5. Interpolating D™-Splines

In Chapter 5 we consider the most important example of multivariate splines in
the variational spline theory. We mean D™-splines. Many results in D™-spline
theory are due to the works of M.Atteia, J.Duchon, W.Freeden, J.Meigneut,
S.L.Sobolev, G.Wahba, etc. A valuable contribution in development of the the-
‘ory has been made by the authors of this monograph too. It concerns the errors
of interpolation for D™-splines, their finite-element analogs, D™-splines with
boundary conditions. The exact rates of convergence were presented in Chapter
4 on the basis of a general technique, but here we make more precise formu-
lations. All error estimates attained in the Chapter are given in the Sobolev
semi-norms. To get them we prove the so called lemma on the Sobolev func-
tions with condensed zeros. Then this lemma is applied in different situations.
The sense of the lemma consists in the following: if a function has a dense set
of zeros, and its Sobolev norm or semi-norm is bounded, then this function is
very small.

Section 5.2 contains the description of well-known B-splines, and an algo-
rithm of interpolation for multivariate functions on scattered meshes based on
B-splines is considered. Here, useful for programmers algorithms of assembling
the matrices is presented in detail. A more interesting part of this Section con-
cerns the convergence in the anisotropic Sobolev spaces. In Section 5.1 we prove
that replacing the minimized semi-norm of isotropic Sobolev space by the semi-
norm of anisotropic Sobolev space does not change the error estimates. Here
we show that the degrees in error estimates in the interpolation of multivariate
functions on scattered meshes do not change if we change a minimized semi-
norm by the equivalent one. These facts allow us to construct and use a special
semi-norm in B-spline space which is calculated faster than the conventional
Sobolev semi-norm. Finishing Section 5.2 we give proofs of error estimates for
spline-interpolation on B-splines.

In Section 5.3, we study D™-spline in the space IR". Here we formulate the
characterization theorems for these splines in the terms of reproducing kernels,
and give the error estimates for the spline-interpolating problem. Further we
propose a special example of interpolating and smoothing the function given
on the finite set of spheres by its average values. The errors of approximation
for such an interpolation are also presented.
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5.1. D™-Splines in Bounded Domain

5.1.1. Interpolating D™-Splines in Isotropic and Anisotropic
Sobolev space

Let 2 C R™ be a bounded, simply connected domain with a Lipschitz boundary,
and let m > n/2 be an integer. We then have a compact imbedding of the space
W] () into C(2). The semi-norm

1/2
1D™ullz3ca) = (Z j D“u)zdn) (5.)
|ct|--m

defines the following norm '

lullwy oy = (lellg2qay + D™ w13 2(0))* " (5.2)

in WJ*(12). Here a = (ai,...,a,) are multi-indices with non-negative integer
components, |a| = a;+...4+an, al=ay!-...-ap!, D% = d™u /0% z;...0z,
are partial derivatives of the m-th order. Likewise, other semi-norms,

1/p
"Dku"LP(ﬂ) = ( Z ] Duu)pdn) » P b 2!
|<==|—-’c n

| D* t“-||Lv(n)“"1‘9‘1| max_ |D%u(z)|], - p=o0

can be introduced in the space WJ"(§2), with the parameters k and p satisfying
conditions

k—Egm—g, p>2, except(k=m—n/2& p=oc0). (5.3)
p
Note that conditions (5.3) imply the imbedding W*(12) C W:(.Q)

Let f € W*(2), K = {Py,..., Pn} be a set of points from §2. The element
o € W*(12) is said to be an interpolating D™ -spline (see also Section 1.3.3.) if
this element is a solution to problem

= D™ 5.4

o =arg Wi 1(;) D™ ullz2(a) (5:4)
where K~ 1(f) = {u € W*(2) : u(P;) = f(Pi), it = 1,..., N}. The following
necessary and sufficient equalities

(DMo, Dm‘u)L:(g) =0, Vue K"—l(ﬂ) (5.5)

for the spline ¢ to be an interpolating D™-spline are known as an orthogonal
property.

In Chapter 4, we have shown that if the sets A;, Az,... form a condensed
h-net in 2, then the D™-splines o;, which are the solutions to problems
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o; =arg min || DMulp2(g) (5.6)
w€AT(f)

strongly converge to f in the norm of the space W3 (82). Further, we shall name
this fact as the convergence theorem for D™-splines.

We define now D™-spline in the anisotropic Sobolev spaces. Anisotropic
Sobolev space Wj™(12) differs from isotropic space W3 (2) only in its norm

lullwp (o) = (“””i?(n) + ||Dmu||‘“},2(n))1/2

where the semi-norm is defined as follows
1/2

ID™ ]| 2y = f(Dgu)2+...+(Dgu)2dx . (5.7)
2

~ One can easily see that this semi-norm is majorized by (5.1). The properties of
the space WJ™(12) are different in different directions, though, the symmetry in
perpendicular directions is saved. For this reason, the Sobolev space W3 12)
with such a norm is called the anisotropic Sobolev space. Note that the changed
norm is equivalent to the original one. :

Similar to the above, we introduce the interpolating D™-spline

: m,

o =arg min  [[D™u]zaa)
in the anisotropic Sobolev space. It is not difficult to prove that the spline o
exists and is unique, if the set K contains an L-solvable set for the space of
polynomials IPy,—;, whose degrees do not exceed m — 1 in any n variables.
Obviously, Ppn_; C Pyy—;. Certainly, the convergence for the D™—splines on
a condensed h-net in 2 takes place as for the ordinary D™-splines.

5.1.2. Uniform Equivalence of Norms

Let B be a compact in the Cartesian product 2V consisting of L-solvable sets
only. .

Lemma 5.1. There exist the constants ¢;,c; > 0, such that inequalities

R 1/2
callullwpa < (Z u®(b;) + ||Dmu||iz(m) < elullwyr (o) (5.8)

i=1
hold for any function u € Wj(£2) and any L-solvable set b — (b1,...,br) € B.
Proof.  Since the imbedding of W3*(£2) into C(R) is compact,
lulle < Kllullwp(g), (5.9)

whence ¢; = (K2N 4| D™ ||2)!/2, Any L-solvable set defines a special equivalent
norm, hence, for any b € B there exists a positive constant ¢;(b), satisfying
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G(b) < D u(b:) + 1D ulLa(g). (5.10)

We need to show that there exists a total constant ¢; independent of b such
that

R
C% 5 Zuz(b.—) + ||D"'u||i;m), Vu € S, vb € B (511)

i=1

where S = {u € W*(2) : |lullwy(a) = 1} is the unit sphere. Assume now
that no constant satisfies condition (5.11). In other words, there is a sequence
of L-solvable sets b* = (b¥,...,b%) € B and functions ux € S which satisfy
inequalities

R
1
> uk(08) + 1D ukll o) < 7 (5.12)

=1

Since the points b* belong to the compact B, the sequence of the points ', ...
can be chosen to converge to a point b € B. Adding inequalities (5.10) with
u = ux to (5.12), we obtain

R
S (h) — i) 2 (6) - 7. (5.13)

i=1

If we prove that the left-hand side of inequality (5.13) tends to zero, a
contradiction will arise thereby proving the lemma. The convergence to zero is
implied by the inequalities

| Zuk(b ) —uf(bf) | < 2KZ |k (bi) — wi(bF)]

=1

< 2BRmax 1166 — Sue I,

because the latter term converges to zero, owing to the compact embedding of
Wit (£2) into C(£2). 0

Lemma 5.2. There exist constants hg > 0 and A > 0, such that

lullwp 2y < AID™ |20 (5.14)

for any function u € WJ*(§2) having an h-net of zeros in the domain 2 when
h < ho.

Proof. Take in {2 an arbitrary L-solvable set of points {t;,ts,...,tr}. If
€1,€2,...,eR is a basis in Py, _;, the condition for the set to be an L-solvable
set is equivalent to non-singularity of the matrix [ei(t;)] (i,j = 1,..., R). Its
determinant depends in a continuous manner on the pomts t1,...,tR; hence,
there exists such hy > 0, that the set
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R
B=]] (B(t,h)nn)

=1

forms a compact of L-solvable sets; B(t, ko) is a closed ball in R™ of the radius
ho, with the centre at ¢.

Let a function u have an h-net of zeros in §2 when h < hg. Then there are
points b; € B(ti,hy) (i = 1,...,R), where u equals zero. Using inequalities
(5.8), we arrive at (5.14) with the constant A\ = 1/c;. 0

5.1.3. Special Cover of Bounded Domain

We will say that the domain {2 satisfies the cone condition, if there exist two
parameters § > 0 and r > 0 such that for every point ¢t € 2 there exists the
‘vector £ for which the cone

C(t,&8,r)={t+An: neR", [n|=1, £{(n,6) <6, 0<A<r}

is' totally contained in 2. In (Nikolsky 1972) one can find the fact that any
domain with the Lipshitz boundary satisfies the cone condition. Taking this
fact into account let us formulate the following lemma about a special cover.

—

~
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- Fig. 5.1. Illustration to Lemma 5.3: the choice of the set T:. One can see four points of grid
forming T, .

Lemma 5.3. There exist positive constants M, M;, ¢, such that for any € < €
there is a finite set of points T, satisfying the conditions

(1) the balls B(t,c) (t € T.) are contained in 2;

(2) the balls B(t, Me) cover {2, :

(3) each point of the domain {2 belongs to, at most, M; balls of the covering
balls B(t, Me) (t € T.). _ -
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Proof. Consider the integer grid Z" in IR". Obviously, it forms a /n/2-net
in IR™. Hence, the grid (2¢/+/n)Z" is an e-net in R", i.e. for any ¢ € IR" there
exists a point z(q) € (2e/4/n)Z" such, that dist(z(q),q) <e.

Let r > 0, r' = rsinf/(1 + sinf). It is easy to see that for any point
s € R™ and any unit vector £ € R" the ball B(s+ (r —r')¢,r') is contained in
C(s,&,8,r). The choice of r' is illustrated by Fig. 5.2, where the ball is inscribed
in the cone.

Let

Rsind 2
= M=2+—, Mi=(M 1nH”
co 2(1 + sin@)’ + sin @ 1= (M +1)
and find for every ¢ < ¢ a cover, satisfying conditions (1), (2), (3). To do this,
consider the finite set of points .

2¢c
= —" t 7).
T.={te \/HZ B(t,e) C 2}

t -
~ - E—

Fig. 5.2. Cone C(t,£,8,r) contains ball B(v, '), r/r' = lj_i:igg.

So, condition (1) is fulfilled. Now, prove condition (2). Let s be any point in
12, then Me < Mey = R and, consequently, there exists a cone C(s, £(s), 8, Me)
totally contained in §2. But, we prove that some ball B(v,2¢) of the radius 2¢
totally lies in the cone.

The ball B(v, ) necessarily contains a point ¢ in the e-net (2¢/y/n)Z". Since
the ball B(t,¢) is contained in B(v,2¢), then B(t,¢) is totally contained in £2,
i.e. t € T.. From Fig. 5.3 one can see that B(t, Me) contains the point s.

So, condition (2) is also fulfilled. The third condition is proved more trivially.
It is necessary to count the number of elements of the form %(zl,...,zn),
where z; are integers, in the ball B(s, Me). This number is independent of
s (approximately), and may by estimated by the number of points z € Z"
in the ball B(0, Me - 3'/—_) = B(0,M+/n/2). Counting all points from the n-
dimensional cube, containing the ball as inscribed, we obtam the number M; =

(2M - /)2 + 1)" = (My/m + 1)™. o
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Fig.5.3. Point s belongs B(t, Me), teT,.

Lemma 5.4. Let M > 1. Then there exist ¢, p, ho > 0 such that for any t € R™
and any function u € WJ*(R™) which has an h-net of zeros in the ball B(t, ph)
at h < ho, the following inequality holds:

ID*ull oo, mpny) < Chm—k—n/2+"/p”Dmu"m(a(t,Mph))- (5.13)

Proof. Choose an arbitrary L-solvable set {b1,b2,...,br} from R". Clearly,
there exists § > 0, such that the set B; = Hfz__l B(b;,6) forms a compact of
L-solvable sets. A change of coordinates z — z/é transforms an L-solvable
set into an L-solvable set. We designate p; = b;/8; then B = I[IB(p:i,1) is a
compact of L-solvable sets. Let us find such p > 0 that the ball B(0, p) contains
all balls B(p;,1). The set B then forms a compact of L-solvable sets is B(0, p)V,
and hence, in B(0, M p)" for any M > 1. Lemma 5.2 implies that inequality

R 1/2
allullwyseo,mp) < (Z u?(b) + lleulliz(a(o,Mp;)) (5.14)

=1

holds for any function u € W;"(R®) and any b € B.

Let a function u have an 1-net of zeros in the ball B(0, p). The set B is so
defined that at least one zero, b;, of the function u can be found in each of the
balls B(pj,1). Therefore, the sum 3" u?(b;) vanishes, In view of the continuity
of the embedding W{*(B(0, Mp)) C W} (B(0, Mp)), we obtain from inequality
(5.14)

“Dku”LP(B(O,Mp)) < C“DmH“L?(B(o,Mp))- (5.15)

A linear change of coordinates, z’' = ¢ + hz, in (5.15) completes the proof of
this lemma. O
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5.1.4. Lemma on Sobolev Functions with Condensed Zeros and
Convergence Rates for D™-Splines

Lemma 5.5. There exist constants ¢, by > 0 such that
1D ul| oy < ch™*="/240/P|| D™y 1o (5.16)

for any function u € W;™(2) which has an h-net of zeros in the domain {2 for
h < hy. The constant ¢ depends on the domain 2 and on the parameters k and
p, which satisfy (5.3).

Proof. It was shown (Besov et al. 1975) that there exists a bounded operator
which continues a function u € WJ*(2) from the domain 2 to R":

”UHHW;(R") < Kllullwp 2. (5.17)

Let €9 and p be parameters defined in Lemmas 5.3 and 5.4, and the parameters
€ and h be chosen using the condition ¢ = ph < phg = ¢,. Estimates (5.13) are
valid for the function u? for any ¢ € T, because this function has an h-net of
zeros in 2.

Making use of the Jensen inequality (3" 2f)'/? < (3" 22)1/2, inequalities
(5.13) and (5.14) from Lemmas 5.4 and 5.2, we obtain a chain of inequalities

1/p
||Dk“||LP(ﬂ) < (E ”Dk“n”’iv(ﬂ(tmph)))
tETz

1/2
< (Z "Dkunnfzr(a(t,Mph)))

teT,

N\ 1/2
<ch™—k—n/24n/p (Z “Dmun”%%B(t,Mph)))
teT, '
SC\/Eh"’"’““"/H"/PHDm“n”L?(Rﬂ)
ScK/Myh™ k=m0 0 |y )

SCAK /MBI | Dy L.

The proof for p = co is quite similar. O

Theorem 5.1. Let A}, be a sequence of condensed h-nets in 2. Then for any
function f € WJ*(£2) (m > n/2) the sequence of D™-splines oy, which are the
solutions to the problems

op =arg min ||[D™u| 20
w€AT(f)
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strongly converge to f in the space WJ*(§2) as h — 0, with the following
asymptotic estimates of convergence:

ID%(n = Hlllze(ay < ch™ =472 D™ (a4 — £)]| 2(e) (5.18)

where the constant c is a function of £2,m,n,p and k (satisfying (5.3)) inde-
pendent of h and f.

Proof. The convergence theorem for D™-splines implies the convergence oj —
f in the norm of the space W3"(2). To prove estimate (5.18), it is sufficient to
apply Lemma 5.5 to the error (o, — f) which has an h-net of zeros in 2. O

Remark 5.1. If h-nets are condensed not in the whole domain 2 but only in
its subdomain §2' C 2, estimates (5.18) hold in 2'. In addition, the splines o},
converge in {2 in the norm of the space WJ"(12) to the function ¢ which is the
solution to the continuation problem

o = arg D™ ul|L2(0).-

min
u€(R2)-1(f)

For this reason, it is possible to solve D™-approximation problems in compris-
ing domains of simpler geometry (for example, in parallelepipeds).

Remark 5.2. D™-splines in the anisotropic Sobolev spaces converge to the
function f with the orders presented in Theorem 5.1. Naturally, since the norms
in the isotropic and anisotropic Sobolev space are equivalent:

lullwp 2y < ellullwmay,
then
ID™ (o = Hllzo(a) < ellon = fllwy a)- (5.19)

On the basis of the general convergence theory (see Chapter 3) it is easy to
prove strong convergence o, to f in the space WJ™(§2), like that for D™-splines.
So, combining (5.18), (5.19) we bring about to the required converging orders.

5.1.5. D™-Splines with Boundary Conditions

Consider in the Sobolev space WJ*(2) its subspace

Wy ={ueW (2): D%|r=0, |o|]<m-1}. (5.20)

Let s understand the equality D%u|pr = 0 in the sense of the space L2(12).
This definition is correct, because the partial derivatives D®u with the multi-
indexes satisfying |o| < m — 1 are at least from W3(42), and their traces are
clearly from L*(I). -
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Lemma 5.6. W is a Hilbert subspace in W(£2).

Proof. It is sufficient to prove, that the set W is linear and closed. If u,v €
W1, then
D% (au + bo)|| 22y < lallD¥ullz2cry + BIID*vllL2cr) =0,

and linearity is established. Now demonstrate that if u,, is a sequence from Wy

converging to u, then u € W3', too.
The trace operator on the manifold I" is bounded, i.e. for any v from W; (£2)
the following equality

ol < ellvllwio ' (5.21)
is valid. Since the partial derivatives D*(u — un) belong to W;(Q), then we
have

1D%ul| L2(ry < I1D%(u — un)llzacry + 1D unllz2ery <

< | D%(u — un)llwi(a) < callt — tallwp)-
From here it follows that ||D*ullz2ry =0, and D%u|r = 0. Thus, ﬁfg'(.())

is closed. O
Let f € WJ*(£2). Consider in the space W (£2) the affine close subspace

]
Hf =f+ W53 Clearly, Hf* consists of the functions ¢ € Wi({2), whose a-th
derivatives (|a| < m) coincide with respective derivatives of the function f on
the manifold I'.
Let A be a subset of §2. Introduce the set

ATN(f)={ue Hf : ula= fla}

Definition 5.1. We shall call the funciion fAe HY as an interpolating D™ -
spline with boundary conditions, if fA is a solution to the following problem

fA=arg min |ID"ullLx)- (5.22)

For the interpolating D™-spline with boundary conditions the following
theorem of existence and uniqueness is valid.

Theorem 5.2. The solution to problem (5.22) always exists and is unique.

Proof. Since the Hilbert space Wj3"(£2) is compactly embedded in C(£2), then
for any point a € §2 the set

Lo={ueW®): ula)=f(a)}
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will be an affine hyperplane in W3"(§2). The set A~!(f) may be written as an
intersection of affine closed subspaces in W3*(§2) in the following way

A7Yf) = () L) N HY.

aEA

Thus, A71(f) is the affine closed subspace in Wj*(£2) and it isn’t empty, be-
cause the function f belongs to A~!(f).

We know that solution to the problem of semi-norm minimization on the
closed affine subspace A~1(f) is determined with the accuracy to the intersec-
tion of the kernel of the semi-norm and A71(0). Thus, the uniqueness will be
proved if the kernel of the semi-norm, which is the space of polynoms P,,_;,
and A~!(0) have no common elements except zero. Assume that there exists
a nonsingular polynomial p contained in A~Y(0). Then, since the polynomial p
and all of its derivatives are continuous functions, the conditions D|r =0in
L*(I') for all |a| < m — 1 are equivalent to D?p(a) = 0 for all points a € £2.
But such a polynomial may be only zero. Thus, the Theorem is proved. ad

Remark 5.9. Similar to orthogonal property (5.14) for the ordinary D™-
splines one can write down the orthogonal property for D™-splines with bound-
ary conditions

(D™ fA4,D™0) 2y =0, Yoe ATY0). (5.23)

Further we shall need the folldwing equalities, which are consequences of

(5.23):
(D™ f4,D™(f4 = £))12(2y =0 (5.24)
and

D™ (f4 — 2oy = =(D™(f4 - ), D™ f)raa- (5.25)

Theorem 5.3. There exists a parameter hg > 0 such that for any set 4 being
a h-net in the domain 2 and for any f € Wim(£2) the following estimates

ID*(F4 = Al ooy < CR*™E =34 D™ £l 1y ‘ (5.26)
are valid. Here, the constant C is independent of k and f. The parameters
k,m,n and p satisfy condition (5.3).

Proof. Inequalities (5.26) will be obtained with the help of Lemma 5.5 about
the functions with condensed zeros. Let us choose the constant hy defined in
the Lemma and assume that A4 is a h-net with h < hy. Utilizing the Lemma
we have equalities

ID*(f4 = Pllria) < ciz'"""“%+§§{D"‘(:fA = 20y (5.27)
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Estimate the right part of (5.27). To this end prove that there exists a constant
M > 0 independent of f for which the following inequalities

ID™(f4 = HlZa(ay < MIFA = FllLaaylD*™ fll 2o (5.28)

are true. Make use of equality (5.25) and definition of D™-semi-norm (5.2):

ID™(fA = F} 2y = —(@™(F* = £), D™ fraa)

- — Z /Da(fA f)DafdQ (529)
|a|-m
We assert that _
f DO(fA — F)Dfd = (—1)™ f (4 - D™ fan (5.30)
for all @ with |a| = m. To demonstrate that utilize the Green integration
formula:
u—dﬂ = fv—d!?+ fuvcos(n,z:k)dﬂ (5.31)
Oz
2 7

which is valid for domains with Lipshitz bounds and functions u, v from W} (£2).
Here n is the exterior normal vector.
Throwing over the partial derivatives in the expression

[ DA - poesan:
n

from the function f4— f to f in conformity with the Green formula we naturally
obtain the formula which is similar to (5.30). One differs from the other by the
sum of integrals of the following form

[D"’""(f“" — YDt f cos(n, x4 )dI,
r

where 0 < |a;| <m, 0 < |az| < m--1. Since the function f4 — f belongs to

0
W7 (£2), these integrals are equal to zero:
| Do (54 = D+ costm,au)ar|

<D= (f4 = Hlle2yllD*T 2 fllz2¢ry = 0.

Thus, taking together the proved facts we have
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ID7 (5 = ey == 3 2 [ D254~ f)p* s
1}

|a|=m

=" ¥ 5 [(54 - poresan
n

|a|=m
m! .,
<SUFA = Fllzaeay Y. g”Dz Fllzz(ay,
la|]=m

and the existence of the constant M in inequality (5.28) becomes evident.
Putting in (5.27) the constant k being equal to zero and p = 2 we obtain

IF% = fllzacay < ek™ID™(F4 = Fll2ca)- (5.32)
Combining inequlities (5.28) and (5.32) we establish

ID™(f* ~ F)llL2cay < Mch™||D*™ f|| 12, (5.33)
from which and from (5.27) follows (5.26) with the constant C' = M¢c?. O

Remark 5.4. If the function f belongs only to the space Wi(02) withm <1 <
2m, then producing the demonstration as in the latter theorem one can prove

ID*(F* = Flllray < CR'™ “ERD fll Lo a)- (5.34)

Remark 5.5. One can consider D™-splines with boundary conditions
D*fA|r = D*f|r (5.35)

only for k; < |a| < m. In this case the estimates of D™-gplines are also im-
proved and become of the following form

ID*(f4 = FllLe(ay < C'h'_k"%J'%_mi"(zm*"h)“D'f"m(n)-

Remark 5.6. 1If one considers D™-spline with boundary conditions (5.35) for
0 < || < k1 < m then one obtain no improvement in comparison with the
usual estimates of ordinary D™-splines without boundary conditions.
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5.2. Finite-element D™-splines on B-splines

5.2.1. Theoretical Grounds of Approximation with B-Splines

The utilization of B-splines in interpolation and smoothing algorithms is ex-
plained by sparseness of arising SLAEs (systems of linear algebraic equations),
and also by good approximating properties of piece-wise polynomials of the
defect 1. Finite element spline approximations inherit the convergence rates
from the respective analytical splines.

For the analytical spline-functions one can replace the energy functional (or
semi-norm) to the equivalent one and this does not provoke the changing in
converging rates of spline approximation when interpolating meshes are con-
densed. This also concerns the spline on subspaces. We consider the anisotropic
Sobolev space Wi™(§2) of different smoothness by different variables and the

semi-norm

2

= (3 /(D,"”u(a:))zdm . (5.36)

=1

On the space of B-splines we introduce the semi-norm equivalent to (5.36)
which provide more sparseness in SLAEs in comparison with (5.36). This ap-
proach is like the one used in the theory of finite difference schemes and is called
the condensation method. The general convergence theory for spline interpola-
tion shows that we must choose an equivalent, but the most effective semi-norm
for algorithmic implementation. Equivalence saves the error estimates, i.e. it
does not increase error orders. ‘ .

We also consider the structures of these sparse matrices and the procedures
of multiplications in detail.

5.2.2. Semi-Norms in Tensor Product of Finite Dimensional Spaces
. n -
Let £ be the parallelepiped [] [ai,b:], Si,...,Sn be univariate finite dimen-
i=1
sional spaces of functions with the basic functions
Bi(z;), j=1,..,n, 1=1,.,y;

By the tensor product § = ®J,S; one names a n-variate space of functions, .
which is the linear shell of functions

Bi(X) = B;,(z1)...Bi (zn), I€Il, (5.37)
where IT = {I = (i1,.yin) ¢ 1 <81 S Y11 S in < yn}. We assume the

basic functions in the spaces Si, ..., S, form partitions of the unity, i.e.

Yi
S Bi(z;) =1, Yaj € lajby). (5.38)
=1 '
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Obviously, basis (5.37) also forms a partition of the unity. Assume that the
bases consist of non-negatlve functmns and contain the polynomials up to the
(m; — 1)-th degree, i =1,.

Sem:—norm (5.36) for the functlon E C1B(X) in the tensor product of

spaces S is represented in the followmg forrn

(Z / (oMY C;B;(X))de)

Ienr

Introduce the following notations

n

Qf = H [ais bi]a I= 1,"':”’:

i=1

il
(il,...,if_l,i1+1, ...,’in) f?/—' 1 l ?l-‘ n,
Iy = { (ig, ... in) Y
(i1, ey in—1) ,l=n,

I={L : 0<i; <y;, V;}

(:!.‘1, ...,JT;..I,Q?H.I,...,wn) 3 l 7{: 1, { # n,
X{ = (Ig, ...,zn) ) l = 1,
(Z1,+00y Tn1) ,I=n,
Bi(X) _
B (X)) = By (e’ I=1,.,n,

which help us to rewrite the semi-norm as follows
1
n ’ w 2 2
| . |1 = Z f ( Z BII(X[) . Z C[B'('ml)(w;)) dX .
=1 n Liemn =1

To estimate the semi-norm use the following lemma.

Lemma 5.7. Ifa; > 0and Y a; = 1, then
j=1

(Z aj J) < ZC‘J (5.39)

Proof. 1t is sufficient to use the Schwartz inequality ( Z z;y;)?

with z; = /45, yj = \/azb;.

Applying the Lemma we have

l/\
NgE]
1
.k
M=
e
<o

~
Il
—
-,
1l
o
O
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‘h<l = (X": [ Y Bu(Xy): (i: CIBgtm')(xr)) dX) :

=1 n Liel =1

Thus, we obtain another semi-norm | - |; in the tensor product of spaces,
which majorates the initial one. Prove that the second semi-norm is induced
by a symmetric scalar semi-product in S. To do this, introduce the functions

ZHX) = VB(X)) - Bi,(z). (5.40)

Then we have

> / > Br.(x:)l(f CIBE,"")(I:)) dz =

=1 ) Lieln =1
Z / Z BI:(XI) ZC},”BS;’H)(&H ZCIEJIB( ')("E‘ dX =
Leln i1=1 =1
Z | ¥ emrzi) 3 Crs D Z4(X)dX =
=1 p lem n=1

Z ] > 8L, J)CiIDM ZHX)C D™ Z5(X)dX,

=1 Tell Jell

where § is the Kronecker symbol. The corresponding scalar semi-products, for
the first and second semi-norms are of the following forms

() CiB1, Y E;Bsh

Ienn JEH

-Z ] ) ZCID""BI(X) E;D™ Bj(X)dX.

=1 Ienn Jenn

(Z CiBj, Z E;By)2

Ienn JGH

= Z / > Z 8(I, i) - CID™ ZY(X) - E;D™ Z%( X )dX.

=1 Ienm Jen
5.2.3. Polynomial Splines of the Defect 1 7
For the integer N > 2 consider the partition of the real line by N intervals:

A: (—o00,z1),[21,72), ., [TN=1,00).
Definition 5.2. By polynomial spline of the k-th degree and defect 1 we call the

piece-wise polynomial function f(x) € C*~1(—o0,00), which is a polynomial of
the k-th degree on any interval from A. -
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Otherwise, the function f(z) is composed of polynomial ”pieces” and con-

tinuous up to (k—1)-th derivative in the points 21, ...,z y—1. Polynomial splines
form the linear space S%, whose dimension is equal to (N + k). It is known,

that S& has the B-spline basis {B;}N**  satisfying the conditions
Bi(z) #0 onlyif € (zig_1,1:), ' (5.41)

t=1,..,N+k, 2; = —00if i <0, z; = +00 if i > N. Thus, the B-spline
supports consist of, at most, (k + 1) intervals of the partition A, and we can
say that the functions B; have finite supports.

Any function f € S% is linear combination:

N+k

f(z) = Z CiBi(z). (5.42)

Enumerate the intervals of the partition A in the order 1,..., N and introduce
the function

iz — {1,.., N}, (5.43)

putting into correspondence to any point z the interval, which contains this
point. Taking into account condition (5.41), formula (5.42) is simplified:

.
f) =" Ci4iBi,+c). (5.44)

=0

For the integer positive vector N = (Ny,...,N,) define the partition A =
Ay X ... x Ay of the space R" by cells making use of the following partitions
of real lines

A (—oo,mg')), [mg'),mgl)),..., [a:f,:,a_l,oo).

Definition 5.3. The multivariate space of the polynomial spline S’z of the de-
gree k = (ky1,...,k,) of the defect 1 is the tensor product of univariate polyno-
mial spline spaces: Sﬁ = ®?=1.S'g“_.

In particular, this signifies that the dimension of S% is equal to (N; + k) -
*(Nn + k) and its basis is formed by the products of univariate B-splines:

Bi(X) = B;,(x1)...B; (),
ITell ={i1,...,1n), 1 <y <Ny + k1,1 <idp < Np+ k), (5.45)
X =(x1,...,zp).

The function By(X) has the finite support consisting of at most (k; + 1) - ... -
(kn + 1) cells of the partition.

Any function f € S’ﬁ is linear combination
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f(X)=_ CiBi(X) ‘ (5.46)

Ienl

of multivariate B-splines Br(X). Analogously to (5.43) introduce the multi-
variate enumeration of cells and the function

Ix: X > 9 :

¢ = {(2'1,...,'1‘:“), 0<i4; <Ny, 02, < Nn},

which puts into correspondence to a point X the multi-index I'x of the cell
containing X. Then formula (5.46) may be changed:

f(X) =|Z Crx+1Bix+(X). (547)

Jee

The set @ = {(s1,...,52) : 0 < 51 < k1,...,0 < 5, < kp} is called a pattern of
shifts. :

5.2.4. Assembling of Interpolating Matrix A
Consider two smoothing D™—spline problems on B-spline spaces (n = 1,2):

N
— ; AT 0 — 1:)2
Op = arg urggi alul. + gwg(l},u Ti)
with the positive weigths wy,...,wy and linear continuous functionals Ly, ...,
Ly. Then, in accordance with the general theory of splines on subspaces (see
Chapter 4) the elements of the interpolating matrix A for B-splines case are of
the following form

a;;r = \/’wi(L,'BI)(P,'), i=1,N, TIell (5.48)

The multiplication procedure on an arbitrary vector (us,I € IT) is as follows:

v = Z a;juy, 1=1,N. : (5.49)
Iennr

Formula (5.49) is computationally inconvenient: first, it does not takes into
account the sparseness of A, secondly: the multi-index realization of arrays in
programming languages is impossible or very slow. Further, we show how to
dispose the matrix in a two-dimensional array in a packed form without zero
elements, and organize a fast unpacking with the aims of multiplication of the
matrices 4, A* by an arbitrary vector.

Introduce one-dimensional enumerations on the sets of multi-indexes of ba-
sic functions IT, multi-indexes of cells @, pattern of shifts @ in accordance with
the following formulas

(D) =1+ (1 -1+ G2-1)( N1 +k)+..., Tel, _
e(N=1+G1 -+ =DN+..., JeP, (5.50)
p(I)=14+h+iki+.., JEO.,
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i.e. in the lexicographic order.
Making use of formula (5.47), multiplication procedure (5.49) is rewritten
in the following form:

vi= VWi ) ur(LiBi)(P) = VWiLi( Y urBi(X))(P;)

ren Ien
= VWiLi() urs1Bras)(Pi) = Y ury /Wi LiBr,45)(Py),
Jee Jee

where I; stands for the multi-index of the cell ] p; containing the point P;. Thus,
in order to calculate (5.49) we must preserve only the following elements of the
matrix A:

ai5;+3 = VWi(LiBr,45)(P), i=1,N,Je@ (5.51)
and produce calculations with the help of the following sum
v = Z Qi ;4 JUL; 4 J- (5.52)
Jee ’

Unfortunately formulas (5.51),(5.52) contain calculations with multi-indexes.
Using notations (5.50), propose another implementation. Replace the elements
of the matrix A in two-dimensional array A = (a;;) as follows

Gij =i L+p-1(j), =L N, j=1K, (5.53)

where K = (k1 4+ 1)-... (kn + 1) is the number of different multi-indexes in the
pattern array ©. Enumerate the vector u from (5.49) in the following order

Ui = Up-1(4), t=1,H, (5.54)

Here H = (N1 + k1) - ... (Nn + ky) is the dimension of the vector w. Now,
multiplication procedure (5.52) may be rewritten as follows:

k

%= ) 8i; ULy i)
j=1
X R (5.55)
= Z @ij Un(L4p-1(j) = Z Gij Um(1;)4mp=1(j)-
i=1 j=1

Introduce additionally the arrays of attachement M and shifts G:
m; =n(l;), i=1,N,
9; =7rpul(j)) .7 =11I"

After that, the multiplication procedure may be described in following form

k
v; = Zaijﬁm‘+gj L (556)
j=1
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which is convenient for computations. We shall not prove analogous formulas
for multiplication by A*, but only give them in ready form

u =0,
tmitg; = lim;4g; + Gij0s, Vi=1,N, j=1k.
First, we annul the vector #, then, in accordance with (5.57: second line) suc-

cessively change its components. Formulas (5.56), (5.57) may be effectively
realized in accembler codes.

5.2.5. Assembling of Energy Matrix T

Let the domain §2 = [a;, 1] X ... X [an, by] coincide with the rectangular domain

[ T 1$N1-1] X . x [zi™, a:g,‘)_l], i.e. with the union of all internal cells of the
partition A. The elements of the energy matrix T have of one the following
forms (i=1,2):

t_[J'=(B[,BJ),', Iell, Jell. (558)

The matrices are sparse because of finite supports of the B-splines. Consider
the structure of the energy matrix T in détail for the first semi-norm. Making
use of the notations of Section 5.2.2 we have

try = / B, (X))B,(X))dX, / B{™ (z)B{™ (2)da;. (5.59)
l-—l ) ar

From the definition of B-splines it follows that t7y # 0, if |[I — J| < k (i.e.
li1—71] < ki, VI =1,...,n). The latter condition provides for B; and B, whose
supports are crossed.

Introduce the pattern @y = {(i1,...,0n) : —k1 < i1 < ky,y.oey —kn <ip < kp}
-and numeration of its elements:

m(I) = iy + ky + (ia + k2)(2ks +1) + ... (5.60)

Then, the multiplication procedure of matrix T on an arbitrary vector may be
presented as follows

Vi = Z trr+oursy, 1 €IL ‘ (5.61)
Je®d,

Similarly Section 5.2.4 the multiplication procedure may be replaced into two-
index expression

= fijlitg()s (5.62)

where



110 Interpolating D™-Splines

Ky =2k +1) X... x (2kn + 1),

tij = bttty 0= LH, j=1KI, ' (5.63)

01(3) = (n7 ' (), 7 =LK1,

Note that in formula (5.61) the index I + J (I € I, J € ©;) can leave the set
II. In this case it is necessary to annul the respective elements t_,-j in formula
(5.63), and then the summing in (5.62) must be held when #;; is not equal to
zero.

Consider now the second energy semi-norm | - |. For it the element ¢7; is
calculated in another form: '

n b'
trr=3 8L, ) / Br(X;)dX, f B{™) (2)B™ (21)dar. (5.64)
=1 o

ap

In this case the matrix T becomes more sparse, there arizes the opportunity
‘to conserve it more efficiently and organize a faster multiplication procedure
of the matrix on an arbitrary vector. Naturally, the element t;; is not equal
to zero, iff I = J; & |I — J| < k. Instead of the rectangular pattern @; there
arizes the croix pattern @, which may conveniently written out in the form of
the union

@, = U o' = U{(o,...,z',,...,O), ~ki < i1 < kil
k=1 =1

Then, the multiplication procedure of the matrix T' by arbitrary vector is pre-
sented as follows

vy = Z tri4guryg, IT€Il (5.65)
Jeo,

Introducing the numeration of different multi-indexes from the pattern @, in
the same manner as previously, we have a simplified formula for multiplication:

K2 )
01 =) tislitgi), (5.66)
t—'i,j - tﬂ‘l(i),ﬂ‘](i)+7,;l(j)? 1= I,H, ] = 1,1{2, (5-67)

92(5) ==(n;'(G)), j=1,RK2,

where K2 = (2k; + 1) + ... + (2k, 4+ 1) — (n — 1) is the number of different
multi-indexes of the pattern ©,. The matrix T may be conserved in a smaller
array than before. We do not need the calculation of its elements but only the
two following arrays
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tﬂr' =/BI,(Xz)dX:,

2
b .
zit;jf = ‘/Bflml)(II)B;rlt)(mf)dmf1 l= 13—”1 I € II.
ar

Then the multiplication procedure is of the following form

n

)
vr=)_ > thzigurts

I=1 jeo

We shall not reduce the formula to two-index form. Note only that the
reduced formula is equivalent to the convolution on one-dimensional lines (on
columns and horizontal lines in two-dimensional case n = 2). Unfortunately,
the realization formula is twice as expensive.

5.2.6. Convergence in Anisotropic Space

The aim of this Section is to prove the equivalence of the semi-norms |- |; and
| - |2 on the space of B-splines. This equivalence is sufficient grounds for the
application of the second semi-norm because the error estimates are the same,
but the algorithm (see previous Section) is cheaper.

For the sake of simplicity consider the domain 2 = [0,1]". Let S%(£2) be
the space of B-splines with equidistant meshes in each direction, given by the
vector T = (71,...,Tn), Where 13 = 1/Ny,...,7» = 1/N,, are reciprocal to the
integers. Prove the following preliminary lemma.

Lemma 5.8. If the semi-norms || - ||, and || - || in the finite-dimensional space
X have the same kernel P, and the first semi-norm is majorated by the second
one: ||ul|s < Callul|s, then the semi-norms are equivalent.

Proof. Decompose X in the direct sum of subspaces X = P @ P, Since the
semi-norms become the norms in PL, and P+ is finite-dimensional, then the
norms are equivalent on Pt. The same, obviously, concerns the semi-norms
because

lulle = llur + uzlla = llualles  llulls = llus + uzlle = llualle,

where u; € P, uz € Pt are the elements, uniquely determined by the decom-
position X = P& P+, ‘ ]

The kernel of the first semi-norm |- |; is the tensor product Py, -1 ® ... ®
P, -1 of polynomial spaces. It consists of the polynomials of n variables, whose
degree in the variable r; does not exceed (m;—1), { = 1,....n. Further we show
that the kernel of the semi-norm |- |; is the same space, and the equivalence
could be followed from the Lemma. Show that each term of sum

- N
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n
(mwn =Y [(Opayax, (5.68)
=1 n

is equivalent to the respective term of sum

n Ni+k 2
=3 [ > Bf,um(z CIB,‘,'""(xz)) dx. (5.69)

=1 n Lieln s1=1

Before we proved the following estimates

Ni+k %
/(D;”lu)de S/ Z Br(Xy) ( Z CIB;(,m‘)(ml)) dX,

) ) Liemn, 11=1

hence, in order to prove the equivalence it is sufficient to show, that the kernel

of the first semi-norm (in the latter inequality) is the kernel of the second one.

The kernel of [(D]™u)dX is the tensor product Tj = 510..051-1Q Ppy—1 ®
(]

Si4+1 ® ... ® Sn, i.e. the tensor product of (n — 1) univariate B-spline’s spaces
and the space of polynomials of (m; — 1) degree in the remaining direction.
Represent the function from this space by the basis B 1, I € II. Let

Ntk
Y. CiBi(w), j=Tm

=1

be the basis of Py,,_,, B, (X)), I € II; be the basis of $; @ ... ®S1-19851+1 ®
... ® S,. Then the basis of the space T is the set of functions

Ni+k; )
Bi(Xi) Y CiBi(w), Le, j=T,m.

=1

Evidently, any of these functions and, consequently, an arbitrary linear combi-
nation of the functions, annul the semi-norm

Ni+ki 4
D BI«(X1)< > CzB.‘."‘"(m) dX.

n Lem =1

Thus, we have proved the equivalence of semi-norms (5.68), (5.69). However,
this proof does not guarantee the boundness of the constants of the equivalence.
For this reason we go further.

Theorem 5.4. The semi-norm |- |, is uniformely equivalent to the semi-norm
|- |2 when Ny, ..., N,, accept various natural values.

Proof. The basic splines in the space S%(£2) satisfy equality
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Bi(X) = B(%f—- —I), (5.70)

where X € 2N supp(B). They are obtained with the help of the linear trans-
formation of the argument of the model B-spline !

It would be recalled that the first energy semi-norm in the tensor product
of B—spline spaces

(u,u)1=lz; / S 3 DM Bi(z)CsD By (2)dx.
=ln

Iell Jenr

The domain 2 is decomposed on the cells with the edges of the length r =
(71,.-.,Tn), which may be enumerated with the help of the multi-indexes

Pe@={(P,.,Pn)}, 0< P < M,..,0< P, < N,}.

Denote the cell corresponding to the multi-index P as 2p. From the condition
of equidistant partition A in each direction it follows that 2p = 7(2 + P).
Replace the latter integral by the sum of integrals by cells: .

@ =3 3 f S 3 CiDPBY(X)CyD BA(X)dX

I=1 Ped ;5  IEP JeP

and apply formula (5.47) of the spline representation

(u,u), =Z > f Z E Cr4+pD)" Br4p(X)Cy4pD]™ By, p(X)dX.
I=1 Pegd 2 Ie®@ Jeo

In the latter expression change the variables X = 7(Y + P). Then, using
equality (5.70) and taking into account that 2p is mapped into the model
domain {2, we have

(u,u), = ; 7‘1;;5‘ Z f Z Z [CH-PD,"“B(Y -1I)

Ped p IcO Jeo (5.71)
xCy4p DM B(Y - J)]dY,

where |[F|=1 ... 7,. Analogously one can obtain the following representation
for the second semi-norm:

(wu)y =Y ':,L'f 3 f > > (64, I)CrepD 2y — 1)

=11 Pes ) Ieo co (5.72)
xCypp DM ZHY — J)] dY.

Analyzing expressions (5.71), (5.72) one can see that the energy semi-norms of
a polynomial spline consist of the energies on the cells for the first semi-norm as
well as for the second one. Thus, since we first prove equivalence for the model
domain, then the total equivalence is obtained by summation. The Theorem is
proved. o

! The model B-spline has its nodes on the integer mesh.
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5.2.7. Convergence Rates in Isotropic Space.

Let £2 = [0,1]", {Ar} be a set of condensed h-nets in 2. Denote by E7 finite
element spaces, which approximate the space Wj*({2) when 7 — 0. In this
Section we are interested the convergence problem for D™-splines on subspaces

Ohr = argnergl,l%f) [D™ul|L2(a), - (5.13)

where EJ(f) is the subset of interpolants for the function f in the space ET,
connected with the scattered mesh A, i.e.

Ei(f) ={urr € E": wun (P)=f(P), VP € Ap}.

~ In particular, we consider B-spline spaces SX as the spaces E™ and prove
the theorem giving the estimate for the function 7 = T(h) which ensures the
convergence o () to f in norms W" (£2).

Theorem 5.5. If the following estimates

D™ (un,r < c||D™ f|l 12 5.74
uhrEE'(f) I1D™ (un,r = Ollzzay < cllD™ fllLz (o (5.74)

are valid with the constant ¢ independent of h,7(h), f, then the interpolating
D™-splines o}, , converge to f with the following orders

ID*(on,r = Pllzoay S ch™ IS D™ fllpan). (5.75)

Proof. To prove (5.75) we may use inequalities (5.16) for the function Ohr—f
and the following inequality

| D™ (o, = Pz < ellD™ fllL2(a)-
It is proved in the following way:

D™ (on,r — L2y S 1D™onrllL2ey + 1D™ fllL2()
S ||D™an,rllL2(2) + 1D™ fll12(0)
<D™ (@n,r = Fllzcay + 21D™ fllezcay
< (c+2)|1D™ fllr2(a)-

Here iy, is the function, which g)ves the mm1murn in the left-hand side of
(5.74). C

Let us assume ET to be the B-Spline space S% with the parameters 7, =
g =..=7and ky = k; = ... = k > m. Connect with these pa.raineters the
uniform 7-mesh, which coincides for odd k with B-spline nodes from S%, and
is shifted in the centres of B-spline cells for even k. Let us assume in a,ddltlon
that the following hypothesis is true.
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Hypothesis. Denote by E7(f) the subset of interpolants for the function
f in the space E7, connected with the uniform 7-mesh. Then, the following
estimates are valid: '

inf  ||D™(uy — < ¢|D™ .
"relg;m” (ur = Hliz2a) < cllD™ fli2 ) (5.76)

Theorem 5.6. The interpolating splines o, converge to f with estimates
(5.75) if for any function g € W3"({2) there exists an interpolant

ubr= Y, orBr (5.77)
Iell, : . .

satisfying ua -(P) = g(P), VP € Ap, whose coefficients satisfy the following
condition

S jarl<e Y lg(P)- - (5.78)
Iell, PegAy )
Here I, is the pattern for multivariate indexes of B-splines, c is the constant

independent of k,7(h),g.

Proof. .Let o, € E7(f) be the function giving The minimum in the left-hand
side of (5.76), i.e.

ID™ (- — L2y < cllP™ fliLz () (5.79)

Choose the coefficients a such that function '

unr=0r+ Y arBr ‘ (5.80)
Iel,

would be interpolant of the function f on the h-mesh Ay. In accordance with
the conditions of the Theorem this choice is possible, moreover, due to (5.78)
we have

S larl<en Y IF(P)=or(P). (5.81)
IEHr PEA.’!
From (5.80) it follows
D™ (unr — Hllz2eay < ID™(0r = Hllezey + I Y arD™Billza(a
I,

<||D™(or — N2y + max D™ Brll 202y I; lar|.

Making use of (5.70), (5.81) we bring about the latter inequality to the following
|ID™ (un,r = Pllz2ay < 1D™ (o = Hllzzc
G _ (5.82)
t oy 2 @) —on(P),

PeEA,
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where ¢; = ¢o||D™B||12, B is the model B-spline (see Section 5.2.6).
Now, let us apply inequality (5.16) of Lemma 5.4 to the uniform r-mesh for
p=o0, k=0, M =1. This inequality assumes the following form

lullea.ory < er™ 2 D™ullL2ep, pry).- (5.83)

Here t is any point, u is any function with the zeros at the points of the uniform
T-mesh, ¢, p are constants. From (5.83) it follows

g 2 P = o P e Y ID™(F — o)llsacocpmy

= = (5.84)
S M| D™(f - o, )| L2

The latter inequality from the fact that each point € 2 is covered by the finite
number of balls B(p, p7), P € A, which does not exceed the fixed constant
M;. Really, since interpolant (5.77) exists, then each cell of B-splines contains
at most k" points of the scattered mesh A,. Thus, each point is covered at
most by (2p + 1)"k™ balls.

Combining (5.82) and (5.84) we have

ID™ (un,r = FllL2cay < | D™ fllL2¢a)

and, hence, inequality (5.74) which is suffcient for D™-splines to be converging
in accordance with Theorem 5.5. ]

Theorem 5.7. If r < %, then D™-splines oy, , converge to f with estimates
(5.75).

Proof. In accordance with Theorem 5.6 it is sufficient to prove existence of
interpolant (5.77) and correctness of (5.78). Let By(py be the B-spline which
has the maximal value at the point P. This is the B-spline whose support
centre is the nearest to the point P. Then it is easy to prove that

1) Byp)(Q)=0, P,Q€ Ay, P+Q,
2) By (P) 2 d(k) >0,
where d(k) is independent of 7. Under these two conditions the function

9(P)

up (o) = 3 9P
PeA, Bpy(P)

Bpy(X)

interpolates any function ¢(X) in the points P € A;. Besides the coefficients
of this expansion satisfy the inequality

Y lal= Y | < aw) 3 jopy,

r
€11, PEA, Bip)(P) PeA,

i.e. condition (5.78) is fulfilled. O
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5.3. D™-Splines in IR"

Sections 5.3.1, 5.3.2 contain the authors’ interpretention of the results by
(Duchon 1976, 1977, 1978, et al.) concerning D™-splines, in IR™. In the next
Section we thoroughly describe a less known va.r1ant of mterpolatmg smoothing
D™-splines by mean square integrals.

5.3.1. Reproﬂucing Kernel in D-™L?

Denote by D™™L?(IR") (or simply D™™L?) a space of distributions, whose
derivatives of order m lie in L?(IR™), and equip it with the scalar semi-product

(4, v)m = (D™u, D™v) 2 (mry = E in—l'/D“uD"'vdX
el a..mﬂl .
~ and semi-norm
1
' 2
: m! oo
tlm = D™l 2mmy = [ D J[(_1)0'1.;)20!)( : (5.85)
lal=m ~ g®n

For m > n/2 the space 'D~™L? consists of the continuous functions u(X),
X € IR", moreover, for k < m —n/2 the functions of the space D~™ L? belongs
to the class C'k(lRﬂ) ‘

- The factor space D™™L?/Pp,; w1th the norm (5.85) is a Hilbert space.
The Hilbert structure may be introduced also in D™™ L?. To do this consider a
uniconnected domain 2 C IR" with a Lipshitz boundary. Then, the expression

lullm = (llullf2co) + lulm)*/?
is the norm defining the Hilbert structure. Thus, we see that D™ L? is a semi-
Hilbert space and we can apply the theory of reproducing kernels (see Chapter
2) to get characterization for D™-spline in IR". Fortunately, the reproducing
kernel in the space D~™L?(IR") is known in the exact form.

Remember the form of the Green function of the polyharmonic operator
A™ in IR"™ (Sobolev 1974):

_ cm_,,HP"?"“", n odd,
Gmn(P) = {c,,,,,,npuz'"-n In||P[, n even.

We call the linear functional I on the space D~™L?(IR") continuous if it has
a'compact support and if its restriction to the Sobolev space W (IR™) is con-
tmuous

Lemma 5.9. The Green function is the reproducing kernel in the space
D~™L%(IR"), i.e. each continuous linear functional which vanishes on the poly-
nomial space Py, _; can be represented in the form
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I(f) = ((Cmn(P =X)), f(P)m, Vf €D ™LHR").

Remark 5.7. The Green function- Gm,n i8 not in D~™L?(IR"), and formally
the expression /(Gm,n(P — X)) does not make sense. Nevertheless, as long as
the functional has a compact support, the functions Gm,n can be extended to

the boundaries of the support in such a fashion that the extension belongs to
- D™™[L2, LT

5.3.2. Interpolating Smodthin_rg‘Spli\ne
Assume that A C R", f € D=™L®. Denote by A~1(f) 4 set of functions from
D~™L2, coinciding with f on the set A. : :

Lemma 5.10. Let A contains an L-golvable set for the polynomial space Pp,—;.
Then, L0 . .
(1) the solution of the problem

o=arg min lelm, - . (5.86)

which is called interpolﬁtiﬂg D"‘.-_Splihe in IR", exists and is unique;
(2) the following orthogenal property is valid:
(6,u)m =0, ve AT¥0). o - | (5.87)

Theorem 5.8. Let A, be a sequence of condensed h-nets in 2. Then for any
function f € D=™L?(IR") (m > n/2) the sequence of interpolating D™-splines
oh, which are the solutions tothe problems '

on = arg min ||D™ul|gamn)
ALT(S)

converge to f when h — 0, with the following asymptotic estimates of conver-
gence: ' '

ID*(on — FllLs ) < O(R™*-1+3)
where the constants m,n, p, k satisfy (5.3).
One can see that the estimates do not differ from the ones for interpolating
D™-splines in bounded domain. L .
The definition of the interpolating D™:spline can be generalized for the

finite set A. Let ki, ..., k1, ...y k4,81 <8 be linearly independent continuous
linear functionals on D~™L2. Introduce the real numbers Ti,...,74 and the set

Ka(r)={u€D™L%: k(u)=ri, i=sl+1,..,s}

and positive numbers p;, i = 1,..., 1.



D™-Splines in R™ 119

Definition 5.9. The function op is said to be an interpolating smoothing D™ -
spline in IR" if it is the solution to the problem

s1
= i m i( ki il | 2‘ 5.
op=serg min |ul +;p( i(u) =) (5.88)
where ry,...,7, are real numbers.

Making use of the technique, developed in Chapter 2, it is easy to show that
the spline o, satisfies the representation

) s : M
Tp(P) =Y Aiki(Gmn(P — X)) + Y viei(P) (5.89)
=1

i=1

where G, » is the Green function, e;, ez, ..., en is the basis in the space Pp—;.
The coefficients A; and v; are defined by the system of linear equations

I,+4 BT [A]l _[r
"5t %)L L (6
The elements of the matrices A and B are defined by the relations ai; =
ki(kj(Gmn(P — X))) and bij = kj(ei(X)). The matrix I, is diagonal with
elements ¢;; =1/p;, i=1,..,81, ¢;i=0, 1=381+1,..,s.
The condition for the existence and uniqueness of spline (5.88) and, hence,

the condition for the non-singularity of the matrix of equation (5.90) is of the
following form:

'0(0) N Py = {0}. (5.91)

In the particular case, where ki(u) = u(F;), ¢ = 1,...,8, for the spline to be
unique it is necessary that the points P, ..., P, should contain the L-solvable
set for the space Pp_;.

5.3.3. Approximation by Sphere Integral Means

Introduce the linear functional ks of the integral mean for 3-variate function
u(X) by the sphere S of radius h with the center at the point P:

1 ' |
|X=Pll=h
Here, 47h? is the area of the sphere S, dSx is an elementary area of S.
1. Definition and Convergeﬁce. Let §2 be an uniconﬁected domain in R? with
a Lipshitz boundary, W;"(§2) be the Sobolev space. Take in the domain {2

‘the spheres 5, ...,5n of the radii hy,..., Ay, whose centers are at the points
Py,..., Pn.
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Definition 5.10. Let m > 2 be an integer. Call the function o(X) the inter-
polating D™ -spline by integral means by the spheres Sy,...,Sn of the function
f € Wh(82), if it is the solution to the following problem :

o= a.rguezj)_irll(f).lulm (5.93)

where

AN (f)={ue D" L}(R®): ks,(u) = ks,(f), i=1,..,n}.

A propos of the definition of the spaces D~™L*(IR™) and the norms | - |
we refer the reader to Section 5.3.1. Taking into account the form of the Green
function in accordance with Chapter 2 we obtain the following form of the -
spline o:

N
o(X) = ks, (JIX - S|12™-3) + Y Cuxe, ~ (5.94)

i=1 |a|<m—1

where the functionals ks, effect the function with respect to the variable S;
X =z1"27%23%, |a|=a1 +as+as <m-1,

are monomials of the degree not exceeding m — 1. The coefficients A —
(Mo AN)T, € =(Cayla] <m - 1) are determined from the system

EIEN 6

with a symmetric matrix. Here the matrices K and B have the elements k;; =
ks, ks;(J]|P — S||*™-3) and b;q = ks;(X*), respectively. BT is the transpose
matrix with respect to B, the column vector k(f) has the elements ks, (f).

We formulate estimates for introduced interpolating spline in the following
theorem.

Theorem 5.10. Let x > 0. There exists a positive constant ho > 0 such that
for any h < hy and for any number of spheres Sy, ..., SN, whose centers form
h-net in 2 and radii do not exceed kh, the following equalities

ID*(o = f)llLs(ay < ER™*-2+3 D™ (o — F)ll L2 (5.96)
are valid.

Proof. In accordance with the Lemma 5.5 on Sobolev functions with con-
densed zeros we can choose the parameter ho which provides the estimates of
" the form

ND*ull sy < Chm*k_*+%lem“||L=(m (5.97)
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for the functions u € W3*(§2) with h-net of zeros (with A < hy). Now prove
that the parameters ho = ho/(1 4+ &) and & = ¢(1 + k)™ ¥~ %+% satisfy the
theorem. Since

S[(a— fisx =0

then there exist points Q; € S; such that ¢(Q;) = f(Q:). The points @1, ..., QN
form h(1l + )-net. Naturally, by the condition of the theorem the centers
Py, ..., Py of the spheres form h-net, but each point @; lies not farther than xh
from the respective center P;. Finally, replace in inequality (5.97) the parame-
ter h by k(1 + k) and the function u by (¢ — f), which has the hA(1 + &)-net of
zeros. Thus, we obtain (5.96). 0

1. 1_’roble_m Let k > 0, hy,hs,... be parameters converging to zero. Let T; =
{S%, "-153\!({)} be the set of condensed spheres, such that the centers of the

spheres from T; form h;-net, and their radii are less than xh;. If o' is the
interpolating D™-spline by integral means of the function f € W]*(#2) by the
spheres from the T}, then the following convergence takes place

ID™ (0" = llLaay = 0 - (5.98)
with ¢ — oo.

Remark. Though the problem is not solved yet, from Theorem 5.10 follows
the following convergence

|DX(0! = llLray < ™57 F5 | D™ fl| 120,
because in accordance with the orthogonal property

ID™(c" — ALz + ID™ 0 1200y = I1D™ fll32( 2y

The rest of the Section 5.3.3 will be devoted to obtaining the analytic repre-
sentation for the functions kg, (|| X — S||>™~!) and the elements of the matrices
K = {ki;} and B = {bia}. This will allow one to construct a numerical algo-
rithm for D™-spline computation.

2. Integration of Radial Functions on Sphere. Let f(u) be a continuous locally
integrable function of one variable. We call by a radial function of the points
P and Q from IR? any function of the form f(||P — Q||), which depends only
on the distance from P to Q. Our aim is to calculate integrals

FPR =1 [ FfP-QDise (599)
lR—Rll=h

For this we need the Poisson formula (Fichtengoltz 1969):
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1
F((X, P))dSx = 2r / F(u]lP|})du. (5.100)
1Xi=1 4

Here the scalar product (X, P) = z1p, +z5p, +2z3p3 has the fixed point P € R?
and the point X € R? running the unit sphere with the center in the origin.
Replacing the coordinates one can readily obtain the following consequence of
(5.100):

h
£((X, P))dSx = 2xh f f(u|lP|))de. (5.101)
Ixl=h “h

Make the replacing of variables: X = Q — R. Then, using representation of the
norm with the help of the scalar product we have

s’ F(PR) = [ f(P-R) - X|pdsx
I1XN=~

- j f(VTP-RE 2P =R, X) ¥ F)dSx
IXl=h

h o
= 2rh / (VTP =R =2[P = Rlfu + R)du.
Y

In the latter integral produce the substitution

v=V[[P—RI*=2[P - Rlu+ k%, 2vdv=—2||P - Rdu.

Then, we obtain the final formula for integration of radial sphere functions in
the following form

1
F(P,R) = — fUIP - Q|)dSq
4rh
IQ-R|=h
HIP=RI|+h| _ (5.102)

= m ‘Uf('!))d?).

NP—=R|—h|
From of this formula it is clear that the integral of the radial function has again
a radial form. Formula (5.102) is valid only if P # R. When the points coincide,
then '

F(P,P) = f(h). | (5.103)
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3. Analytic Representation of Spline.

Theorem 5.11. The solution to problem (5.93) has the following analytic ex-
pansion

N
om(X) =Y NE(|X - P|) + > caXe, (5.104)

laj<m—1

where

Ki(t) = (2m — 1)t 2h;

K;(0) = h2™~3,

Ri2m=1 _ |4 _ p.|2m-1
R | >0

Proof. Utilize expansion (5.94) and formulas (5.102),(5.103). Supposing t =
[ X — P;|| make the following transformations

Ki(t) = Ki(IX = Pil) = ks, (| X = S[*™"%)
|t+hi|

- y2m=1
__‘L ‘U'U2m—3dlf= 1 : v |t+h3|.
2th; (Zm-1) 2h; |t — Ayl
|t=hi|
The formula for I;(0) readily follows from (5.1ﬁ3). 0

4. Determination of Matrix K. The elements of the matrix I of system (5.95)
are of the following form

kij = ks, (ks [|X — S|I>™)). (5.105)
For i = j from (5.104) it follows k;; = ks, (I(

IX - Pi||)) = Ki(hi), or

(2h)2m-3

k,‘,‘ = I\',‘(h,') =2 m_1 "

(5.106)
For i # j we have to find an analytic expression for radial function K S(1X -
Pj||) = ks; (]| X = §||*~3). Making use of formula (5.102) we obtain

Iti;+hi|

TS tK;(t)dt, (5.107)

|tij—hi|

A:,'J' =

where t;; = || P; — P;||. For the sake of simplicity investigate the case, when the
interiors of the spheres S; and S j are not intersected, i.e. t;; > h;+h j- Then, we

can remove the modulus in (5.107) and, taking into account the determination
of the functions I;(t), obtain the expression
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tij+h;
1
k‘.. — Nem=1 _ 1 1 \2m—1 .
7 4(2m — l)i‘,'jh,‘hj _/ (t+ hJ) (¢ h;) dt.
tij—h;

After integfa.tidn the final formula is the following
(tij + hi + h;)*™ — (ti; — h; + hj)*m
8m(2m — 1)t;;h;h;
_ (ij + hi — By)*™ — (i — hi — hy)*™
8m(2m — l)tijh.'hj '

kij =

5. Integration of Monomials on Spheres in R3. To find the elements of the
matrix B of system (5.95) we need to calculate the following integrals

ks(X%) = s / 21222299 45 (5.108)
S

with |a| < m — 1. To do this, let us consider integral

/[(A,X)]m_lde = / (@171 + azzy + azz3)™1dSy. (5.109)
s | X ~Pll=h '

Change the (m — 1)-th power of the scalar product into a sum of the terms
/[(A,X)}m_la’Sx = 4rh? Z £m——-lA"‘lc s(X%). (5.110)
5 |a]=m-1

On the other hand making use of (5. 101) integral (5.109) can be calculated
exactly:

[(A,X)]”“ldSX= /[(A,P)+(A,Y)]’““‘d5'y
[IX —Pll=h IY||=h

P ] (A, P) + | AlJu)™ du

_ 2mh [((A,P) + [[A][R)™ — (4, P) - IIAIih)"‘]
14

omh | o) (A, Py =S Aihi(1 - (~1)
- 1=0
“m 4]

m

1=1,3,.

T 2 m
L [ > (m)(A Py™ =i 4]~ hi- J
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The latter expression is summed by odd indexes 7. Thus, we obtain the equality
! LA . L
D SAKS(XT)= Y GIAPAITRTL (5111)
|la|l=m—1 " i=1,3,...

Clearly, the latter sum is expressed as a linear combination of the monomials
A® of the (m — 1)-th degree, i.e. in the form 3 ¢, A®. From here we have

|a|=m—1
. ol .
ks(X®) = 1 |a| -1. (5.112)

We use this equa_hty to calculate the functlona.ls ks(X ®) up to the third degree,
i.e. for the casesm =1,2,3,4:

1) Z co,Ac' =
2) z caA™ = 2(alp1 + azpz + asps).
3) Z ca A% = 3(a1p1 + az2p2 + asps)® + h*(a? + a2 + d?).

4) ZEQA“ =4(a1p1 + a2p2 + asps) +4h*(arp1 + azps + azps)
x (a? + a3 + a3).
Making use of the given expansions and (5.112) one can obtain
: B2
ks() =1, ks(zi) =pi, ks(z})=pi+ 3,

ks(zizj) = pipj, ks(z?) = pi(p? + h?),
h2
ks(ziz;) = pi(p? + g), ks(z12273) = p1paps.



