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Data space dimensionality reduction in
the problem of diagnosing a thyroid disease

M.S. Tarkov, E.A. Chiglintsev

Abstract. Analysis of a set of data space dimensionality reduction methods in
image recognition problems is carried out. A problem of diagnosis of thyroid dis-
eases with the use of images of cytological preparation is investigated. It is shown
that the morphological image analysis combined with the method of diffusion maps
makes it possible to obtain a higher recognition accuracy in the problem of diag-
nosis of a thyroid disease than with the previously proposed method based on the
Fourier correction spectrum and selection of principal components.

1. Introduction

Currently, the image recognition is widely used in many areas, such as au-
tomatic monitoring system, electronic locks using retina and finger-print
images instead of a key, medical and engineering diagnostics, etc. The re-
search into the image recognition collides with a problem of “dimensionality
damnation”, that is, a quickly increasing data dimensionality. The data di-
mensionality reduction becomes an immediate problem for image recognition
techniques.

2. Dimensionality reduction

In the general case [1], the dimensionality reduction problem is stated as
follows. Let us have a data set X in a multidimensional space En. The data
presented by a set of k vectors is really a matrix with n× k dimensionality.
We suppose the data set to have an internal dimensionality m < n, and in
practice, we have often situations with m � n. The conception of internal
dimensionality implies that the elements of X belong to some manifold with
dimensionality m in the space En. Dimensionality reduction algorithms
implement a mapping of the set X with dimensionality n into a set Y with
dimensionality m with a possible retention of the initial geometry of the
set X. In the general case, geometrical properties of the set X and its
internal dimensionality are not known. Thus, the problem of dimensionality
reduction is, in general, improperly posed and cannot be solved without
additional assumptions about initial data. In particular, we can make a
priori assumption about internal dimensionality of the set X.

Let us consider the dimensionality reduction problem as applied to the
image recognition. Let us have a set of images, and we need to reduce their
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dimensionality for the following recognition. It is impossible to essentially
diminish the data dimensionality without loss of information. The question
arises: what sort of information we want to save in images when we reduce
their dimensionality. The reply is not obvious. Moreover, when mapping
the data onto a space with a lesser dimensionality we can obtain additional
properties or we can distinguish properties that are not brightly expressed
in the original space. After all, this depends upon a recognition problem
under consideration.

Let us consider a classification problem. As the objective of the dimen-
sionality reduction we consider organization of mapping which will provide
the greatest separability of classes in the output space. A statistical sam-
pling parameter known as separability [2], characterizes the complexity of
the classification. A characteristic feature of the image classification prob-
lem is that the number of samples is usually much less than the dimension
of the problem. The difference can be several orders of magnitude.

An approach based on the analysis of morphologic functions of the bi-
nary images characterizing the connectivity, the number and the shape of
objects is proposed in [3]. The integral geometry provides mathematical
fundamentals for determination of such functions called the Minkowski func-
tionals. In a space R2, there are three Minkowski functionals: an area M0, a
perimeter M1, and an Euler characteristic M2. The Euler characteristic is a
variable-sign sum of numbers of simple elements (symplexes) with different
dimensionalities resulting in the decomposition of a body. A simple algo-
rithm for evaluation of the Euler characteristic is based on this definition.
By counting the number of edges, nodes and facets, entirely owned by a
region bounded by two contours, it is easy to see that

M2 = number-of -“islands”− number-of-“holes”.

We can assume every black pixel of a binary image a node of the body,
two black adjacent pixels form the edge, and four black adjacent pixels to
form the body facet. Thus, it is possible to evaluate the Euler characteristic
of the binary image.

Let the gray picture be subject to the threshold processing with the
threshold values from 0 up to 255. For every resulting binary image evaluate
the Euler characteristic. As a result, we have a vector with dimensionality
255. In the analysis of images of slices of biological tissues, the morphological
properties play the key role [3].

The diffusion maps [1] provide a nonlinear approach to mapping of multi-
dimensional data onto spaces with lesser dimensionality. They demonstrate
good results in the solution of some practical problems. This approach is
based on representation of data as nodes of a weighted graph.

Assume it is required to construct a mapping of the data set X =
{x1, x2, . . . , xk} ⊂ Rn, where xi = {xi

1, x
i
2, . . . , x

i
n}, i = 1, 2, . . . , k, onto
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a data set Y = {y1, y2, . . . , yk} ⊂ Rm, where yi = {yi
1, y

i
2, . . . , y

i
m}, i =

1, 2, . . . , k, and m � n. Suppose that X ⊂ M , where M is a manifold
embedded in Rn. Let us consider k points as nodes of a complete weighted
graph with special edge weights. We are interested in the matrix of probabil-
ities of transitions between the nodes of the data graph. Eigenvectors of this
matrix can be considered as axes of the resulting map. Thus, constructing
of the diffusion map consists of the following four stages [1]:

1. Construction of the adjacency matrix W of the considered graph.
The entries of the matrix are the edge weights. The edges are weighted as
follows:

Wij = exp
(
−‖x

i − xj‖2

2σ2

)
.

Here ‖ · ‖ is the Euclidean norm, σ is a parameter chosen in terms of an
experiment, and W is a symmetric matrix of k × k size.

2. Normalization of the matrix W :

P
(1)
ij =

Wij∑
k Wik

.

The matrix P (1) is considered to be a matrix of probabilities of transitions
between nodes of the data graph. Then the transition matrix for t steps is
P (t) = (P (1))t.

3. Evaluation of eigenvalues and eigenvectors of the spectral problem

P (t)y = λy,

where y ∈ Rm are columns of the matrix Y .
4. The largest eigenvalue λ1 = 1 and the corresponding eigenvector

y1 are not considered. The eigenvectors corresponding to other m largest
eigenvalues are used for the representation of the resulting space by the
diffusion map:

Ψm : xi → (yi
2, y

i
3, . . . , y

i
m+1).

3. Cytological diagnosis of follicular thyroid tumors

The cytological diagnosis of a thyroid disease is usually a determining factor
when choosing of conservative or a surgical treatment. The greatest diffi-
culties of a differential diagnosis is follicular thyroid tumors, in which there
are no distinct differential diagnostic features that distinguish follicular ade-
noma from a highly differentiated follicular cancer (Figure 1).

Neural networks are conventionally used in the medical diagnosis. In
most cases, data are preprocessed before making the direct analysis and
classification. In [4], a principal component method with transformation of



82 M.S. Tarkov, E.A. Chiglintsev

Figure 1. Images of cytological preparations: follicular adenoma (left) and
follicular cancer (right)

the Fourier spectrum of images is used to increase the image separability
and dimensionality reduction.

Application of the morphological approach does not give a good separa-
tion of classes without additional data transformation. In this approach, the
Euler characteristics of the sample data vectors are mapped onto a plane
using multidimensional scaling and the Euclidean distance [1, 5]. The map-
ping result is shown in Figure 2. As can be seen from Figure 2, the classes
are significantly mixed.

A data sample obtained from the source images by calculating the Euler
characteristics was mapped onto a plane by a number of different generic

Figure 2. Mapping of images of cytological preparations of a
thyroid gland onto a plane with the morphological approach and
multidimensional scaling (“stars”–– adenoma, “circles”–– cancer)
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Figure 3. Mapping of images of thyroid cytological preparations onto a plane
by morphological analysis and diffusion maps with t = 32 and σ = 1 (“stars” ––
adenoma, “circles”–– cancer)

methods [1]. Ultimately, the diffusion maps gave the best mapping. The
result of applying diffusion maps with t = 32 and σ = 1 to the result of
morphological analysis of the sample is shown in Figure 3 (left).

In Figure 3 (right), the central site from the left of Figure 3 is several-fold
increased. As can be seen, the mapping turned out to be good. Despite the
fact that the points corresponding to the cancer samples are somewhat mixed
with samples of adenoma, many of them are quite compact and isolated from
most points of adenoma. Thus, the classes are easily distinguished visually.

The image mapping by the morphological analysis and diffusion maps
allow making a good classification of cytological data. As in [4], we use test
images on 45 patients with adenoma and 39 patients with follicular cancer.
Other data were considered as a training set with known classes. The results
from [4] are shown in Table 1.

Here N+ equals the number of images classified as adenoma, and N−

equals the number of images classified as cancer. The authenticity of clas-
sification is evaluated as the ratio of the number of correctly recognized
images to the total number of images classified as images of the same type.

Table 1

Class Adenoma Cancer

N+ 37 16
N− 8 23
Authenticity 0.70 0.74
Sensitivity 0.82 0.59

Table 2

Class Adenoma Cancer

N+ 37 8
N− 8 31
Authenticity 0.82 0.79
Sensitivity 0.82 0.79
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The sensitivity is the ratio of the number of correctly recognized images of
a considered class to the total number of images of this class. In this paper,
for recognition we use a method of k nearest neighbors with a parameter
k = 5. The results are shown in Table 2.

As can be seen from Tables 1 and 2, the morphological analysis in con-
junction with diffusion maps allow us to obtain slightly better results in
terms of authenticity and sensitivity.

4. Conclusion

The choice of a method of data dimensionality reduction plays an important
role in obtaining high quality solutions of the problems of image recognition.
In this paper, we show that the morphological image analysis in conjunc-
tion with the diffusion maps makes it possible to obtain a higher quality
of recognition in the complex problem of diagnosing diseases of the thyroid
gland by the images of cytological preparations as compared to the previ-
ously proposed method based on the correction of the Fourier spectrum of
images and distinguishing principal components.
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