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Optimizat'io_n of energy functional
for variational splines*

V.A. Vasilenko

The aim of this paper is to suggest optimization procedure for the refinement
of energy functional in variational spline approximation problem. Our approach is
based on a separation of measurement data between two sets. First is the set of
basic measurements (nodes of spline), second is the set of control measurements
(additional points). Additional data provides the reasonable choice of parameters
in energy functional and may be the refinement of coefficients in mathematical
model of the process we need to study. _

The formulation of optimization problem in general form and example for D™-
splines with a tension are presented. Also the numerical algorithm of Newton’s
type is described.

1. General formulation

Let X,Y, Z;, Z, be the Hilbert spaces with the corresponding scalar prod-
ucts (, )x, (1 )vs (3)z1s (4) 220 A1 : X = 21, Az 1 X — Z3 be two linear
bounded operators, 21 € Z;, 22 € Z; be two fixed elements.

Let us consider some open set M C R™ and mapping a = T, from M
to the space L(X,Y) of linear bounded operators acting from X to Y, i.e.,
every point & € M corresponds to the operator T, : X — Y. We formulate
‘now the family of spline interpolation problems: for every fixed a € M find
04 € X-as a solution of variational problem

go=arg min |[Tozy,. (1)
z€A] (1) )

where A;l(zl) = {z € X : Ajz = z,}. We suppose problem (1) be uniquely -
solvable for every a € M. This property is garanteed if [1]:
1. A7 (1) # 0,
2. N(A;) + N(T,) is closed in X-norm, (2)
3. N(A1) N N(T.) = {6x). |

Here N(B) means null-space of operator B, 0y is zero vector in the space
X. In standard spline terminology Z, is the basic measurement operator,
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T, is energy operator which generates energy functional on (1) we need to
minimize. In addition we introduce “control” operator A; : X — Z; and
define real valued aim function ¢(a), & € M by the formula

p(a) = IlAan, -2 ;. (3)

We call a, € M optimal if

@, = arg min (a). (4)

Let us suggest the mapping o — T,, be sufficiently smooth. Because M is
an open set, then an optimal point a, lies in interior of M and the equation

(Vo)a) =0 (3)

takes place. It means

fila) = filan,...,an) = (Az%,Aza'a - zz) =0, i=12,...,n (6)
BC!.‘ Zy .

We obtain n nonlinear equations with respect to n variables a;, ay,..., ap.
We try to solve this system be Newton’s method. Newton’s iterations start-
ing from the vector a(®) have to be realized with the formula

alFt1) = o(®) _ J=1(aR)y . F(a®), (7)

T
where F(a®)) = (fl (a(")),fg(a(k)),...,fﬂ(a(k))) is a column vector of
residuals and J(a) is n X n-Jacobi matrix of the elements :

af; —
gij(a) = b%(al’az’“ .,a,,), t,7=1n. (8)
J

Using the representation (6) we obtain

do, i} do,
0u(0) = (Mg Aaoe =)+ (Mg degiz) @)
1 2 i 2

and the Jacobi matrix evidently is always symmetric.
It is well-known [1], the interpolating spline o, satisfies the system of
operator equations

T Tt + AN = 0,
(10)
Ala'a =21

where A, € Z; is an auxiliary vector of Lagrange’s parameters. After the
differentiation of (10) with respect to variable o; we obtain
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11, 2% 4 A [ (1T, )]aa,
Fa da;
o (11)
Al Ba,- - 0’

i.e., to find 8o, /da; we need to solve the system of the same type as (10) but
with the other right-hand part. Similarly, after the second differentiation of
(11) with respect to a; we have

doy o
T.T, A3 T -
“Boide; T Parda; [aa,aaj( GT“)] %a
80'0- * 50&
[ ( a Ct)] _[ (T a)] Q" (12)
dog,
A = 0.
13&,-8&3‘ 0
Finally, after the successive solving of systems (10), (11), (12) for i,j =
1,2,...,n we obtain everything we need to realize one step of Newton’s

method.

It is useful to rewrite systems (10)-(12) in the weak form by the scalar
multiplication of the first equations to the arbitrary element v € X. In this
case we obtain the following systems instead of the original ones:

{(TaaaaTav)Y + (/\d: AIU)Z1 =0 VvelX,

10/
Ay0q = 215 1
( o, (&X )

(Taf a.:M‘_,T.:,,‘i.l')y + a3 VA 2

Ta a !
{ = —(Q—-UQ,TO,U) - (Taca, -Q-i-:-v) Vv e X, (11)
aa,' Y 30!:‘ Y .
do,
A1 dax; = 0;

( 8o Mg
(Ta da;da;’ Tav)y + (aaiaa«j ' Alv) Z
T, Jo, do, 0T, oT, 0o, _
= —(30;; E,Taﬂ)y— (Ta'ath, %TU)Y-— (an . -E;:,TLV'U)Y_
do, 0T, oT,,
{ (TGBTQ;, EU)Y_ (aﬂtiaﬂfjda,Tav)

(g, 7o) _ (e 9
Oa; ' 8a; )y daj Ba,‘v v v k

8o,
! aa,-aaj

=0.
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2. Optimization of parameter for D™-spline with
tension

Let © be bounded domain in R", and W*(Q) be Sobolev space, m > n/2.
Denote by H(2) some finite elément subspace of Wj*(£2), and

H () = span (¢1,¥2, .., ¥N) (13)

of the basic linear independent functions ¢y, @2, ..., ¢N. Let wy be the set of
scattered points in 2; and wy, = wgl)Uw,(f), w}ll) £ 0, w,(lz) #0, wl(‘l)nw,(&z) =0.
We denote

A=l o, An=ul o (14)

the trace operators from H () to the sets w,(,l) and w},z) correspondingly,
which act to Euclidian spaces of vectors of suitable dimensions. Let a € R!.
We formulate the problem for D™-spline with tension by the following way:

0, =arg min D™ul2 + o®||u||%. ), (15
a=arg mip (07w, +o’llul,) (15)

where Al'l(zl) ={u € H) : “fw(l) = 21}, and D™u is the operator of
h

generalized gradients of the order m, i.e., D™u is the vector function of

components of the form [m!/3!'/2DPu under the condition for multi-index

n
|B] = 3. Br = m. In the other words, we have one-parametric family

k= ,
T, : H(Q) — Y(Q) of the energy composite operators which act to the
Hilbert space Y (§2) = L2(2) x ] L2(f2) by the formula
|Bl=m

Tou = [au, D™u). (16)
It is clear, the 1-st and 2-nd derivatives of T, with respect to scalar « are:
T, =[E,6), Ta=][b1,6], (17)

where E is the embedding operator from WJ*(§2) to L2(R2) and 6, , are zero
operators. We suppose the problem (15) be uniqualy solvable. Because of

N
Oa = Eck(a)‘;’k» (18)
k=1

equations (10’), (11'), (12') are equivalent to the following linear algebraic
systems:
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N | -
3 (aaki + bi)Ci(@) + D wi(P)Ap(a) =0, i=1LN,
- Peas’ (10)

N
3" @e(P)Cr(@) = 21(P), P €wi;
k=1

N N
3 (@aki +b)Cr(@) + 3 i P)Ap(e) = = Y akiCile), i=1LN,
k=1

- Pl | (11)

N
3 ox(P)Ci(a) =0, Pew;
k=1

N N
Y (aawi +bii)Cr(a) + Y @i P)Ap(e) = =2 ) akiCi(a), i=1N,
h (127)

N

3 @k(P)Cl(@) =0, Pew.

k=1

Here z;(P) are given values at mesh w,(il), and

m!
ﬂk£=f Prpi d2, bri = Z —-—,-/ DP . DPp; d9Q.
Q Plem @ /0

Finally, after the solving of this system we can find 04, 0, oi. For the
optimization problem

ca=argmin Y _ [0.(P) - z(P)]? (19)
Pewg”

we have Newton’s iterative formula to improve the initial value a!©):

Z(z) ol w(P): [0q (P) = 22(P))]
QB+ — oR) Pewn (20)

T ot (P)- [0an (P) — 22(P)] + [0t (P)]
Pwa)
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