3. General Convergence Techniques and Error
Estimates for Interpolating Splines

3.1. General Convergence Theorem

Let X and Y be the Hilbert spaces and T : X — Y be the linear bounded
operator. Consider some infinite system

A={4i: X > 2;,i=12..)} (3.1)
of the linear bounded operators A;, each of them acting from X to some Hilbert
space Z;, i = 1,2,....

Definition 3.1. We say the sequence z,, € X converges to & €X by the system
A (a‘:,,'—“m) if for every A; € A we have

lim | 4i(zn — 2]z =0. (32)

Definition 3.2. The system A is said to be correct if the convergence :r:,,fmz
brings about the weak convergence of z,, to x on some set K which 1s dense in
the space X. Symbolically,

[enSe] = BK:K =X, VE€K (kzn)x — (ko)x]. (3.3)

Let us fix the element ¢, € X and approximate it by the solutions oy of
the following spline interpolation problems

Aion = Ajp., 1= L,2,..,N,

. 3.4
ITon]% = min. (34)

We assume that the ranges R(A;) are closed in Z; and introduce the operator
By:X 52, x2Zy%x...x 2N by the formulae
BN:B = [A]l‘,AQ.T, beny AN:I,']

Assume that for any Ny (T, By,) forms a spline-pair; then (T, By) is also a
spline-pair for N > Ny, and the interpolating spline on exists and is unique
when N > N,.
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Theorem 3.1. If A is correct system then

Jim [lon = ¢uflx =0. (3.5)

Proof. It is obvious that aNﬁtp.. Really, for every A; € A we have Ajony =
A;p. when N > i. Hence there exists set K C X which is dense in the space
X and for every k € K (k,on)x — (k,@e)x.

We prove now that the sequence o is bounded in X-norm with the constant
independently of N. Let us decompose the space X into the orthogonal sum of
the null space N(T') and its orthogonal complement

X =N(T)® N(T)*.
With respect to this decomposition we have
oc=o0k+0%, okeNT), okeNT:> .

The restriction T' of the operator T to N(T)* is the bijective mapping from
N(T)* to the closed range R(T). Then by the Banach inversion theorem we
have

ok =T 'Ton,
loXllx < ITH - ITonlly < IT7H - [ Teully-

We use here the evident inequality ||Ton|ly < ||T¢.||y. Thus the sequence o
is bounded in X-norm.
Every element k € K can be represented in the form

E=k'+k*, k'eN(T), k*eND)*:

Since K is dense in X we choose from the elements k! the finite basis
ki, k3, ..., kg of the g-th dimensional null space N(T). Then

(on, K )x = (0N, ki)x = (on — ok, ki) x.

It is clear (on,ki)x — (¢u,ki)x and therefore (on,ki)x is bounded, and
(a?v, ki)x is bounded because ||c%/||x is bounded. Finally, every projection of
~ to the basic element of the finite-dimensional space N(T') is bounded, and
as a result ||o}||x is bounded.
We know now that the interpolating splines on wea.kly converge to ¢, in the
dense set K and ||on||x are bounded. It means that the sequence on weakly

converges to . (o'NLVnp,.) in the whole space X (Appendix 1, Theorem 3).

If o'N—up,. then Toy —vT(p. in the space Y. Using the orthogonal property
of the interpolating spline (see Chapter 1) we have

ITonll}y = (Ton, Teu)y.
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Therefore ||Ton||} — ||Te.||?> and by the well-known theorem (Appendix 1,
Theorem 4) we obtain

ITon — Teuly =0, N — co. ‘
If we introduce in the space X the norm

lulle = (IAull, + 1 Tufl})!72 | (3.6)

where (T, A) is the maximal spline-pair with respect to (T, By,) then A has
the finite-dimensional range and (3.6) is equivalent to the initial norm [l x-

Therefore the conditions TaN—Sngp* in Y-norm and o=, in X bring about
llon = @uls =0, N = oo
and as the final result
low = @ullx =0, N = oo
Theorem is proved. & o
Remark. If you can prove by any way the existence of the dense set K in
X such that we have the weak convergence of the sequence oy to ¢, at K,
the proof of the strong convergence in X-norm can be automatically- repeated

without notion of the correct system of operators. We shall use this fact in the
next Section. ' '

3.2. General Convergence Theorem on e-Nets

Let us consider the interpolation spline problem

.a =arg min Tz|}
g, min - IT=lly
and suppose that the interpolation condition Ao = can be replaced by con-
dition

kp(")? »(¢«), pE€B, , (3.7)

where ¢, € X is the fixed element and kp is the linear bounded functional over
the space X while p is any parameter which runs in the compact B ¢ R™. In
~other words some nonlinear mapping k: B — X* is given; X* is a dual space
with respect to X. ‘
Let us assume that the interpolation problem

e )
7T, T ©9)
Mp.o. = {z € X : ky(z) = kp(00), p€E B} .
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is uniquely solvable for every ¢. € X. This fact takes place (see Theorems 1.1,
1.2) if N(T) is finite-dimensional, R(T') is closed in the space ¥ and

N(T)Nn K+ = {6x}, (3.9)
where
L={zeX:ky(z)=0, peB}. (3.10)

Denote by Sp(B) alinear set in X which consists of the solutions of problems
(3.8) for all . € X. It is easy to see that Sp(B) is weakly closed in X . Actually
the orthogonal property

(To,Tz)y =0 Vze K+ (3.11)

is necessary and sufficient condition to provide ¢ € Sp(B). If o, € Sp(B) and
|44 . 4
o,—0o, then for every z € K- we have

0= (Ton,Tz)y = (a’n,T*Tz)X — (04, T*Tz)x = (To,Tz)y = 0.

It means that o. € Sp(B), and S p(B) is closed in X-norm. If we 1ntroduce in
Sp(B) X-scalar product it becomes the Hilbert space.

For every ¢ > 0 we consider now the finite e-net B, in the compact B and
the following interpolation spline problem

Oc = arg __min |Tz|%,
reMBep. - | (3.12)
MBH*"* = {:1,‘ €X: kp(.’.t:) = kP(‘P*)) pE B.-:}

Theorem 3.2. If the mapping p — k, is continuous in the compact B. then
problem (3.12) is also uniquely solvable for sufficiently small € > 0 and
|loe — o||x — 0 when &€ — 0; here ¢ is the solution of problem (3.8).

Proof. At first we prove that problem (3.12) is uniquely solvable for the suf-.
ficiently small . We introduce the operators A and A, defined by formulae

Ve € X Az = {ky(z), pe€ B},
A.z = {kp(2),p € Be}.

For every ¢ > 0 the solution of problem (3.12) exists. But assume that this

solution is not unique even for small ¢. It means that the sequence ¢, — 0

does exist and the sequence ny € N(A,, )N N(T), ni # Ox does also exist.

Without loss of generality we suppose ||nx||x =1, k = 1,2,.... Since N(T) is

the finite-dimensional space it is possible to separate from ny the subsequence

Nk — N., and ||n.||x =1, n. € N(T). The set S = | B,, is dense in B, and
k

the set {k,, p € S} is dense in k(B) because the mapping p — k, is continuous.
Hence for every fixed p € B we can find the sequence k,,, px € B,, such that
kp, — kp in X*-norm. If in the trivial equality (kp,,nx)x = 0 we go to the
limit we obtain
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An. = {ky(n.) =0, pe B},

Thus we find the nonzero element n, belonging to N(T)NN(A). This situation
is impossible, and for the sufficiently small ¢ < ¢, the solution of (3.12) is
unique. '

‘We prove now the following

Lemma. For the sufficiently small ¢ < ¢, < ¢, inequality
Vz € N(4e) |lzllx < C|T=|ly - (3.13)
takes place with the constant C which is independent of = and ¢; here

N(AJ)={z € X : ky(z) =0, pe B,). (3.14)

Proof.l Let € < &1 and problem (3.12) is uniquely solvable. Then by the theo-
rem on norm equivalence

1/2

Ve €X ollx CBe)- | Y kie)+ (T2 | . (3.15)
PEB,, )

Denote by nj,nj,...,n, the basic elements of the null space N(T). Since:
N(A:,)NN(T) = {Ox} the matrix L constructed of the elements k,(ny), p €
B.,, k =1,2,...,q has the rank greater or equal to ¢. Using continuity of the
mapping p — k, we can see that this property will be preserved when the po-
sitions of the points p vary inside of small closed neighborhoods G, =Bn é,,,
where é_,, is the closed ball with the origins at the points p € B,,. Let these
neighbourhoods have no intersections. If we take the point p' from every G,
we obtain

1/2

VzeX |z|x < C(B.) Z kL (z) + | Tz|)? (3.16)
P'EB.;

where B, is formed by the points p' € Gy, p € B,,. We prove that C(B,,)<C
where C' is independent of the positions of p' in the neighbourhoods Gy, pE€
B.,. If this constant C does not exist then we have the sequence of elements
zr € X, ||zi|| =1 and the sequence of points p' € Gy, p € B,, such that

1

z k;g.;(Ik) +|Tz|l} < e
. PLEG)
pEBq

Without loss of generality we are able to provide pi — pp- Then for the points
Py € Gy, p € B,, the inequality is valid
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CY< > ku(a)+ |1 Taul}
P’DEG;,
PEB,,

with constant C'; > 0. Then
' 1
— .2 2 2_ 2
e IRLAEDY ky (z4) 2 CF = 2.
PLEGH PLEGH
PEB:1 . PGB:I

But this inequality does not take place for large k because

|7k| < 2max ||kpl|x+ - e, - max ”kpj, - pL“X‘ ' (3.17)
pEB PoP) €Gp,
pGBgl

and the right-hand side of (3.17) tends to zero; here n,, is a number of points in
e1-net B, . Finally for the sufficiently small ¢ < ¢y < €; in every neighbourhood
G, of the points p € B,, lies at least one point from e-net B.. Therefore for
the element z € N(A.) we have the inequality ||z|]|x < C||Tz|y. Lemma is
proved. : : O
At last we point explicitly the dense set in the Hilbert space Sp(B) where

we have the weak convergence of o, to o. For this consideration we introduce
the sequence ¢ — 0 and the set S = |JB,,, which is dense in B. It is clear
k .

that the condition over ¢ € Sp(B)

brings about ¢ = @x. Therefore the set of finite linear combinations of the
elements k, forms in Sp(B) the dense set K. In this set we have the weak
convergence of o, to o. Really, for k, € K we have

kp(oe, — o) = (kp — kp,, 0c, — ) < ”lkp = kpillx= < floe, —ollx
S Cllkp = kpllx - |1 T(0e, — o)y
< 2CNTeully - llkp — kpy Il x=-

If pi are the points of ex-net B,, which tend to p, we have the weak coﬂvergence
of o, to o in the dense set K. Using remark 3.1 we obtain the final result

=I|a£ - GHX — 0’ E‘ — 0.

Theorem is proved. ' . 4 ' O
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3.3. Convergence of D™-Splines on Scattered Meshes

Let £2 be some bounded domain in R™. Consider in f2 the sequence of the
scattered meshes

wi = {P, Py,...., Psy}, S(k+1)> S(k), k=1,2,.. - (3.18)
and let the set S = [ Jwi be dense in !_2 It is clear that wi C wi41. We formulate

k
the problem of spline-interpolation on every mesh wy by D™-spline o} from the
conditions: find ox € Wi*(£2), m > n/2 such that

or(Pj) = ¢u(Pj), §=1,2,...,5(k). |
Ipmonl = 3 2 [(Daak)zda min. (3.19)

Iat—m

We will prove now that the system of linear bounded functionals k p(u) =
u(P), P € S is the correct system (functional is the case of operator which

maps to R) Let A = {k,: W3R, pe S} and u.,—ru (see Definition 3.1). It
means that :

Vkp € A kp(un) = kp(u), n — oo. | (3.20)
Let 7 : X* — X be the reproducing mapping of the space W, then
Vu€ X ky(u) = (m(kp),w)w;
If some element u € W™ is orthogonal to every w(kP)., PE S ie.
(x(kp),w)wp =u(P) =0 VpeS.

It means that u = 0 because u(P) vanishes at the dense set S in £2 and u(P)
is continuous (note that m > n/2). Therefore the set K of the finite linear
combinations of the element n(k,), p € S is dense in the space W3, and by
(3.20) we have the weak convergence of the sequence u, to u on the set K.
Finally, by Theorem 3.1 we have

llox — ‘P*”Wg‘(ﬂ) =0, k—o0. o ©(3.21)

In this situation we have the only trouble: w, C wp4+1. We refuse this
condition with the help of Theorem 3.2.

Let B C 2 be some a compact set, ¢, € W3 (§2) be some fixed function.
We consider interpolation spline problem - '

Vpe B o(P) = p.(P),
€B ()‘ w«(P) (3.22)
|ID™o|ly = min

and suppose that this problem is uniquely solvable. Let B, C B be e-net in B
and o, € W;"(£2) be the solution of the interpolation problem
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Vp€ B, 0u(P)=p.(P)
|ID™oc||3 = min.

Since m > n/2 the space Wj"(2) is continuously embedded to the space C (2)
of the continuous functions with the uniform norm. We introduce the mapping
p — kp from B to the dual space X* by the following formula

Vue Wi'(®2) VpEeB w(P)=ky(u). (3.23)

We prove now that p — k,, is a continuous mapping. Actually, the space W3" (£2)
is continuously embedded to the Holder space with the power a € (0, m—n/2).
Then

lkp — kpllx+ = sup  |u(P)—u(P)|SC-|P=P3,

lullwm =1

the constant C is independent of u, | P — P'||z is the Euclidean distance
between P and P'.
Thus, by Theorem 3.2 we obtain

loe —ollwm@y — 0, €—0, C(3.24)
or in the particular case B = {2

loe = pullwg @y = 0, &= 0. - (3.25)

3.4. Error Estimates for the Interpolating Splines

Let £ C R be some bounded domain. Denote by X(£2) some Hilbert space

of the functions defined on £2. We assume that the space X (2) is continuously
embedded to C(£2),

Vu € X(2) |lulleoy < Cillullx @) (3.26)

and every u € X(f2) can be prolonged by Pu to the functional space
X(2), 2 D N and the distance between the bounda,ry I' of 2 and 2is
greater than fixed 6 > 0,

Vue X(2) ||Pullyg < Collullxa) . - (3.27)

We consider in §2 the family of the finite e-nets w., ¢ — 0, and introduce the
spline interpolation problem -

0. = arg _min ||Tu!|Y a : o '
wEMugp. ‘@ (3.28)
Mw()?c = {U € X(ﬂ) ‘U l.Wl::: Px 1“:}?
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where ¢, € X(12), T:X (2) - Y(£2) is a linear bounded operator acting to
the Hilbert space Y'(£2). Under the standard constraints (see Chapter 1) this
problem is uniquely solvable and by the Theorem 3.2

”a, Ea O'HX({;:) —+0, -0,
where o € X(12) is the solution of the continuation spline problém
o= arguex}}i?:?% ||Tu!fy(m,

) (3.29)
Ma,e, = {u € X(2):u|o=p. |0}

Since the trace operator from X(£2) to X (£2) is continuous, we have
lloe = @ullx(2) = 0, &— 0.

Our aim is to obtain error estimates in other weaker norms or seminorms.

3.4.1. Error Estimates for the Generalized Lagrangian Interpolation

Denote by n1(P),...,ny(P) the basic elements of the null space N(T). Let P =
{P1, P3,...,P,} be L-set, i.e. the problem of finding the element n(P) € N(T)
from the conditions

n(P)=r;, i=1,2, v q

has the unique solution for arbitrary ry, 7, ..., rq. We define the operator Tp :
X(£2) — N(T) of the generalized Lagrangian interpolation in the following way:
for every u € X(£2) its Lagrangian interpolation mpu € N(T') is the solution of
problem ' ' :

(mpu)(Pi), i=1,2,..,4q. (3.30)

Since m,u can be represented in the form

q
Tpu =Y _ Cjn;(P),

J=1

conditions (3.30) form a linear algebraic system with the nonsingular ¢ X ¢ -
matrix D of the elements n;(P;). The functions n;(P) are continuous and it
1s possible to vary positions of the points P; in some small neighbourhoods to
provide the non-singularity of the matrix D, in other words, the totality of the
L-sets is open, and there exists compact set B C 29 of L-sets.

Let the initial space X(§2) be continuously embedded to some seminormed
space V(2), i.e.

Vue X(02)  |lullvin) < Csllullx(q). (3.31)

The following lemma is valid.
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Lemma 3.1. The constant Cy does exist independent of u € X(f2) and P € B
such that

lu — mpullvie) < Cal|Tullya)- (3.32)

Proof. Using Theorem 1.5 on the norm equivalence with the trace operator 4
connected with the mesh P € B we have

q 1/2
lullx(2) < C(P) [Z u?(F;) + IITUIR/] :

i=1
If we substitute instead of u the difference u — 7pu to this inequality and use
embedding condition (3.31), then we obtain
v — mpullviay < Ca(P) - |[Tully(a), Ci(P)=Ca-C(P). (3.33)

We will show that Cy4(P) can be taken independent of P € B. To prove it, we
show that the family of the operators {rp, P € B} is uniformly bounded in the
X — X-operator norm. Actually, to find 7pu we need to solve a nonsingular
linear algebraic system with the elements which are continuous with respect
to P € B. Since the matrix inversion is also a continuous operation by the
Weierstrass theorem we obtain that for every u € X(£2) the family of the
functions {mpu, P € B} is uniformly bounded in X-norm. Then by the Banach-
Steinhaus (see Appendix 1, Theorem 9) theorem we have

Ipllx—x < Cs

with the constant Cs independent of P € B. Then
I = 7pllx—x <1+ Cs = Cs.

Let us fix P, € B and represeni: the function u in the form
U =TpU+ ut,

where ut belongs to the subspace N(T)* C X which consists of the functions
vanishing at L-set P,. Since mpmp u = 1rP u we have mpu = mp u + mput. In
the subspace N(T)* the expression ||Tut [[y( @) is the norm. Therefore

lu = mpullx < Col|Tully = Cs||Tully-
Using embedding condition (3.31) we obtain
lle = mpully < Csllu — mpullx < Cs- Cs||Tully.

Finally, C4(P) < C3 - Cs = C4 and lemma is proved. o

Let the function u(x) be defined in the small n-dimensional ball §), with
the center point Po € R" of the radius h. Then the function (t) = u(Py + th)
is defined in the unit ball §; with zero center.
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Assume that the seminorm || - |[y and the norm || - ||y have the following
properties of "homogeneity”

e Bo + th)llvisyy = fi(h) - flullvs,) (3:34)

ITu(Po + th)lly(sy) < f2(h) - | Tully(s,), ~ (3.35)

where fi(h), f2(h) are the positive functions of the argument h > 0.

Theorem 3.3. For every function u € (£2) and for every L-solvable set
P € S, x ... x S} the following error estimate for the generalized Lagrangian
approximation 7 pu is valid

llu = pullvis,) < Cfa()/ fr(h) - | Tully s, (3.36)

with the constant C independent of u and P, from the compact B of L-sets,
which is the closed neighborhood of the fixed L-set P, € Sh x...x Sh.

Proof. Consider in the ball S} any fixed L-set P,,h and L-set P, € B. After
the linear transformation z = Py + th the L-set Py is transformed to the L-set
P € 5y x ... x Sy. Let us apply lemma 3.1 to the function @(t) = u(Pp + th).
Then we obtain '

15(®) = mpu(®llvisy < C- | Tallys,).
Using inequalities (3.34), (3.35) we have

llu =7 ullvis,) < Cha(h)/ fi(h) - | Tully s,

and Theorem is proved.. . O
If the function u is equal to zero at the points of L-solvable set P then we
have mp, u = 0 and

lullvess < ChAY AR - [ Tullyes,). | (3.37)

This inequality is basic in obtaining the error estimates for the splines at h-nets.

3.4.2. Special Covers and Error Estimates for the Splines at h-Nets

Let us consider a bounded domain 2 C R® and another domain §? D 2 such
that the distance between the boundary I' of 2 and the boundary I' of 2 is
greater than fixed § > 0. For sufficiently small h < hq it is possible to cover
the closed domain {2 with the finite number of balls B?(h) with the radius A,
each of these balls lying inside £2. :

Definition. We say that the family of the finite covers with the balls
{B!(h)}n>o is special if for every u € X(02) inequalities

lellvia) SKIZ”””V(BMM) ' S _ (3.38)
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Z‘“Tf“||.)’(ﬂ‘?(h))SI{2IITT£“Y'(Q) co AR O (3.39)

‘take place with constant Ky, K2 which are independent of h < ho.

We say brieﬂy- in this situation that the domain §2 can be covered in a
special way. -

Lemma 3.2. Let §2 be able to be covered in a special way and wy, C 2 be
h-net in 2. If some function u € X(£2) is equal to zero at wy then inequality

 ullven £ C- /i) ITullyq W
is valid with the constant C which is independent of u and h. . ¥

Proof. Let {B!(h)} be a special cover. Let us form inside every ball of the
cover q closed balls such that their Cartesian product consists of L-sets. Since
wp, is the condensating h-net we are able (by increasing h into the finite number
of times) to provide the following property: each of these balls contains the point
from wy. Then by inequality (3.37) we have

“”||V(b) S. K Z “““.V(Bé‘_(hﬁ) <C- f2(h)/f1(h) : Kl.Z‘HT'{#llv(af(h) ;)

< C Ky Kafo(W)/ Hi(h)- [ Tullycay

and inequality (3.40) takes place with constant C - K1 - Ka. 0
We apply this lemma to obtain error estimates for the splines at h-nets. Let
on(P) € X(£2) be the solution of the interpolation problem -

— : o112
TR M. ,"Tuu”‘m (3.41)
M., . ﬁ{uGX(Q):u[uh =‘P*|wh} ‘

and o(P) € X (£2) be the solution of the prolongation problem

B . 2
o — arg @EIAI}LH'% “T”"y(fp (3.42)
Mq,,, ={ueX(2):ulp= @axla}.

The difference u(P) = on(P) — o'(lP) is equal to zero at h-ne’t”wh. Therefore by
lemma 3.2 we have

e

low — ollviay < Cfa(R)/ fr(R) - IT(on =Ny (@y- ~ . . (3.43)
If we take into account o = @, in £2 we obtain _ il
llon — eullvia < C fo(h)/ fr(h) - | T(en = )lly(a): (3.44)

Moreover, by Theorem 3.2 |loy — oy = 0 h— 0, hence, ||T(on —

low = pullven = R/ RRY. (3.45)
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3.4.3. Error Estimates for D™-Splines in L pP-Norms

Let 2 C R" be some bounded domain with the cone condition. It means
that every function u € Wi*(£2) can be prolonged by the function @ €
W (2), 2D N2 where £2 is the domain with the arbitrary smooth boundary
and .

"ﬁ"w;n(f)) < C“"”wr(n) (3.46)

where C' < oo is the norm of the prolongation operator. In a particular case, the
distance between the boundaries I" and I of the domains 2, 12 correspondingly
can be done greater than fixed § > 0. For simplicity we assume that domain
{2 is n-dimensional parallelepiped. Consider in ) n-dimensional grid A with
the mesh size h > 0. At every point of the grid we construct the ball with the
center at this point. It is easy to understand that we can choose the radius of
these balls in such a way that every point of §2 (and every point of £2) is covered
with not greater than 2" times with balls, and this number is independent of
h. We denote these balls by B;(h).

Let X(2) = W*(R2), m > n/2 and V()= W;(.Q), 2 < p < oo. If the
inequality k — n/p < m — n/2 takes place (except the case k = m — n/2 &p=
00), then the space W™ is continuously embedded to the space W3, Introduce
in Wq" the seminorm [Juf|y(g) = ||Dkuj|LP(m by formula

. 1/p

k' [ 0Fu '

ID*ull 1,2y = (|Z|:ka-!/(§;)pdn) - (3.47)
aj= n

Let us find for this seminorm the function f1(h), defined in (3.33). It is easy to
see that

ID*u(Py + th)|l1,(s,) = h¥="/?||Dru||, (s, (3.48)
and fi(h) = R¥="/?_In a similar way if T = D™ then we have
ID™u(Po + th)l|1,(s,) = A™ /2| D™u|| 1,5, (3.49)

and f5(h) = h™~"/2 Thus, by Theorem 3.3 we have the error estimate for the
Lagrangian polynomial in the small ball Sh

| D* (u — e u)llL,(s0) < Chm'"”““"’"l!Dm"IIL,(S;.‘)- (3.50)

It is easy to show that the cover of 12, constructed with the grid in the
parallelepiped {2 is special. Actually,

1D ulli 0y < 3 ID a1, myay) (3.51)

and inequality (3.37) takes place with K = 1. Inequality (3.38) is also valid
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S ID™ ullLymiay < 2V D™ull 0 (3.52)
H

because every point of {2 is covered with the balls B;(h) not more than 2" times
and every elementary square participates in the integration not more than 2"
times.

Finally, if wy is h-net in 2, we estimate the following error for the suitable
D™-splines o), which interpolate the function ¢, € W3"(£2)

ID*(on = @)l i@y S CR™"2=H2/P| | D™ (g — 0)|| 02y (3-53)

where o is the prolongation of . to 2 with the minimal D"'-semmorm, and
|D™(oh — o)||L,(02) also tends to zero.

Remark. The error estimates technique is the same (and error estimates are
the same) if instead of the usual interpolation conditions o|w, = @u|w, We
have the interpolation conditions in the sense of the local integrals like these

/ ond = / 0udf2, | | (3.54)
Bi(h) Bi(k)

where Bj(h) are any balls of the size h, whose centers form h-net in £2. Iﬁ_ this
situation, the difference o), — ¢, is also equal to zero at any Ch-net (C'=const)

because [ (0 —p.)d2 = 0 and ¢ — . change the sign in every B;(h), and
B;(h)
a standard technique can be applied.



