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Coloured cause-effect structures

Alexander P. Ustimenko

‘We present an extension of the class of cause-effect structures by coloured to-
kens. As an example of coloured c-e structure we use the well-known problem of
dining philosophers. Relationships between the classes of coloured c-e structures
and coloured Petri Nets introduced by K. Jensen are investigated.

Introduction

In order to describe concurrent systems, L.Czaja in [1] has introduced cause-
effect structures (CESs) inspired by condition/event Petri nets (PNs). CES
can be defined as a triple (X, C, E) where X is the set of nodes, C and E are
the cause and effect functions from X to the set of formal polynomials over X
such that ¢ € X occurs in C(y) iff y occurs in E(z). Each polynomial C(z)
(E(z)) denotes a family of cause (effect) subsets of the node z. The operator
* combines nodes into subsets, and the operator + combines subsets into
families.

Section 1 contains the basic definitions of the structure and behaviour
of CESs.

There is an interesting question about the relationships between CESs
and PNs. In [5] Raczunas states that every CES has strongly equivalent PN,
i.e., two bijections exist: between the so-called firing components of CES and
the transitions of PN, and between the nodes of CES and the places of PN;
moreover, the bijections must preserve pre- and postsets of firing components
and transitions. Raczunas investigated the converse mapping from PNs to
CESs. He remarked that a strong equivalence is not the case for converse
mapping. So he defines an equivalence relation between the places in PNs
and, similarly, in CESs, as a coincidence of the presets of equivalent places
as well as their postsets. Then he introduced an (ordinary) equivalence
between PNs and CESs by means of weakening the requirement of bijective
correspondence between places down to bijective correspondence between
equivalent classes of places. But the issue remained open: to find a subclass
of PNs or an extension of the class of CESs such that the strong equivalence
will take place.

We have decided this problem in [7] by introducing an extension of cause-
effect structures — two-level CESs (TCESs). TCESs are a convenient inter-
mediate class between PNs and CESs, because they are strongly equivalent
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to the class of PNs and we can transform any TCES into structurally equiv-
alent CES with the help of folding-transformation. On the other hand, each
CES has a strongly equivalent TCES.:

Unfortunately, an expressive power of CESs is not sufficient for using
them in real-life applications. Some supplementary constructions are nec-
essary. Then the problem is to extend the obtained results to CESs with
time and/or coloured nodes or to other high-level semantics of CESs. Note
that the extension with time for CESs has been received in [2], and the
relationship between time CESs and time PNs has been investigated in [6].

In ordinary CESs, a token or an active state of a node represents the
presence of control and/or some resource in it. But it does not signify a
qualitative difference between resources functioning in the CES. Moreover,
each node should not have more than one token-resource at the same time.
In some cases it is important to distinguish the resources qualitatively. This
difference is represented by colours of tokens. Moreover, each node can have
more than one differently coloured token. -

~ This work is devoted to construction of the class of coloured CESs
(CCESs). There are different ways of introducing the semantics of coloured
tokens in CESs. We choose one of them that strictly correlates with the
semantics of coloured tokens in Petri nets ([3]).

Then we give an algorithm of mapping of CCESs into CPNs. The cor-
rectness of this mapping is established. An example of running the algorithm
to solve the problem of n dining philosophers is considered. The problem
of the converse mapping from coloured PNs into CCESs is decided with the
help of the class of two-level CESs.

1. Cause-effect structures

Cause-effect structures are represented as directed graphs with an additional
structure imposed on the set of nodes. These graphs with operations + and
%, corresponding to nondeterministic choice and parallelism, constitute a
near-semi-ring where ”near” means that distributivity of * over + holds
conditionally. Fig.1 presents a simple example of CES (with arrows anno-
tated by some executable statements and conditions) representing a parallel
program that computes a sum of natural numbers =z and y by adding and
subtracting 1 and testing for 0.

‘A CES is completely represented by the set of annotated nodes: each
node z is subscribed by a formal polynomial E(z) built of (the names of)
its successors and superscribed by a formal polynomial C(z) built of its
predecessors; it may be either in an active or pagsive state. If a CES, like in
the example, represents a program, then the active state of a node means the
presence of control in it and its readiness for execution of statements assigned
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Figure 1

to outgoing arcs. We should note that the statements and conditions on arcs
are used only with illustrative goals and they are absent in "real” CESs.

If a node is active, then we try to move control from it simultaneously to
all its successors which form a product in its lower (subscript) polynomial —
if they are passive. Symmetrically, if a node is passive, then we try to move
control to it simultaneously from all its predecessors which form a product of
its upper (superscript) polynomial — if they are active (if no predecessors or
successors exist, then the upper or lower polynomial is ©, sometimes omit-
ted). This rule generally gives complex interdependences between nodes in
the aspect of control flow: a group of nodes must "negotiate” the possibility
of changing their state with each other. Such groups of nodes will play a role
analogous to that of transitions in PNs. They are called firing components.
The set of all firing components of the CES U is denoted by FC{U].

Let us introduce these notions more formally.

Definition 1.1. Let X be a set called a space of nodes and let § be a
symbol called neutral. The least set Y such that

fecY,

XCY,

fKeYandLeY,then(K+L)€Y and (K + L) €7,
is a set of polynomials over X denoted by F[X].

Definition 1.2. We say that the algebraic system A = (F[X],+,*,0) is
a near-semi-ring of polynomials over X if the following axioms hold for all
KecFX|,Lc FIX|,MecFX],zeX:

(+) 0+ K=K+0=K (%) 0+xK=Kx+x8=K
(++) K+K=K (%%) TxT =2
(+++) K+L=L+K (**xx) KxL=LxK
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(++++) K+ (L+M)=(K+L)+M (s*%t) Kx(L*xM)=(KxL)xM
(4-*) K+«+(L+M)=KxL+KxM
provided that either L=M =8 or L#0 and M # ¢

Definition 1.3. Let X be a space of nodes and (F[X], +,*,6) be a near-
semi-ring of polynomials. A CES over X is a pair (C, E) of functions:

C : X — F[X] (cause function)

E : X — F[X] (effect function)

such that z occurs in the polynomial C(y) iff y occurs in E(z) (then z is a
cause of ¥ and y is an effect of z). The set of all CESs over X is denoted by
CE[X]. ’
The CES is completely represented by the set of annotated nodes .

Definition 1.4. Let us define addition and multiplication of functions by
(C1 + C2)(z) = Cl(z) + C2(x),(C1 * C2)(x) = Cl(z)} x C2(z), then an
algebra of CES is obtained as follows. Let 6§ : X — F[X] be a constant
function 6(z) = 8, let, for brevity, the CES (8,8) be denoted by 8, and let
+ and * on CES be defined by

(C1,El) + (C2,E2) = (C1+ C2,E1 + E2)

(C1,El) x (C2,E2) = (C1* C2,E1 x E2)
Obviously, if Ui = (Ci, Ei) € CE[X](i = 1,2), then Ul + U2 € CE[X] and
Ul x U2 € CE[X], that is, in the resulting structure, = is a cause of y iff y
is an effect of z.

Definition 1.5. A CES U is decomposable iff there are CESs V and W
such that
8#+V AUBF#W #U and either U=V +WorU=V«W.

Definition 1.6. Let U and V be CESs. V is a substructure of U f V +U =
U. Then we write V < U. SUB[U] = {V : V < U}. Easy checking ensures
that < is a partial order. The set of all minimal (wrt <) and not equal to
@ elements of SUB[U] is denoted by MIN{U].

Definition 1.7. For a CES U, let Q = (Cg, Eq) be a minimal substructure
of U such that for every node z in Q:

(i) polynomials Cg(z) and Eg(x) do not comprise ‘+,

(ii) exactly one polynomial, either Cq(z) or Eg(x), is 6.

Then, @Q is called a firing component of U. A set of firing components is
denoted by FC[U] = {Q € MIN|U] : (i), (ii)hold}. We denote by FC[U]*
a set of all finite strings over F'C[U], an empty string including. We denote
by *Q the set of nodes z in @ with Cg(z) = 6, and we denote by Q° the set
of nodes z in @ with Eqg(z) = 6.



Definition 1.8. A state s is a subset of the space of nodes X. A node z is
active in the state s iff z € s, and it is passive, otherwise.

Definition 1.9. For @ € FC[U], let [[Q]] denote a binary relation in the
set of all states: (s,t) € [[Q]] iff*Q C 5,Q°Ns=0,t=(s—°Q)UQ*. The
semantics [[U]] of a CES U is a union of relations:
W= U Q]

QeFcU)
The semantics [[U]]* of U is a transitive extension of [[U]].

Definition 1.10. A CES U is a structural deadlock iff FC[U] =0, i.e.,, U
cannot change its state, regardless of the state.

2. Cause-effect structures with coloured tokens

In this section we suggest an extension of the set of CESs by semantics of
coloured tokens. Each node of a coloured CES (briefly CCES) may have
more than one token simultaneously iff all colours of its tokens are different.

A CCES, as well as CES, is completely represented by the set of an-
notated nodes. But its formal polynomials range over the extended set of
pairs — <node, colour>. Moreover, each its polynomial is 'coloured’, that
is, each its monomial is associated with some colour-label. For instance, the
record
{x1<a,2>*<b,1>+2<a,3>’ a2<$,1>+3<$’2>,b1<z,1>} means that:

— the node z can receive a token of colour 1 simultaneously from the
nodes a and b (if @ has a token of colour 2, b has that of colour 1) or a token
of colour 2 from the node c (if it has a token of colour 1);

— symmetrically, the node a can send a token of colour 2 or colour 3 to
the node z, but x will receive this token repaint in colours 1 or 2, respectively
(the first case demands synchronization with the node b iff it has a token of
colour 1 ).

Thus, cause and effect functions in CCESs reflect the space of nodes
X not in the set of polynomials F[X], as it is in CESs, but in the set of
polynomials coloured by a special function CI x F[X¢]. According to these
remarks, all formal definitions of CCESs are the same as those for CESs.

Moreover, a CCES can be seen as a CES over an extended space of
nodes (of pairs <node, colour>). It allows us to introduce such high-level
semantics as coloured tokens in a very simple manner. Let us introduce
these notions more formally.

Definition 2.1. Let X be a set called a space of nodes and let Cl = [1..n]
be a set of colours. Then an extended set X¢ = {< z,i > |z € X,i € Cl} is
called a space of coloured nodes.
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Definition 2.2. Let X be a space of coloured nodes and let § be a symbol
called neutral. The least set Y which satisfies the following conditions:
Y, XcCY,

fKeYand LeY,then (K+L)€Y and (K + L) €7,

is called a set of polynomials over X¢ and denoted by F[X¢].

Definition 2.3. We say that the algebraic system A = (F[X¢],+, *,6) is
a near-semi-ring of polynomials over X¢ if the axioms from Definition 1.2
hold for all K € F[X¢],L € F[X¢|,M € F[X¢],x € X¢.

Definition 2.4. Let P € F[X¢] and its canonical form be Y M;, where M;
is a monomial. The product of two sets Cl x F[X(] is a set of ’coloured’
polynomials {3 [;M;}, where ; is an arbitrary colour, some of which may
be identical. Moreover, each monomial M; may be 'coloured’, that is, M; =
M} «2M?2 x .« I[P M ", where monomials M} are arbitrary components of
M; (’arbitrary’, because decomposition of M; into components can be made
in different ways).

Definition 2.5. Let X¢ be a space of coloured nodes and (F[X¢], +, *,0)
be a near-semi-ring of polynomials. A coloured CES (CCES) over X is a
pair (C, E) of functions:

C : X - Cl x F[X¢| (cause function),

E: X — Cl x F[X¢)] (effect function),
such that < 2,4 > occurs in the monomial jC/(y) from C(y) = 3 jC¥(y) iff
< y,j > occurs in iE*(z) from E(z) {then < z,1 > is a cause of < y,j > and
< y,j > is an effect of < z,7 >). The set of all CCESs over X is denoted
by CCE[X]. The CES is completely represented by the set of annotated
nodes.

Definition 2.6. Addition and multiplication of cause functions are defined
by: :
(Cl + Cg)(m) = (:L') + Oz(m);
(C1 % Cy)(z) = Ci(z) * Ca(z).
They are the same for effect functions. Then an algebra of CCESs is obtained
as follows. Let © : X — F[X(] be a constant function ©(z) = ©, for brevity,
let the CES (©,©) be denoted by ©, and let + and * on CCES be defined
by:

(Cl,El) + (Cg,Ez) = (Cl + Cs, Eq + Ez),

(Chr, Er) * (C2, E2) = (C1 x Co, Ey + E3).
Obviously, if U; = (C;, E;) € CCE[X](i = 1,2), then U; + U; € CCE[X]
and Uy xU; € CCE[X].

Definition 2.7. A CCES U is decomposable iff there are CCESs V' and W
suchthat @ £V AU,0 #W # U and either U =V +Wor U=V «W.
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Definition 2.8. Let U and V be CCESs. V is a substructure of U iff
V +U =U. Then we write V < U. SUB[U] = {V|V < U}. Easy checking
ensures that < is a partial order. The set of all minimal (wrt <) and # ©
slements of SUB[U] is denoted by MIN[U].

Definition 2.9. For a CCES U, let Q = (Cg, Eq) be a minimal substruc-
ture of U such that for every node z € Q:
(i) polynomials Cg(z), Eq(¢) do not comprise +,
(ii) exactly one polynomial, either Cg(z) or Eg(z), is ©.

Then @Q is called a firing component of U. A set of firing components is
denoted by FC[U] = {@ € MIN[U]|(¢) and (iz) hold}. We denote by *Q
the set of pairs {< z,i > Im%q(z) € @}, and we denote by Q* the set of

pairs {< y,7 > [y ¥ € Q}.

Remark 1. The set of firing components of a CCES may have groups of
firing components whose sets of input and output nodes are identical but
have tokens of different colours. Each such a group is analogous to some
transition in a coloured PN, and each firing component of such a group
is analogous to a binding from the set of all bindings of this transition.
Thus, the set of firing components breaks down into groups of equivalent
components.

Definition 2.10. A state s is a subset of the space of coloured nodes X¢.
A node z is active in the state s iff 3i € Cl :< ,i >€ s, and it is passive
otherwise. '

s(z) = {i| < z,i >€ s}.

Definition 2.11. For Q € FC[U], let [@]c denote a binary relation in the
set of all states: '
(s)t) € [Q]C iff*Q C 3’Q. ns= @)t = (3 - .Q)UQ.

The semantics [U]c of a CCES U is a union of relations:

Ule= U [Qle

QeFelU]

Example 1. As an example of a CCES, we use the well-known dining
philosophers’ system. The philosophers’ structure is given in Fig.2. The
nodes of the structure are
X = {I(idle), L(hasLeft), E(eating), R(hasRight), F( freeForks)}
There are n colours according to the number of philosophers. There are four
groups of equivalent firing components:

= {< I,i >,< F,i >}U{< L,i >} — the i-th philosopher takes his left
fork iff he is idle and a necessary fork is free;

= {< L,i >,< F,[i +1] >}U{< E,i >} — the i-th philosopher takes
hls right fork and begins to eat;
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Q3 = {< E,i >}U{< R,i >,< F,i >} — the i-th philosopher finishes
eating and returns his left fork to freeForks;

= {< R,i >}U{< I,i >, < F,[i + 1] >} — the i-th philosopher returns
his right fork and stays idle.
The initial state of this CCES is 39 = {< I,1 >,..,< I,n >,< F,1 >,.,,<
Fyn >}, :

Figure 2

Here C(I) = Yi < Ryi >, BE(I) =i < L,i >;
ClLy=Yi<Il,i>x<Fi>EL)=Y1i< E,i >;
C(EY=Yi<Li>*<F[i+1]>EE)=Yi<R,i>*<F,i>
C(R)=Xi<E,i>EBR)=Yi<ILi>x<F[i+1]>
C(F)=%i< E,i>+<R,i—-1]>),
E(F)=%i(< Lyi>+ < E,[i - 1] >),

where ¢ = 1,..,n.

One can note that an expressive power of this semantics is greater than
Example 1 demonstrates. The semantics of coloured tokens allows each
node to send or to receive more than one token simultanecusly. This fact
is denoted by presenting more than one colour-labels in some monomial of
effect or, respectively, cause polynomial. For instance, this example can be
simplified as follows:

(I f‘z<£: i> Y icLi>»<Fyi> EZ i<L,i>s<F[i+1]> Zi<E,i>*{1‘+1]<E,i>}
Yoi<Lyi> ' Ty icEi> Y <> s < Fiss <P+ T Y i< L i>+i< B li-1]>

where i =1, .., n.

That is, a node R is reduced and two groups of equivalent firing compo-
nents Q% and Q* are replaced by the one:
Q*={< E,i >}U{< I,i >,< F,i>,< F,[i + 1] >} — the i-th philosopher
finishes eating and returns simultaneously both his forks to freeForks.
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3. Relationships between CCESs and CPNs

3.1. Coloured Petri nets

CPNs were defined in [3]. In order to avoid unnecessary technical difficulties,
we present here a definition of a CPN which is slightly different from that
given in [3). The differences are not essential but they help us to make this
presentation simpler.

A CPN consists of the following components:
* P, a finite set of places.
% T, a finite set of transitions such that PN 7T = 0.
* A C PxTUT x P, the set of arcs. As for P/T-nets, we define *t =
{p € P|(p,t) € A},t* = {p € P|(t,p) € A},°p = {t € T|(t,p) € A} and
p* = {teTl(p,t) € A}.
* Each p € P has an associated non-empty set C(p) of tcken colours.
* A marking M is a function which assigns a value M(p,c) which is equal
to 0 or 1 to each p € P and each ¢ € C(p). That is, the set M(p) denotes
colours of tokens in the place p.
* The initial marking M is a distinguished marking. It represents the initial
state of the net.
* Bach ¢t € T has an associated non-empty set B(t) of bindings of . Each
binding is some variant of firing of the transition ¢.
* Each a € A such that a = (p,t) or a = (t,p), where p € P and t € T, has
an associated arc expression W(a). The arc expression is a function from
B(t) to {0,1}¢®), That is, given a binding b, the arc expression produces
integer W (a)(b)(c) € {0,1} for each ¢ € C(p). The arc expression denotes
what subset of coloured tokens is taken from or produced for p when ¢ occurs
with the binding &.

The dynamics of CPN is defined as follows:
+ Let t € T and b € B(t). Thus, t is enabled in a marking M for a binding
b denoted by M]|(t,b) > if and only if
Vp € % : Ve € C(p) : M(p,c) > W(p,t)(b)(c),
That is, every input place p of ¢ contains at least those coloured tokens
which are required by the corresponding arc expression E(a) for the binding
b in question.
* If M((t,b) >, then ¢t may occur with the binding b producing a new marking
M’ such that

Vp € P: M'(p) = (M(p) — W(p,1)(b)) UW (2, p)(d).
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3.2. Algorithm of mapping CCESs into CPNs
Let us consider CCES

U= {aipinle € X} (1)

with an initial marking Sy C X¢ and with a set of colours Cl. Let the set
FC[U] break down into groups of equivalent firing components

FOU] ={Qi = 1,.,n} ()

Since all firing components of such a group have identical sets of input and
output nodes, we can define the sets of input and output nodes for each
group Q" as follows:
Q= {z| <z,j>€Q,Qc Q')
Q" ={yl <j>cQ Qe Ql,
where @ € Q' is arbitrary.
Then the strongly equivalent CPN N for U will be constructed as follows:
* P = {z|z € car[U] C X} is a set of places;
* T = {t;}}_; is a set of transitions, where n is equal to the number of
groups of equivalent firing components

* ACPXTUT xP:A= U( U {(zj,t,)} U {(t,yx)} is a set of

i=1 z;c*Q yREQ'®
arcs;

xVpe P:C(p) =

* the initial ma,rkmg V:z: € P : My(z) = So(z);

* Vt; € T: the number of bindings in B (t;) is equal to the number of
equivalent firing components in @, i.e. Vb € B(t;) : 31Q; € Q%

£ Vp € £°: W(t,p)(b) = CL*(p,Qs), Vp € %t : W (p,)(b) = CI~(p, Qs),
where
Clt(p, Q) = {é| <p i >€ Qp}
Cl=(p, Q) = {il <p,i >€* Qu}
We need to redefine the notion of a strong equivalence (see [4]) for the case
of the coloured token semantics:

Definition 3.1. CCES U = (X¢, FC[U]) and

CPN N = (P,T,A,C(P),B(T),W(A,B(T))) are strongly equivalent 1ﬂ'
there exist two bijections f : FC[U] — T x B(T) and g : X¢ — P x C(P)
such that g(*Q) = °f(Q) and g(Q*) = f*(Q) for any Q € FC[U].

Theorem 1. The algorithm constructed above builds a strongly equivalent
CPN for any CCES.
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Proof. Let us consider CCES in the form (1), with a set of firing compo-
nents in the form (2). The algorithm gives rise to two bijections f and g:
V<z,e>€ Xo: g(< z,¢ >) = (z,¢).
Vi=1,.,n:f:Q" — t; x B(t;),
such that each firing component Q € @ has an associated unique index, a
binding b from B(t;), i-e. £(Q}) = (:,b).
By construction of the bijections f and g, we have:
g('Qi.) = {(z!c)l <z, c>€ ;)} ={(z,c)|lz € %i,c € W(z,t:)(b)} =
“(t,b) = *F(Q}) |
9(QF) ={(y o)l <y,e>€ Qp} = {(y, o)ly €8], c € W(Li,9)(b)} =
(t:,b) = £*(Q3),
i.e. the conditions of the definition of a strong equivalence hold. ]

Example 2. Let us consider the CCES from Example 1. The algorithm
will construct the following CPN:

« P={I,L,E,R,F};

* T ={t},;

* the arcs, for instance, for the transition ¢; are as follows:

Alt)= U {(mjatl)} U {(tla'yk)} = {(I’ t1), (F, tl)}U{(tl,L)};
szle y;.EQl’

*Vpe P:C(p)={1,.,n};

* the initial marking is as follows: My(I) = {1,..,n} = My(F), ie. n
coloured tokens-philosophers are in the place I and n coloured tokens-forks
are in the place F;

* each ¢; € T has n bindings in B(t;);

* for instance, W(L,t2)(b) = W(ty, E)(b) = [W(F,t2)(b) — 1] for any
b € B(ty), i.e. any philosopher b which has his left fork (with the same
number b) may take his right fork (with the number b plus 1 over mod n)
and move to the state 'Eating’.

We can see the resulting CPN in Fig.3.

4. A converse mapping from CPNs to CCESs

The problem is whether a converse mapping from CPNs to CCESs is possible
in the sense of a strong equivalence. As Raczunas has shown in [5] for
ordinary classes of PNs and CESs, the strong equivalence does not hold for
converse mapping.

In {7] a two-level extension of CESs (TCESs) has been introduced. Any

CES is completely represented by the set of annotated nodes {:cgg_;}, where

E(z) and C(z) are polynomials with operations + and *. We propose to ex-
clude the operation + from formal polynomials, and by resulted elementary
CES (or unalternative CES — UCES) we mean a two-level CES of the first
syntactical level. Elementary CESs are united by the operation @ into the
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set called a two-level CES of the second syntactical level, or simply TCES.
Thus, TCES is a set of the sets of annotated nodes.

So the operation @ is a union of the sets of the upper level. It differs
from the operation + because it does not merge elementary CESs into a set
of annotated nodes.

An operation ® on the set of TCESs is the Cartesian product of the sets
of the upper level. On the set of UCESs, the operation ® is the same as the
operation * on the set of CESs.

A TCES in its canonical form is a sum of its firing components. Let us
introduce the above notions more formally:

Definition 4.1. Let X be a set called a space of nodes and let § be a
symbol called neutral. The least set Y satisfying the following conditions:
eV, XCY; .
ifKeYand LeY then (KxL)€Y,

is called a set of monomials over X and denoted by M[X].

Definition 4.2. An algebraic system A = (M[X],*,0) is a semi-group of
monomials over X if the following axioms hold for all K € M[X], L €
MX], Me M[X], ze X :

(%) 0+xK=Kx0=K

(*x) Txr ==

(#*x) KxL=LxK

(x*x*x) K*x(L+M)=(KxL)«xM

Definition 4.3. Let X be a space of nodes and (M[X], *,6) be a semi-group
of monomials. An ‘unalternative‘ cause-effect structure (briefly UCES) over
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X is a pair (C, FE) of functions:

C: X — M[X] (cause function)

E: X — M[X] (effect function)

such that z occurs in the monomial C(y) iff y occurs in E(z) (then z is a
cause of y and y is an effect of x). The set of all UCESs over X is denoted
by UCE[X]. The UCES is completely represented by the set of annotated
nodes = which is called its formula.

Definition 4.4. The sum of any (finite) number of UCES:s is called a TCES,
where the operation @ satisfies the following axioms for any UCESs U,V
and W:

(++) UeU=U
(+++) UeV=VeU
(++++) Us(VeW)=(UsV)oW

Another representation of a TCES U is the set of UCESs:
{Y%; ¢ UCE[X]| T Y; = U}.
The set of all TCESs over X is denoted by TCE[X].
The set of UCESs is a particular case of the set of CESs, when the

operation + is absent. So we may define a notion of a substructure on the
sets of UCESs and TCESs.

Definition 4.5. Let U and V be UCESs. V is a substructure of U iff
V + U = U, where the operation + is an old one from the algebra of CESs.
The TCES V is a substructure of the TCES U iff each UCES from V is a
substructure of any UCES from U.

Definition 4.6. For a TCES U, let UCES Q = (Cg, Eg) be a substructure
of U such that for each node ¢ € @ there exists only one monomial, either
Cg(z) or Eg(z), being equal to §. Then Q is called a firing component of
U.

The set of all firing components is denoted by FC[U]. The set of all
finite strings over FC[U] including the empty one is denoted by FC[U]*.
The set of nodes z € Q with Cg(z) = 6, and the set of nodes z € Q with
Eg(z) = 0 are denoted by *Q and Q°, respectively.

Definition 4.7. A state s is a subset of the space of nodes X. A node z is
active in the state s iff ¢ € s and passive otherwise.

Definition 4.8. For Q € FC[U], let [[Q]] denote a binary relation in the
set of all the states: (s,t) € [[Q]] f *Q C s5,Q*Ns=0,t=(s—"Q)UQ".
The semantics [[U]] of a GCES U is a union of relations:
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QeFCU]
The semantics [[U]]* of U is a transitive extension of [[U]].
Definition 4.9. A TCES in the form {a.,z"} is called a basic TCES.

Definition 4.10. Two operations are defined over the TCE[X]:

— an operation of nondeterministic choice &:

UV ={Y cUCE[X]||Y € UorY € V};

- aon opecration of combination ®: if U and V are UCESs, then U @ V =
*

ey s )+ € X

fU=U;0U;, then UQV =U; VU, ®V and also for V.

Definition 4.11. The algebraic system < TCE[X], ®,®,0 > is a commu-

tative semi-ring (with a unit ) of TCESs if the following equality axioms
hold for all U,V,W € TCE[X] and Y € UCE[X]:

(+) U =U®0=U
(++) UeU=U (¥#) Yoy =Y
(+++) UeV=VeU (x++)  UBV=VRU
(+4+4++) U (VeW)=(UaV)oW (x+x) UQ(VeW)=({UeV)eW

(++) UR(VeW)=UeVeUW

The fulfillment of the equalities directly follows from Definitions 4.2 and
4.10.

This class preserves both the illustrative possibilities of PNs and the
compact algebraic form of CESs. The problem of converse mapping is solved
for the class of TCESs. But a TCES has only structural distinctions from a
CES, their semantics are the same. So the semantics of coloured tokens is
extended to the class of TCESs without essential changes. Thus, each CPN
has a strongly equivalent coloured TCES.

Theorem 2. Any CPN has a strongly equivalent coloured TCES.

Proof. Let CPN N = (P, T, A, C(P), B(T), W(4), Mp), then CTCES
U = (X¢, FC[U], Sp) will be strongly equivalent to IV, where:

— the set of nodes X is equal to the set P of places of N;

— the set of coloured nodes X¢ = {< z,i > |z € P,i € C(z)};

— the initial state Sy = {< z,i > |z € P,i € My(x)};

— the set FC[U)? is {Q:} such that

Vte T : Q= {zpE)l(z,t) € A} U{yc(y)l(t,y) € A},
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where E(z) = [I %»Cly)= [l =
(t,y)cA (z,)eA

~ we replace each firing component Q; € FC[U}? by a group of equivalent
coloured firing components: Vb € B(t) :

‘Q={<a,i> leg(s) € Qi i € W(z,t)(b)};

Q4 ={<y,j > y°W € Qs j € W(t,p)(b)}-
But a TCES in its canonical form is the sum of its firing components, so we
complete our construction.
Finally, we check the condition of the Definition 3.1. Bijections g and f are
as follows:

g((:c,z)) =< &, 1 >;f((t7 b)) = Qg
and we have:

g(*(t, b)) = g(}(z,i)l(m,t) € Ai e W(z,t)(b)}) ={< z,i > |z € *Qs,i €
W(z,t)(b)} = *Qf = °f((t,b))

9((t,b)*) = g(i(y,m(t,y) €AjeWty®)}) ={<yi>lyeijc
W(t,y)(d)}) = Q¢* = f*((t,b))

i.e. the conditions of the definition of a strong equivalence are true. O

It is easy to ensure that, applying the algorithm from the proof of The-
orem 2 to the CPN from Example 2, we obtain the CCES from Example 1
in the two-level form. That is, this CCES is presented by the sum of all its
firing components without operation 4 in its cause and effect functions.

Conclusion

In the paper we present the extension of the class of cause-effect structures
by the semantics of coloured tokens. This semantics correlates with that
introduced by K.Jensen in [3] for Petri nets. But possibilities of CESs allow
us to introduce it in a more simple and convenient way.

We investigate the relationships of this extended class with the class of
coloured PNs. A simple algorithm is constructed that gives us a strongly
equivalent CPN for each CCES. The problem is in the fact that not any
CPN has a strongly equivalent CCES. We solve this problem by mapping
CPNs into an extended class, TCESs, introduced in [7].
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