Bull. Nov. Comp. Center, Num. Anal., 2(1993), 91-106
© 1993 NCC Publisher

Short review
on variational approach
in abstract splines

V.A. Vasilenko

The abstract variational theory of splines in the Hilbert space originated from the well-
known paper by M. Atteia (1965) and supported by P.-J. Laurent’s researches (1968,
1973) is today a well-developed field in the approximation theory. We mean that the
forthcoming researches in abstract theory were initiated by the problem of high-quality
approximation of the functions at the multi-dimensional scattered meshes. But the efforts
in this particular problem have already led to more powerful results both in abstract
theory and in practice: new kinds of characterization theorems, convergence and general
estimation techniques, finite element approach in the construction of complicated non-
polynomial splines, theory of traces of splines onto smooth manifolds (new algorithms
for the approximation of complicated surfaces in engineering), general theory of tensor
splines, including the famous blending splines, variational theory of the vector and rational
splines and so on. We think that the investigations of the Russian mathematicians from
the Computing Center of USSR Academy of Sciences in Novosibirsk during recent years
and after first fundamental successes of our French collegues, were quite significant in
each of these fields. And the last but not least: the powerful software library based on
these theoretical grounds was also created in Novosibirsk.

Indeed, this paper is only a short review and is not complete. We inform the reader
who has interest in theory of splines and its various applications that the book Bezhaev
A.Yu., Vasilenko V.A. Variational Spline Theory (255p.) will be published in special issue
3 (1993) of the Bulletin of Novosibirsk Computing Center, series Numerical Analysis, till
summer 1993, see also [5].

1. Main definitions and properties [1, 3, 5]

Let X, Y, Z be the Hilbert spaces with the scalar products (, )x, (, )y,
(,)z, T:X =Y, A:X — Z be two linear bounded operators, and 2 € Z
be fixed element.

Definition 1.1. We call ¢ € X an interpolating spline if

¢=arg mip IT=1%,

AN 2)={ze X: Az =2} #0.

(1.2)
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Definition 1.2. We call ¢, € X a smoothing spline if
Oy = afglléi)l} (a||Tz||} + ||Az - z||%), a>O. (1.2)

We denote by N(T) and N(A) the null spaces of the operators T and
A, and by R(T) and R(A) their images. We suppose that R(T) =Y,
R(A) = Z.

Theorem 1.1. The' interpolating and smoothing splines o and o, ezist and
are unique for every z € Z if and only if N(A)+ N(T') is closed in the space
X and N(A)N N(T) = {0x}, 0x is null vector of X.

Remark. If N(T') has the finite dimension (or codimension) or if N(A) has
the finite dimension (or codimension), then N(A) + N(T) is always closed
in X.

-‘ Theorem 1.2. Following properties of orthogonaly for the interpolating and
- smoothing splines o and o, take place

Vo € A7Y(z) |IT(0 - o)} = ITali% - Tl (1.3)
Ve e X a(Tz,To)y + (Az — z,A0 — 2)z = —(z,Ac — z)z. (1.4)

Theorem 1.3. The interpolating and smoothing splines o and o, satisfy
the following operator equations

(" %) ()= (%) =
(aT*T + A*A)o, = A*z, (1.6)

here T*,A* are adjoint operator with respect to T, A, and A € Z is the
Lagrangian parameter.

Definition 1.3. If N(A)+ N(T) is closed in X and N(A)NN(T) = {6x},
then we say that (7', A) form a spline-pair.

Theorem 1.4. If (T, A) is a spline-pair, then

1/2
lzlliz.ay = [IT2)} + Az(13])"

is the norm which is equivalent to the norm ||z||x.

(1.7)

Definition 1.4. Spline pair (T, A) is submitted by the other spline-pair
(T,A) if N(A) D N(A), but N(A) # N(A).
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Definition 1.5. We say that spline—pa.ir-(T,)i) is maximal with respect to
spline-pair (7', A) if there is no other spline pair which submits it.

Maximal spline-pair does always exist, but is not unique.
Theorem 1.5. If (T, A) is the mazimal spline-pair then

X = N(A)+ N(D). -~ ay

2. Characterization of abstract splines [19, 21, 5]

Let Q@ C R™ be some domain and X(Q2) be the Hilbert space which is
continuously embedded to the space C(f2) of the continuous functions, i.e.,

Vue X(2) lulle@) < C-llullx@)- (2.1)

It means that the point functional k;(u) = u(t) is continuous for dny ‘point
te Q.

Definition 2.1. The function G(s,¢) : @ x @ — R! is said to be the’
reproducing kernel of X () if for any point t € Q the function g;(s) =
G(s,t) belongs to X (€2) as a function of the variable s and h

ViEQVue X(Q) u(t) = (Gls,),u(s)x): (22)

The reproducing kernel of the Hilbert space X () a.lwa.ys exists a,nd is’
unique, and G(s,t) = G(t, s).

Let us consider in the Hilbert space X(f2) the closed subspace P a;nd:
connect with it the seminorm |u|p with the properties

lulp=0 if ueP,
(2.3)

lulp < Cllullx (@),

and with other usual propertles of semiscalar product ThlS structure we
denote by (X(Q),]:|p).

Definition 2.2. The function Gp(s,t) is said to be the reproducing kernel
of the semi-Hilbert space (X({),|-|p) if for any functional L € X* the
function f(s) = LG(s,-) lies in X () and any functional L € X* va.nlshmg
on P can be represented by formula

L(u) = (LGp(s, ), u(s))p Vu € X(R). (2.4)
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The reproducing kernel Gp(s,t) also exists, symmetric, and may be is
not unique. :

Let Y, Z be two Hilbert spaces and T: X(R) =Y, A: X() — Z be
linear bounded operators, z € Z be fixed element. We suppose that (T, A)
form the spline-pair, and A~(2) # 0.

Theorem 2.1. The interpolating spline o as a solution of the variational
problem
o=arg min |Tz|}
g, min  IT=ll}

can be always represented in the form
o(t) = (A, AGp(:,1))z + n(t), (2.3)
wheret €, A€ Z, P= N(T), n(t) € P.

If the reproducing kernel is known in the explicit form, then the inter-
polating spline ¢ can be found from the interpolation condition Ao = z.

3. General convergence theorems
and error estimation techniques [3, 4, 5]

Let T : X — Y be the linear bounded operator with the closed image
and finite dimensional null-space, 4; : X — Z;, i = 1,2,... be also linear
bounded operators to the Hilbert spaces Z;, ¢ = 1,2,..., and ¢, be the
fixed element in X. We approximate ¢, € X by the interpolating splines
on, N > Ny. Each of oy is the solution of the problem

oN = arg min ”Tx”%’a
=eMy (3.1)
My={zeX: Az = Aip., i=1,2,...,N}.

We suppose that the existence and uniqueness of on take place when N >
Ng. We denote by

A={Ai: X - Z;}2, (3.2)

the infinite system of operators.

Definition 3.1. We say the sequence z, € X tends to z € X by the system
of operators A (symbolically xnfm) if for every operator A; € A we have

lim ||Aizs — Aiz||z; = 0.



Review on variational splines 95

Definition 3.2. We call A the correct system of operators if the conver-

A . .
gence r,—z implies the weak convergence of the sequence z, to  on the
set K which is dense in the space X,

[enB2] = [3K C X,K = X,: Vk€ K (k,za)x — (k,2)x].  (3.3)

Theorem 3.1. The interpolating splines o strongly converge to ¢, if and
only if the system A is correct.

If we can show the existence of the dense set K where the interpolating
splines weakly converge to ¢., then the strong convergence of on to ¢.
takes place.

Let B be any compact in R® and the mapping k : B — X' be given,
i.e., for every point p € B the linear bounded functional k,, is determined.
Let us consider the interpolating problem

o = arg min ||Tz|%,
g min |7} o
Mp = {z € X : kp(z) = kp(ps), p € B}.

We denote by B, some e-net in the compact B and consider the interpo-
lating problem

e = argrmin Tz||3,
Be

(3.5)

Mp, = {z € X: ky(z) = ky(ps), p € B}

Theorem 3.2. If the mapping p — k, is continuous, then
]jn% llee — ellx = 0. (3.6)

One of the most interesting applications of this theorem is the conver-
gence of D™-splines at the scattered ¢-nets. Let 2 C R" be some bounded
domain, and B C Q be its closed subdomain. The ¢-nets B, are conden-
sated in B. If we consider the D™-prolongation ¢ € WJ}*({2) of the function
v« € WI*(B), m > n/2, which is founded from the problem

lal=m " g (3.7)
Mp = {ue W' () : u|lp = ¢u},
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then the D™-splines o. at the scattered e-meshes B. founded from the
problem \
_ . m. o, \2
0. = arg min Z o /(D u)“dQ,
Q

ueMp, jal=m

(3.8)
Mp, = {u € W) : ulp, = ¢.},

strongly converge to o in WJ*(Q)-norm for the finite or infinite e-nets B,
for ¢ — 0. The situation B = § is only particular case of this theorem.
Thus, it is possible in practice to solve the interpolation spline-problem in
the domain Q with the simple geometry (for example, in parallelepiped)
instead of the domain B with the complicated geometry.

The following aim is the demonstration of the error estimation tech-
niques for the T-splines at the scattered meshes. Let (! be some bounded
domain in R™ with the cone condition and X () be the Hilbert space which
is continuously embedded into the space C(2) of the continuous functions
with the uniform norm. Suppose that T : X(2) — Y (£2) be linear bounded
operator to the other Hilbert space Y (Q) with the closed image and finite
dimensional null-space. Denote by ni(P), na(P), ..., ng(P) the basis of
this null space.

Definition 3.3. We say that the totality of points P = {P;, P,,..., P,}
from @ forms L-solvable set (L-set) if the interpolating problem

n(P)e N(T), n(P)=ri, 1=14,

is the uniquelly solvable for any r;, ¢ = 1, q.

For any L-solvable set P the generalized Lagrangian interpolation op-
erator p : X(Q2) — N(T) is determined by the problem

mpu € N(T), (tpu)(P:)=u(P), i=1,q

It is easy to see that every L-set P has some non-trivial closed neighbour-
hood B, which also consists of L-sets.

Let the initial space X(£!) be continuously embedded to the semi-
Hilbert space V(2). Then the following inequality takes place

lu = mpullvq) < ClITully@q) (3.9)

with the constant C' > 0 independent of u € X(€) and P € B.
Let the function u(z) be defined in the ball S, of the small radius h
and Py be its center. Then the function #(t) = u(Fp + ht) is defined in the
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unit ball §; with the center at zero point. We suppose now the seminorm .

|| - |lv and the norm || - ||y have the following homogenious properties
(o + th)llv(s,) = fi(R)-llullv(sy), - (3.10)
ITu(Po + th)lly(s,) = f2(h) - [[Tully(s,), (3.11)

where f1(h), fa(h) are positive functions of h > 0. Using (3.10), (3.11) we
obtain the following error estimate for the generalized Lagrangian interpo-
lation in the small ball 5}:

lw = mpullv(s,) < CLa(h)/ i(R) - [ Tully(s,y —  (3-12)
and it is impossible to improve this estimate in the whole class X ().

Definition 3.4. We call the family of finite covers {B™},<4, of Q con::
sisting of small balls with the radius A special if the inequalities take place

llullv(a) < Klz |fUHV(B|(h)), 7 (3.13)

Z ITully gy < Kol Tully(a) N
with the constants Kj, K7 > 0 independent of  and h < h_(;‘_.

Theorem 3.3. If it is possible to construct the special cover of the domain-
Q and the function u € X(Q) vanishes at the h-net wy, h < hq, then

lulviy < CLRA AR ITulv@ - (3.15)

with C7 = const.

In application of T-splines o), which interpolate the function ¢, € X(Q)
at the scattered mesh wy, it leads us to the estimate

llon — esllviny < Cifa(R)/ (RT(or = e )lly(@)- (3.16)

The last term in (3.16) also tends to zero in accordance to Theorem 3.2.

It is always possible to construct the special covers for the domain
with the cone condition which provides the prolongation for the typical
functional space. Really, let V(2) = W}X(£2) and X(Q) = WJ*(Q), m > n/2,
be embedded to it under inequalities 2 < ¢ < 00, k—n/qg < m—n/2, except
the case k = m — n/2 & p = co. For the seminorm

1/q |
”Dku”Lq(n) = ( /(D"’u)qdﬂ) i (317)
|o|=k
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we have fi(h) = hk-nlq fa(h) = hm=7/2_and error estimate for D™-splines
is

ID¥(on = @u)llLy(@) S C2h™ 27549 D™ (01 — @ )llLyi).  (318)

The same techniques can be applied to the error estimation of the D™-
splines by local integrals (weighted or not) because these interpolation con-
ditions provide the existence of h-net, where the difference o, — . vanishes.

4. Variational principle for tensor splines
[22, 23, 5]

Let X and Y be two Banach functional spaces. Then the tensor product
of X and Y is the closure of the linear space X @ Y of the finite sums of
the form

n
2z,y)= Y filx)(y), fi€X, gi€Y, neN,

i=1
by some cross-norm [27]. Let a,, 1 < p < oo, be the family of uni-
form p-nuclear cross-norms [27], and X ®, Y be the closure of X ® Y by
ap-cross-norm. It is possible to define the tensor product of two linear
bounded operators AR B, A: X - U, B:Y — V, and A®, B is the
natural expansion of A® B to X ®,Y by continuation. It is principal fact
that for the Hilbert spaces X and Y the cross-norm ¢y is the standard
Hilbert norm produced by the scalar product in X @ Y.

Let X;, Yi, Z;, i = 1,2, be Hilbert spaces, and T; : X; — Y;, 4;: X; —

Y;, ¢ = 1,2, be linear bounded operators, and (T;, A;) be spline-pairs. It
means that the interpolation and smoothing problems

oi=arg min [Tz}, =12,
€A (2)

of = arg mip ol Tz}, + 1| iz -z, i=1,2,

have the unique solutions when z; = A;f;, fi € X;, ¢ = 1,2. We denote the

corresponding spline-interpolation operator and spline-smoothing operator
by Sa, : Xi = X;, Sﬁ.‘ 1 X; — X,

Theorem 4.1. Let the spline-pair (Tl,All be submitted by the spline-pair
(T, A1) and (T2, Az) be submitted by (Ts, A2). Then

S4, ®2 S = ar min Ty @ Tozl|? + ||IT) ®; Az
L ®2 54, f gme(m@m)_,(z)ﬂ 1 ®2 Toz||” + |11 ®2 Azz||

+ || A1 ®; Toz|?
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where z = A; ®3 Axf, symbol @, is connected with az-cross-norm.

As example, for the interpolating bicubic spline on the rectangle 2 with
the boundary I' and rectangular grid, the simplest variational principle is
the following

2 62?1. 2
= i d —_— .
ag arg we(Ar é[:]Anz)-l ) ‘[ Urryy Q + ,1_‘/ [ar.z] dr

Here 7 is the tangent vector of I'.

Theorem 4.2. For the spline-smoothing tensor process the following varia-
tional principle takes place

o . 2 2
Sh®Suf= arg uin a102||Th ®2 Taz||* + on|| Ty ®2 Azl

+ o3| A1 ®2 T2$||2 + ||A; ®2 A2z — Z“z,
where z = Al ®2 Azf.

The following theorem is the universal tool for the error estimation of
the interpolating tensor splines.

Theorem 4.3. Let B; be the Banach space, D; : X; — B; be linear bounded
operator, and i = 1,2. Then for every f € X, ®2 X2 the estimate takes place
| D1 ®2 D2(f — Sa, ®2 Sa |l < 9192l|Ta(fy — S4,) @2 To(I2 — 34, ) f||
+ q1||T1(1y — Sa,) ®2 D2 f]|
+ 92||D1 ®2 Ta(I2 — Sa,)fll

where

9i= sup ||Diz|lg,/||Tizlly; < 00, i=1,2.
2EN(A))

As example, for the interpolating D™ ™2-gplines at the Cartesian prod-
uct of two scattered meshes in ; C R™ and Q; C R™ the following error
estimate is valid

1D=25(f = )y, gy 1 x0) = 0 (91(h1)92(h2) + 91(h1) + ga(ha)).

where

gi(hi) = O (W loslmil2mile)
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and 2 < p; € 00, |a;| —ni/pi < m;—n;/2, except p; = 00 & |o;| = m; —n;/2,
i=1,2.

It is trivial fact that the tensor spline-approximation from the com-
putational point of view can be reduced to the “pseudo-one-dimensional”
approximations like in the well-known case of bicubic splines at the grid.

5. Traces of splines onto manifolds [18, 5]

The problem of interpolation of the function whose values are given at the
points situated on the manifold is quite practical and extremely interesting
from the following point of view. Suppose, for example, the manifold is the
usual 3D-sphere. By any way we are able to construct the parametrization
of the whole sphere or its parts (local maps). After that we have some 2D-
interpolation problem, and traditional methods of spline interpolation can
be used. But'in this case the spline depends on the parametrization way.
It is not natural from the geometric positions because the sphere is inde-
pendent of the parametrization as geometric object, and the corresponding
approximation of the function over the sphere seems natural both with this
property. The trace technology provides this property and let construct the
smooth interpolations over canonical (sphere, torus, cylinder and so on) and
complicated engineering surfaces.

Let 2 C R" be a simply connected bounded domain whose boundary
T is an infinite differentiable (n — 1)-dimensional manifold, and w, C T be
some set. Consider the interpolating D™-spline for ¢. € W*(Q), m > n/2,

op = arg min ||[D™ul o,
h g m ID™ ullz, ()

(5.1)
A7 (ps) = {u € W) vl = @ulun}-

Definition 5.1. The restriction o} of D™-spline o), onto the manifold T
is said to be the trace of D™-spline onto manifold.

If T is not algebraic surface (not zero level surface for some n-variable
polynomial of the degree m — 1) and w; forms L-solvable set, then D™-
spline o5, (and also its trace onto I') exists and is unique. If I' is algebraic,

then o, may be not unique. But in both cases the following theorem is
valid.

Theorem 5.1. Let wy be h-net in I'. Then for every function . €
W, -1/ 2(I‘) and for the sufficiently small h the trace of spline ol €

W;Pl/z(f') does ezist and is unique.



Review on variational splines 101

The error estimation technique for the traces looks like the case of the
usual D™-splines. The following asimptotic error estimate takes place

V. € W), Vs€[0,m—1) [lof - eullwgr = o(h™Y2). (5.2)

The finite element techniques, which we describe in the following point also
can be applied for the construction of the traces.

6. Splines in the finite dimensional subspaces
3, 4, 5] ¢

The characterization of theorems for the variational splines lead us to the
following conclusion: to construct the spline in the analytical form we need
to know exactly the reproducing mapping or kernel of the corresponding
Hilbert or semi-Hilbert space. In the particular case of D™-splines we need
to know the Green function of the polyharmonic operator A™ in the multi-
dimensional domain €; but this function is known in the analytical form
only for one-dimensional case. If the reproducing kernel is even known,
then the second difficulty is the numerical solution of the linear algebraic
system with the dense matrix. And the third difficulty is the complicated
representation formula for the spline. But the main preferences of the
splines in practical applications were good approximation properties and
simple piecewise polynomial representation!

All these reasons suggest us the following simple idea: instead of com-
plicated analytical solution of the variational spline-problem we find simple
approximation of the exact solution using the finite element method: In
this case we obtain sparse linear algebraic systems and simple piecewise
polynomial representation formulae. . .

Let X, Y, Z be the Hilbert spaces, T : X - Y, A: X — Z be
two linear bounded operators which form the spline-pair (T, A). Thus, the
interpolating spline

z€EA™1(z)

under the constraint A~1(z) # 0 exists and is unique. _
Consider now the family of the finite dimensional subspaces {E,},>0,
7 in the space X to be a real positive parameter, and

o =arg_min [Tz} | . (6.1)

E, = span {w],w},... ,w;(,r)}. (6.2)
Definition 6.1. We call 67 € E, the interpolating spline in the subspace
E, if

T= in || Tz]|1} 6.3
of =arg  min Tz, | (6.3)
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M. () = {z1 € B, : ||Aal - 2|y = mip ll4s" — 23}  (6.4)

Definition 8.2. We call 07, € E, the smoothing spline in the subspace E,
if
o} = arg_min alTo"lf} +I|4c" - 2}, o> 0. (65)
£Y r .

It is trivial fact that o™ and o, exist and are also unique. They can be
represented in the form ‘

n(r) n(7)
o’ = Z Mwp, 03 = E A;:’)w,:
k=1 k=1

and the coefficients Ag, A satisfy the following linear algebraic equations:
T A\ /(A 0
(% ) () - () @r+am.=s, (6.6)

A=(A17 Agy e ony ’\'n(‘r))T,
A=A, 00, 380,
F=((2,Aw])z, (2, Aw})z, .. ., (2, Aw] () 2),

where

q = (ql,qg,...,q,,(,))T is the vector of the Lagrangian coefficients, and
n(r) x n(r)-matrices T and A are composed of the elements (Tw;, Tw;)y
and (Aw;, Awj)z.

Definition 6.3. We say that E, converges to X (E, — X) if for every
z € X the sequence z,, € E,, does exist such that ||z — z,, || — 0 when
e — 0.

Definition 6.4. We say that E, weakly converges to X (E,—X) if for
every z € X the sequence z,, € E,, does exist such that z, Sz when
T, — 0.

Theorem 8.1. If E, — X, then
fle” —=ollx = 0, |log-o4llx =0, T—0.

Theorem 6.2. Let the operator A have the finite dimensional image and
E,5X. Then

[le” =ollx = 0, |loz —0oallx =0, 7—0.
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The following basic question is: how to preserve the finete error esti-
mates which we have already obtained for the analytical spline and also for
their finite dimensional analogs (for splines in the subspaces)?

We suppose now that the interpolating operator A : X — Z; depends
on real parameter h > 0 which tends to zero (for example, the parameter
of density for the scattered mesh), ¢, € X is fixed element and z; = App..
Let us consider the analytical interpolation spline problem of the form

op =arg  Min 1 Tz|)} (6.7)
IEA’: (Ahwt)

and denote by S, : X — X its resolvent operator. It is obvious that
Sh is the projector in X which maps the whole space X to the space of
interpolating splines Sp(h) = S, X. Let us have the seminorm ||z||v in X
under embedding condition

Vz e X |lz|lv < Clle]x.

We suppose that the error estimate takes place

Vo. € X lps — Shpullv < Crga(h) - || Tully (6.8)

with some function g1(h) — 0, h — 0. .
Furthermore let {E,},;~o be the family of the finite dimensional sub-

spaces in X and B; : X — E; be the projector onto E,. Suppose that the
error estimate also takes place

Vou € X lga = Brou|lv < Coga(7) - [ Teully (6.9)

with g2(7) — 0, 7 — 0.

Denote by B(;) the restriction of the operator B; to the space of in-
terpolating splines Sp(h), i.e., B.(n) : Sp(h) — E;. The following property
is fundamental to provide the “preservation” of the error estimate for the
splines in the subspaces E.:

4 (Sp(h), BT(h)Sp(h)) <6 <1, (610)
where 6( E!, E?) means the angle [26] between two subspaces El, EZ,
0(E', E?) = ||P, - Py,

Py, P, are the orthoprojectors on E; and E; correspondently, and the
constant fp is independent of A.
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Under the inequality (6.10) the following error estimates for the inter-
polating and smoothing splines in the subspaces E,(h) take place

low = i Pllv < [K1g1(h) + Kaga(r(R)] - [Tully,  (6.11)

<
10w — " Plly < Kaga(r(h)) - [Teully, (6.12)
low — ot My < Ksga(r(h)) - I Teully (6.13)

with the constants K, K;, K3 independent of h.

The abstract theory of splines in the finite dimensional subspaces re-
peats in the case of multidimensional D™-splines at the scattered meshes
the well-known finite element approach. Since the analytical D™-spline is
not polynomial and complicated in practical application, the simplest steps
of the numerical algorithm are the following: cover the interpolation point
by some simple domain £ (parallelepiped as example); construct the rect-
angular grid in this domain and connect with it the space of polynomial
finite elements with the suitable smoothness (multidimensional B-splines
as example); assemble the sparse matrices T and A by the formulae

m! o o
tij = Z E'_/(D w; - D uj)dﬂ,
Q

|lal=m

aj= Y W(P)-Q(P),
Pewy,

compute the right hand part f by formula

fi= Y @u(P)-wi(P)

Pewy,

and solve the system (6.6) by iterative or direct method.

This finite element technique permits us to construct the universal soft-
ware routines, which are suitable not only for the solution of the inter-
polation and smoothing spline problems at the multidimensional scattered
meshes but also for the approximation by spline traces onto manifolds, by
the tensor splines, rational splines [24], discontinuous splines [25], and for
many other practically useful constructions. This finite element techniques
is basic, especially for the various approximations at the multi-dimensional
scattered meshes, in the software library LIDA-3 on data approximation
(for example, see Appendix 2 in [5]). '
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