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Implementation of high-accuracy
computations in vertical processing
| systems

A.P. Vazhenin

An efficient way to achieve the high accuracy of the results of computations is to in-
crease the operands capacity. The best results in terms of the problem solution rate
and effectiveness of memory using can be reached in the case when a computer system
.provides the possibility of dynamic capacity control of processed numbers. The suggested
programming system presents an effective tool for Superprecision Parallel ARiTHmetic
computations (SPARTH-computations). It is developed for STARAN-like associative ar-
ray processors (AAP), which is a typical example of vertical processing systems. The
system is oriented to solve a large set of vector and matrix operations. Besides, the
operands length may be changed dynamically during processing. From the user’s view-
point the system represents a parallel vector processor with programmable word length
called SPARTH-processor. This provides the accuracy control of computations directly
during solution of the problem. The SPARTH-processor architecture is implemented
within the basic AAP-architecture. ' ‘

The paper describes features of the SPARTH-processor architecture and new par-
allel algorithms of accurate computing of dot products and polynomials, in which the
automatic selection of capacity needed for exact calculations is used. The results of an
estimation of the SPARTH-processor accuracy are also presented.

1. Introduction

One of the important factors effecting the accuracy of data processing re-
sults is rounding in arithmetic operations. The necessity of rounding is
closed with the fixed and relatively small length of operands in general
purpose computers. The decrease of errors may be achieved by means of
using multi-precision arithmetic. Super-long operands may be processed
either by using of the specialized coprocessors [8],(14] or by the program
implementation of multiprecision arithmetic algorithms in terms of the ba-
sic computer architecture [1], [7]. However, the program implementation or
micro-program interpretation of high accuracy computations leads (in con-
ditions of usual computer systems) to the fast decrease of problem solution
rate and non-effective use of memory.
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The development of current integral technology and computer science al-
lows the design of parallel systems functioning with varying operand length.
This led to the design of computer systems, which solve problems with an
accuracy given before calculations or an accuracy provided by system re-
sources and known to the user after the computation terminates. In [5]
a program package of multiple precision integer arithmetic and theoretical
numeric computations for CRAY-2 is described. These programs implement
multiple precision arithmetic operations employing the pipeline principle.
In [9] there are proposed the essentials of the language for high-accuracy
computations and the way of implementation of this language in a multi-
transputer system. 7

To perpective computing systems from the viewpoint of effective per-
formance and programming of high accuracy computations one may refer
SIMD parallel systems with vertical processing. Their distinctive features
combining the possibilities of location and parallel processing of arbitrary
length of operands (up to several thousand bits), programmability of data
formats, the data masking, etc., allow to consider an effective means to
implement Super-precision Parallel ARiTHmetic computations (SPARTH-
computations). ,

The vertical processing is based on the word parallelism. Bit slices of
processed array are extracted from memory in a regular way, then they
are input to the registers of operating unit, where they are processed by
logic schemes. Such processing is called ”bit-serial” in [4]. Similar devices
are also called systems with ”fine-grained” structure. The main feature of
any of these systems is the presence of large number of one-bit processing
elements (PE) operating in parallel, each having one-bit local memory and
performing bit-serial processing on its contents. Wide-spread systems of
this type are STARAN [2], DAP [10], MPP [3], CM [15], LUCAS [6], PPS
SIMD [12]. Their performance ranges up to several billions of bit operations
per second.

The STARAN system [2] is generally called the associative array pro-
cessor (AAP) since it resulted the evolution of associative processing. The
present paper dealts with the programming system of SPARTH-computa-
tions for STARAN-like architectures. It is oriented to solve the problems
containing many vector and matrix operations and allows the control of
computation accuracy during solving the problems.
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2. Architechture of SPARTH-processor

Figure 1 shows the SPARTH-processor architecture implemented within
the basic AAP-architecture. The main elements of SPARTH-processor are:
vector registers VRo — VR,—, intended for the location of super-digital
vector operands; high-precision parallel summator (HPS) containing fields
V So— V §3 and having the capacity necessary for the performance of arith-
metic operations without rounding; scalar registers or scalars § where scalar
operands are located; operational AAP-registers X,Y, M; index registers or
indices I which are unsigned integers and intended for storage of constants
defining the number of loop iterations, modes of access to vector registers,
etc.; registers for temporal storage of masks RMp — RM;_; located in the
special field of the multidimensional access (MDA) memory and intended
for storing the masks and bit slices resulting from performance of parallel
vector operations (overflow; search operations, etc.).
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Figure 1. The SPARTH-processor architecture

All parallel operations are performed for unmasked elements of vector
registers. The masks for these instructions should be loaded to the M-
register. Functions of the X- and Y -registers are similar to their assignment
in AAP. They provide processing of bit slices. A. bit slice resulting of
the parallel operation performance is located in the Y-register. It may
be written either in the RM-register or in the M-register, or operated
processed by procedures of response processing.

Computations in the SPARTH-processor may be performed in two mo-
des: with the fixed or dynamic accuracy. The first mode is characterized
by the constant capacity of operands in computations. In this case, the
number v of vector registers available is determined by required capacity

o= 2, 1)

where n is an ordered capacity (bits), /- number of RM-registers and s -
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size of{ocal AAP memory. The user is able to choose between the problem
solution rate, the amount of processed data and required accuracy.

In the dynamic accuracy mode, the operand capacity may alter in the
interval defined by the user. The number of available vector registers is
formed according to the maximum ordered capacity value (see (1)). Com-
putations may be started with relatively small capacity of operands. If
needed, the SPARTH-processor may be switched to a next capacity limit
by means of precision control procedures.

In the SPARTH-processor three types of data are used: integer data
type; fized-point type format (without integer part); real type format (num-
bers with integer and fractional parts).

Processor instructions provide effective interaction of subsystems and
execution of high-precision parallel computations. - Arithmetic operations
are executed in two stages. At first, the exact result (without rounding) is
formed in HPS, then it is stored into destination registers using the round-
ing operations for multiplication and division. In the dynamic accuracy
mode, the data loca.ted in HPS may be stored in vector registers without
rounding.

In Figure 1 m denotes the number of PE’s in AAP. All m components
of vectors may be performed in parallel. Therefore, the parallel addition
and subtraction have an arithmetic operation count of O4(1) and a bit
operation count of Op(n) (for n-digital numbers). Operation counts of
both parallel multiplication and division are O 4(1) and Op(n?).

The accurate sum of vector elements is executed by recursive doubling in
groups. Each of these groups may contain 2,4,8,---,2¢,---, m components.
The sum is computed for each group in parallel and have operation counts
of O 4(logy N) and Op(nlog, N), where N = 2%,

The change-over of capacity limits from n to 2n bits has a bit operation
count of Og(vn).

Data transmission instructions allow the user to assign different opera-
tions of data exchange between subsystems of SPARTH-processor using the
properties of the FLIP interconnection network [2]. They support different
procedures of the parallel transmission of unmasked elements of vector reg-
isters, and selective communication of the data chosen by means of index
registers. For parallel transfer operations, elements may be interchanged.
There are three types of permutations: the mirror, the cyclic shift and the
mized permutation which use the both previous types (see [13] for details).
Data transmission instructions have an arithmetic operation count of O 4(1)
and Og(n). -
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3. Accurate scalar products

A fundamental algorithm in regard to basic numerical methods is the one
for the computation of the scalar product (dot product) of vectors X = [z;]
and Y = [y): .
N-1
' _P:X-Y:Ezi-y,-.
=0
The computation of this formula can be made in a SPARTH-processor
employing the above mentioned instructions of multiplication of vectors X
and Y, and sum of vector elements.

Proposition 1. The operation counts of scalar product computation in a
SPARTH-processor are O z(log, N) and Op(n? + n -log, N).

As indicated above, the sum of vector elements is computed for N = 2.
Special procedures was developed to provide the processing of vectors of
arbitrary N.

Definition 1. Let X contain k groups of N components each:

—_ 0,0 0 k-1 _k-1 k-1
x__{xo’xl,...,xN_l’.._.’mo )Ty "“’zN—l}'

The procedure forming for m > N -k a vector

Z 0 0 k-1 k-1
X= {:Eo,'",.’BN_I,C,"',C_,"',IO s"'st_lsca"',cL
-Nl N1

where N; = 2M°& N1 and, ¢ is a constant, we call vector-expansion.
To calculate a sum, it is necessary to set ¢ = 0.

Definition 2. Let X contain k groups of Ny = 2' each. The procedure
forming for m > Ny -k a vector

& 0,0 w0 k=1 k-1 k-1
x={x(}a31"",3N—13"'$£0 1 Ty ,"'!xN_]_sxi"'}s

Nk
where N; = 2M°& N and z,-.- - a "tail” of length k(N; — N), we call

vector-compression.

Proposition 2 [16]. The operation counts of both vector-erpansion and
vector-compression procedures on-a SPARTH-processor are O 4([logy N1) for
arithmetic operations, and Op(n[log, N|) for bit operations.
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The flexible switching of capacity limits in SPARTH-processor allows an
automatic adaptation to the range of data values. Asindicated in SPARTH-
program given below, the algorithm of exact scalar product is implemented
in the following stages: parallel conversion of input floating-point numbers
with automatic selection of capacity needed for exact representation of
these numbers; vector-ezpansion of X and Y; calculation of dot products
in parallel; vector-compression of results and transformation of results to
floating-point format.

ek L L »

=xxxxxxeexx COMPUTING OF EXACT SCALAR PRODUCTS ***xsxxrx
wxwxesxr X _, VRO; Y — VRI; DESTINATION — VR2 ****x
»

EE 22 2 20K R *x LT T

BEGSPARF X'2000' * Start of SPARTH-program
. DPRECISN REAL,512,64 * Set dynamic capacity mode
* Format REAL

* Max. limit - 512bit
‘ * Initial limit - 64bit
INDEXC N,K,INPUT * N - Size of vectors

* K - Number of vectors
INDEX I,J,N1,NK,N1K * Define work indices
LOG2IUP N,J * J = [logy N
POWER2 J,N1 *Nyi=2
MULI N,K,NK *NK:=N.-K
MULI N1,K,N1K *N1K:=N,-K
SETMI RMO0,0,NK,CLR  * Set mask in RMO
SETMI RM1,0,N1K,CLR * Set mask in RM1
MOVM RMoO,M * RMO—- M
FIRST DNORM VRO,VR2,2 * Convert X from floating-point
BRZ CORRES * to SPARTH-format
MPRECISN VRO,VR1 * If signed bits were lost then
* modify capacity exept VRO,V R1
BN FIRST * and repeate conversion )
CORRES SPRECISN VRO * Fit VRO to current capacity
MOVV VR2,VRO *VR2 - VRO
SECOND DNORM VR1,VR2,2 ** Convert Y from floating-point
BRZ PRODUCT * to SPARTH-format
MPRECISN VR1 * If signed bits were lost then
* modify capacity exept VR1
BN SECOND * and repeate conversion
PRODUCT SPRECISN VR1 * Fit VRI1 to current capacity
MOVV VR2,VR1 ) *VR2 — VR1
MULV VRO,VR1,VR2 *VR2 - VR0-VR1
STRETCH VR2,VR2,N * Expansion of VR2
MOVM RM1,M *M — RM1
SUMV VR2,VR2,K,RM1 * Sum of vector elements in VR2
COMPRESS VR2,VR2,N1,1 * Compression of sum in VR2
NORM VR2,VR2,2 * Transformation to host-format
STOP
ENDSPARF * End of SPARTH-program

To estimate the accuracy of scalar product evaluating in SPARTH-
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processor we have used the "hard” input data from [11]. Examples of
such data are shown in Table 1. In [11] test results of parallel systems
SIEMENS /Fujitsu VP400-EX and CRAY-2, and high-accuracy arithmetic
subroutine library ACRITH on IBM-4381 [7] are also described.

Table 1
x(1 Y1) xX@ x(2)

27182818280 14862497000000 5772156649  47737146470000000
-31415926540  8783669879000000 3010299957 1850490
14142135620 -223749200000 0 0

5772156649  47737146470000000 27182818280 14862497000000

0 0 -31415926540  8783669879000000
3010299957 1850490 14142135620

-223749200000

The results from Table 2 show that the accuracy of dot products com-
putations in SPARTH-processor is similar to ACRITH. However, SPARTH
provides very high performance because all scalar products are computed
simultaneously. ' |

Table 2
Computing System P, P,
VP-400-EX (Scalar Mode) 0.462915718600000E+10  -0.115474320000000E+10

VP-400-EX (Vector Mode)
CRAY-2 (Scalar Mode)
CRAY-2 (Vector Mode)

IBM PC/AT (Double prec.)

IBM4381 (ACRITH)
SPARTH

-0.334189890000000E+-09
-0.179496213989999E+13
-0.110380659550720E+13

0.186091654600000E410
-0.100657107000000E+10
-0.100657107000000E+10

0.000000000000000E+4-00
-0.170625964441600E+13
-0.110380659550720E+13
0.436495923200000E+10
-0.100657107000000E+10
-0.100657107000000E+10

4. Polinomial evaluation
Usually the evaluation of a polinomial
P(z)=ap_ 12 '+ .-+ a1z’ + ap = Za,-x'
i=0

is done via Horner’s scheme. This leads to a linear first order recurrence
for which a vectorization is possible only with the help of an expansion
method like recursive doubling or cyclic reduction.

We use another simple and fast method to evaluate a polinomial. It is
to compute P(z) = A - X as the dot product of A = {ap-1,--+,a1,a0} and
X ={zP1,... z,1}. o
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VRO RMO0 VS2 VS3 RMoO VS2 VS3 RM0 VR2

co 0 * " co 0 * co 0 co

a 1 co coc; O * coci 0 coC1

c2 1 ¢ c162 1 co coC1C2 0 coc1C2

ca 1 c2 caca 1 coc1  cocicecs O CoC1C2C3

c4 1 ca CaCyq 1 c1c2  ci1ccacy 1 €0C1€2C3C4

Cs 1 C4 C4Cs 1 c2€C3 c2cacscs 1 C0C1C2C3C4Cs

Ce 1 Cs cscg 1 cacs C3cscsce 1 CoC1C2€3C4C5Ce
cr 1 Cg cgcr 1 ciCs  cacscecr 1 €0C1C2C3C4C5C6CT

Figure 2. Calculating of prefix product in a SPARTH-processor

Definition 3. Let C contain p components C = {ep-1,--,¢c1,¢0}. The
procedure forming a vector C = {¢p_1,--+,61,6}, where & = [[1_, ci, we
call prefix product.

Proposition 3. The operation counts of prefiz product computation in a
SPARTH-processor are O 4(log, p) and Op(n?log, p).

PROOF. As shown in Figure 2 (for p = 8), the computation of prefiz product
in SPARTH-processor may be executed using parallel data transmission
with eyclic shifts of vector and masks, and parallel multiplication. The
number of ¢; is doubled in each step. Therefore, the total number of
steps is log,p. We have now the desired result, because the operation
counts are O4(1) and Op(n) (for transmission), and O4(1) and Op(n?)
(for multiplication). O

The vector X may be computed using the prefiz product of vector
X = {z,z,---,z,1)}.
\._w_a

p—1

Propositioh 4. The operation counts of polinomial evaluation in a
SPARTH-processor are O 4(log, p) and Op(n?log, p +n? + nlog, p).

ProoF. The polinomial evaluation may be implemented in three stages:
the forming of X in 04(1) and Op(n) time steps loading a scalar z into
the vector register, calculation of X by prefiz product and dot product of
A and X. Therefore, total operation counts of polinomial evaluation are
O 4(log, p) and Op(n?log, p + n? + nlog, p). 0

Proposition 5. The relative speedup of polinomial evaluation in
SPARTH-processor is O (mﬁ).
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PRroOF. The polinomial evaluation in sequential computers is done via Hor-
ner’s scheme in p multiplications and p sums. Therefore, the sequential bit
operation count is Op (pn(n+1)), Thus, the ratio of sequential and parallel
bit opera').tion counts is O(E%P—_l)’ because log, p = |log, p| for p = 2.
If p # 2°, the computation is implemented in p; = |log, p] + 1 using the
vector-expansion. a

Corollary 1. The mazimal relative speedup of polinomial evaluation in
SPARTH-processor is O (

mp

2182 Pl (|logy p)+1)/*

ProoFr. A SPARTH-processor can process N; = E"%HT simultaneously
in groups of 2M°&?] components each using the properties of the FLIP
interconnection network. If all m processing channels are used, then the
maximal relative speedup is O( O

mp )
2Mlog2 P1( llogz p]+1) /"

To estimate the accuracy of polinomial evaluation we have used the
"hard” input data from [11]. The coefficients were defined as

—-167, for i =8
a; = 164, for i =11 (¢=0,---,15).
16', in other cases

The input data are z; = 16+ 5-167, where (j = —6,~5,---,-1,0,1,---,4).

Polinomials were computed simultaneously for all values z; using a pro-
cedure similar to the calculation of dot products. It is an automatic adap-
tation to the range of data values. As shown in Table 3, the polinomial
evaluation in SPARTH-proccessor allows calculation of absolutly exact re-
sults.

5. Conclusion

The comparison with known dedicated programming systems for high-
accuracy computations on sequential computers shows that SPARTH-pro-
cessor ensures similar accuracy of results. Moreover, it provides very high
performance due to effective use of massively parallelism.

The presented programming system may be considered as an intermedi-
ate language for the translation from high-level parallel scientific languages
(FORTRAN-XCS, PASCAL-XCS, C-XCS, etc.) It may simplify the struc-
ture of such compilers, because the SPARTH-instructions are relatively
large vector operations. ‘
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Table 3
7 Pj(skalar) Pj(vector) P;(Horner) P;(ACRITH) P;(SPARTH)
VP400-EX  VP400-EX VP400-EX
—6 -4831838152 -4831838140 -4831838162.0 -4831838139.25 -4831838133.2500
—5 -4026531800 -4026531788 -4026531810.5 -4026531789.81 -4026531783.8125
—4 -3221225448 -3221225436 -3221225456.0 -3221225437.00 -3221225431.0000
=3 -2415919096 -2415919084 -2415919098.5 -2415919080.81 -2415919074.8125
-2 -1610612728 -1610612716 -1610612738.0 -1610612721.25 -1610612715.2500
-1 -805306360 -805306348 -805306374.5 -805306358.31 -805306352.3125
0 8 4 8.0 8.00 14.0000
1 805306376 805306372 805306377.5 805306377.68 805306383.6875
2 1610612744 1610612740  1610612750.0 1610612750.75 1610612756.7500
3 2415919112 2415919108  2415919125.5  2415919127.18 2415919133.1875
4 3221225480 3221225476  3221225504.0  3221225507.00  3221225513.0000

This approach may be used as well for other massively parallel systems
(DAP,MPP,CM,etc.). It can also lead to the developing of new computer
architectures with overcoming rounding errors.
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