V-crossing and discreteness of S, there exist a maximal element e €
A N | B and a minimal element ¢’ € A N T B. Then there are
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a,a’ € B such that e V' a and ¢ V'® a'. If € = ¢ then we get
the contradiction a,a’ ¢ B. Otherwise, the possible cases are the
following.

1. If (e V'8 €'). Then we consider two cases.
(a) If (a =da'). Then
— If (e = a or ¢ = a’). The result is proved.
— If -(e = a or ¢ = a’). We get the contradiction
-~(e V* ¢').
(b) If ~(a = a'). Then
~ If (e =a or ¢ = da'). We are done.
If -(e = a or ¢ = ). This contradicts Ny-density of
S.
2. If =(e V' ¢'). Then w.lo.g. assume e V'S e’ V" ¢'. The
possible cases are the following.
(a) If (@ = a’). Then
— If (¢” V'¢ a). This contradicts either the minimality of
¢’ or the maximality of e.
— If =(e” V'¢ a). If, moreover, there exists ¢” € B such
that ” V' ¢’ then we get a contradiction to Ny-density
of 5. Otherwise, B is not a V"-section of 5.
(b) If (ma = a’). The proof is similar to that of the previous
case.

e If V = #. This case is symmetric to the previous one. o

The next proposition establishes the relationship between some finite-

ness constraints and the properties above.

Proposition 2. Let S = (E,<,#) be an Ny-dense event structure, let V,
V', V" be connectives of S (V', V" € iV, V' # V"). Then S is Ky-dense
if either condition holds:

(i) S is V'-finite,
(ii) S is V"-finite.

Proof. (i) Suppose S is not Ky-dense. Then there exists a maximal non-
Kvy-dense VF-substructure S’ = (E/,<',#') of S in which there are a
V'-section A and a V"-section B such that | AN B | = 0. Let A =
{eo,€1,...,€e,} and B = {ep, €},...}.
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e If V= <. Then we have Jej,e; € A and dei,e; € B such that
e; V" ¢, and e V" ¢}, €] V" ¢; and ¢; V' ¢, ¢; V' e; and
e}, V" ¢|. This contradicts Ny-density of S.

e If V.= —. By Proposition 1, we have ANTB=0or AN |B =0.
Since [BU|B=E,AC (|B\B)or AC (1B\ B), respectively.
Then there exists e:,- € B such that e;- V'? e; for all e; € A. This
means that A is not a V'-section of S.

e If V = 4. This case is symmetric to the previous one.

The remaining part (ii) can be proved in the same way. a

We now aim at defining some modifications of the M-density concept
[6], [8] for event structures as follows.

Definition 4. Let § = (E,<,#) be an event structure, let v, v:,v"
be connectives of § (V',V” € {V, V' # V). Then S is My -dense iff
the intersection of any maximal V'F-substructure with any maximal V"F-
substructure of § results in some (unique) V-section of .

As an illustration, the event structure shown in Figure 4(a) is My-dense
for V =<, when the event structure shown in Figure 4(b) is not for all the
connectives of §.

(a) €3 —— - - - / (b) /82——--65
elgﬁ——*--- el\f’s—beﬁ
# #
ez\cs_’ L eq

Figure 4

In order to establish the close relationship between different density
concepts it is necessary to define another requirement which we may call
the triangle-feeness property: an event structure § with connectives V, V/,
V" satisfies this property (referred to as the V-freeness property) if there
do not exist ey, ez, e3 € E such that e; V ey, e; V" e3, and e; V" es.

Lemma 3. Let § = (E,<,#) be a U-free event structure, let V, V!, V"
be connectives of S (V/,V" € 1V, V' # V"). Then any V -section in a
mazimal V' F-substructure (mazimal V' F-sut.tructure) of S is a V-section
in S. ‘
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Proof. We only sketch the proof of the case with a maximal V/F-substruct-
ure 8 = (E',<',#') of 5. Assume a contrary, i.e., there exists a V-section
Ain §' such that A is not a V-section in S. So, there exists e € E such that
e Ve forall e; € A and e € E’. Then we have 3¢” € (E'\ A) : e V' €.
Hence there is e; € A such that €” V" ¢;, contradicting v7-freeness of S.

a

Proposition 3. Let § = (E, <, #) be a \7-free event structure, let V,V'!, V"
be connectives of § (V', V" € tV, V' # V"), let S be V'-finite or V" -finite.
Then S is Kv-dense iff S is My -dense.

Proof. Assume § is V'-finite. The case that § is V”-finite is symmetric.
(=>) : Suppose § is not My-dense, i.e., there exist its maximal V'F-
substructure §' = (E',<';#') and a maximal V”F-substructure S” =
(E",<",#") such that E/ NE"” = A is not a V-section in S. We dis-
tiguish between two cases.

o If A=0. Let B be a V'-section in 5" and C be a V"-section in S,
By Lemma 3, B (C) is also a V’-section (V"-section) in 5. Let us
remark that the events in E’ and E” are V-incomparable, since $ is
V-free and A = (). Then by Lemma 2, there exists a maximal VF-
substructure S of § such that B (C) is a V'-section (V"-section)
in §”. Since | E' N E"| =0, we get a contradiction to Ky-density
of §.

e If A#0. This contradicts Lemma 3.

(<) : Suppose S is not Ky-dense. This means that there exists a maximal
VF-substructure §" = (E", <" #") of § with a V'-section B and a V"-
section C' such that | B N C | = 0. According to Lemma 3, B (C) is
also a V’-section (V"-section) in S. By Lemma 2, there exist a maximal
V'F-substructure S" = (E', <, #') and a maximal V”F-substructure S” =
(E”, <", #") of § such that B is a V'-section in S” and C is a V"-section
in 5.

Since § is My-dense, we have | ' NE” | = A is a V-section in §. Hence
|A NB|=0and | A NC | =0. This means that S is neither Ky -dense
nor Kyn-dense. According to V'-finiteness of S, § is neither Ny-dense nor
Nyu-dense, by Proposition 2. We only sketch the proof of the case that §
is not Nyu-dense because the remaining one is similar. Then there exist
e1,e2 € A and ef,€;, € B such that e; V¢ €1 and e V" ¢, ey V% ey and
el V" ey, € V9 ey and ep V% el
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o If V = <. Let us first remark that if Je; € A, def € C:e V7 €", then
we have e V e;, since Ve}, € B : ef1Ve,. Wlo.g. assume V' =—
and V" = #. Since $' is not Ky-dense, two cases are admissible.

L If (Ve! € C : e; V €!). If, moreover, Jef€C:e V e/, then
we get the contradiction —(e; V¥ ;). Otherwise, C is not a
V"-section of §’.

2. If ~(Vef € C : e; V €'). If, moreover, Ve! € C : el V e,
then C is not a V"-section of §’. Otherwise w.l.o.g. assume
def,ef€C:ey Vel and e V" ef. If e V ey, then we get the
contradiction —(e; V4 e;). Otherwise, S is not -free.

¢ The remaining cases that V= < and V = # are symmetric. a

3.2. Reducedness and coherence

Now we would like to characterize the reducedness concept for event struc-
tures. First, however, we need the following. Let e € E, then Vie)={e' €
E|e Ve e}

Definition 5. Let § = (E, <, #) be an event structure, let V be a connec-
tive of §. Then S is V-reduced iff Ve,e' € E : Vie)=V(e)=e=c¢.

For example, the event structure shown in Figure 5(a) is V-reduced
for V among # and -, whereas the event structure shown in Figure 5(b)
is V-reduced for V = <,

(a) (b)

€3

€l ——>€C2—»€3—» €4 €1 #
[4
es

€2 <
€s
Figure 5

Proposition 4. Let § = (E,<,#) be an event structure, let V be a con-—
nective of S, let S be V -reduced. Then Ve,e' € F:
eVie =3V ¢ 1V, 3e" € E (e # "Ee):eVeVieoreV eV e,

Proof. We shall prove by contradiction. Then there exist e,e’ € E such
that € V¢ ¢ and
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VW etV Ve € (E\{e,e'}):~((e V " V' €) & (e V' " V ¢)).

Hence we have Ve € E:e V e = ¢€”" Ve e' and ¢’ V e = ¢" VE e. Thus
V(e) = V(e'), contradicting V-reducedness of S. . O

Proposition 5. Let § = (E, <, #) be a \7-free event structure and V be a
connective of S. Then S is V-reduced iff

Ve,e' € E:e#e =3V etV :V'(e)\ {e} # V'(e)\ {¢'}.

Proof.

(=) : We suppose a contrary. This means that there exist e,e’ € E (e # €')
such that for all V' € {V we have V'(e) \ {e} = V'(¢’) \ {¢'}. Hence
Vie)=V(e

(<) : Suppose that S is not V-reduced. Then there exist e, e’ € E (e # ¢)
such that V(e) = V(e’). This means that e V €’ and there is e’ € E such
that e/ V' €’ and e V" €”, contradicting 57-freeness of §. O

We now come to our definition of the coherence property of event struc-
tures.

Definition 8. Let S = (E, <,#) be an event structure, let V be a connec-
tive of S. Then S is V-coherent iff (V)* = E x E.

Dlustrating the concept, the event structure shown in Figure 6(a) is
V-coherent for V =<, when the event structure shown in Flgure 6(b) is
V-coherent for V among # and —.

(a) (b)

€2 ——+ €4 ———Cg /# e
# #
63—08‘!,?87 el\{e@eﬁ R
#H H#H#
€g €p \82 \64 e
Figure 6

Proposition 6. Let § = (E,<,#) be an event structure and V be a con-
nective of S. Then
(i) S is V-coherent and | E| >1=>Ve € E:V"(e)UV"(e) # E
(i) S is V-coherent <= Je,e’ € E:V(e) NV(e') =0 =
Je" € E:((V(e") nV(e)#0) & (V(e") NV(e) #0)).
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Proof. (i) Clearly, for e € E there exists e’ € E such that e # ¢'. By
V-coherence, we have e V= ... V¢ ¢/, There is ¢” € E such that e” £ e
and €” V¢ e. The case (ii) is trivial. @]

4. Concluding remarks

In this paper, we have glanced at a variety of density and related prop-
erties of flow event structures. The choice of this model was guided by
the wish for a unified characterization of the above properties for event
structures. Perhaps the most interesting outcome of our work has been
the close relationship between different density concepts. We have done so
both by proving some new results and by generalizing old ones. An inter-
esting topic for future work would be to investigate the relative strength
of the remaining axioms of concurrency (in particular, D-continuity) for
the chosen model and to generalize the results to more extended classes of
event structures.
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