1. Splines in the Hilbert Spaces

The aim of this chapter is to introduce the main definitions in the abstract
variational spline theory and describe the basic properties of interpolating,
smoothing and mixed abstract splines.

1.1. Interpolating, Smoothing and Mixed Splines

1.1.1. Main Definitions

Let X,Y and Z be real separable Hilbert spacesand T : X - Y, A: X - Z
be some linear bounded operators. Consider an element z € Z.

Definition 1. Solution of the variational problem

o=arg min  |Tel} (1.1)

where A7Y(z) = {z € X : Az = 2}, we call the interpolating spline correspond-
ing to the initial data z € Z, to the measurement operator A and the energy
operator T.

In this situation we assume A™!(z) # 0.
Let a > 0 be any parameter.

Definition 2. Solution of variational problem
v =argmin {aTel} + Az - 2|} (12)

we call the smoothing spline, corresponding to the described objects and the
smoothing parameter a.

For the smoothing spline we do not assume A~(z2) # 0.
The first question arises: what requirements provide the existence and
uniqueness of interpolating and smoothing splines?
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1.1.2. Interpolation
Denote by N(T') and N(A) the null spaces (kernels) of the operator T and A
correspondingly, and by R(T'), R(A) their ranges.

Theorem 1.1. Let A~"(z) # 0. If the subspace TN(A) is closed in Y, then the
interpolating spline o does exist. Furthermore, if N(T) N N(4) = {Ox} (Ox
is the null vector in X) then the spline o is unique.

Proof. Let us fix any element z, € A~!(z). Then
A7Y(z) = z. + N(A).

Hence the mﬁhifold '
TA™(z) = Tz, + TN(A)

is closed in the space Y. But variational problem (1.1) can be reduced to

minimization of the distance between zero vector @y of the space Y and the
manifold TA™!(z2).

s

Fig. 1.1.

If TA™'(z) is closed, then this minimal distance is realized at the unique
point f =To € TA™'(2). If the condition N(T) N N(A) = {Ox} takes place,
then spline ¢ is unique because the equalities

Toy=To,=f, Aoy = Aoy =2

bring about ¢; — 02 € N(T) N N(A), in other words o — o2 =0Ox, 01 =o0;.
0
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Theorem 1.2. If N(T)N N(A) = {Ox}, the range R(T) of the operator T is
closed in Y and the null-space N(T) is finite-dimensional, then the subspace
TN(A)isclosedinY.

Proof. Consider the sequence yz € TN(A) which converges in the Y-norm to
Ya, the range R(T) is closed and y. € R(T'). There exists a sequence z} € N(A)
such that yx = Tz,. We will prove now that the sequence z is bounded in
X. We represent zj in the form zx = zx,1 + zk,2, where zx 1 € N(T), =zx2 €
N(T)*. 1t is clear that T'zx 3 = yx. The restriction T of the operator T to the
~ subspace N(T)* is a bijective mapping between N(T')* and R(T) and by the
Banach inversion theorem (see Appendix 1, Theorem 8) the operator T~ is
bounded. Then

lexz2llx = 1T wellx < 1T Nlylly-

It is clear that ||yx||y is bounded and ||zk,2||x is bounded, too. Remember
now that A(zk,1 + zk2) = @z, Az = —Azyz. The restriction of A of the
operator A to the finite-dimensional space N(T') is one-to-one operator from
N(T) to AN(T) (see N(T)N N(A) = {Ox}), and A~ is bounded. Hence,

lzkall = A7 Azzllx < A7 - AN - lzk,2]lx-

Finally, the sequence {z} is bounded. We extract now from {z;} some weakly
tending subsequence z/ v—Vm:.. Then Amkrv—V)Aa:,.., TzerV»Tm*. However we know

that Az = O3z, T:vkr—siy,.. Finally Az, = @z, Tz, =y.,in other words,
y« € TN(A). m}

Remark. It is possible to change the requirement " N(T) is finite-dimensional”
to the condition " AN(T) is closed in Z”.

From the geometrical interpretation (see Fig.1.1) it is obvious that the min-
imal distance from the point @y up to the manifold TA~1(z) is realized in the
vector T'o, which is orthogonal to the linear subspace TN(A). From this con-
sideration we can write the orthogonal property of the interpolating spline in
the following useful forms

Vo € A7Y(2) |T(= - o)} = |T=|l% - |Tol}, (1.3)
Yz € A7Y(2) ||To|l% = (Tz,To)y, . (1.4)
Vz € N(A) (To,Tz)y =0. (1.5)

The forms (1.3), (1.4) are dependent on the data vector z € Z, but the latter
form (1.5) is independent it. The latter form shows us that every vector ¢ from
the spline space belongs to the space [T*TN(A)]*.
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1.1.3. Smoothing

We consider now the problem of the existence and uniqueness of the smoothing
splines. Let us define a space F = ¥ x Z of the pairs f = [y,z], ye€Y, ze2Z.
Let fi = [y1,21], f2 = [y2, 22] be two elements of F. We introduce the scalar
product by the formula
f
(fu: f2)F = (1, 21), 2, 22)) S, w2 )y + (21, 22) 2. (1.6)

It is obvious that F becomes some new Hilbert space. We define the linear
bounded operator L : X — F by the formula

Lz = [Tz, Az]
and introduce the vector a = [@y, z]. Then the variational functional
Pa(2) = a||Tz||} + || Az - 2|}
can be written in the equivalent form
Po(z) = ||Lz ~ o }.
Really,
(Lz - a,Lz — a)p = ([Tz, Az — 2|, [Tz, Az — 2))F
= a|Tz|l} + || Az - 2|} = &a(2).
Theorem 1.3. If the range R(L) of the operator L : X — F is closed in F

and N(T) N N(A) = {@x]}, then the smoothing spline o, which provides the
solution of variational problem (1.2) does exist and is unique.

Proof. 1t is clear that N(L) = {@x}. In fact, the equality Lz = @ means
Tr =0y, Ar =0z thusz e N(T)N N(A) and z = Oy.
To solve the. problem

|Zow — alft = mip |2z -,

it is necessary to find the minimal distance between the fixed point a € F and
the linear closed subspace R(L) from F (see Fig.1.2). This minimal distance is
always realized at the unique point f = Loq,. The inversion of this nonsingular
operator L is always possible, and o, = L~! [ exists and is unique. a
It is evident that R(L) is closed in F if the ranges R(T') and R(A) are closed
in Y and Z respectively and N(4) + N (T) is closed.
From the geometric representation (see Fig.1.2) it is obvious that

Ve € X (Lz,Log —a)p =0
or in the complete form
Ve € X o(Too,Tz)y +(Aoy — 2, Az — z)z = —(Aoy — 2,2)7. (1.7)

This identity is the orthogonal property of the smoothing spline. Note that the
right-hand side of (1.7) is independent of .
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Fig.1.2.

1.1.4. Mixed Splines

It is possible to consider the mixed case of interpolating-smoothing splines.
In this situation the measurement operator A : X — Z is splitted up two
operators 41 : X — Z;, A : X — Zy, Zy,Z, are any Hilbert spaces
and Z = Z; x Z,. If z = 21, 23], the interpolating-smoothing spline o4 is the
solution of the variational problem

O =arg min ){allTwN?z + |42z - 2|7, }, (1.8)

IEAI n

where A7!(z1) = {z € X : A1z = z1}. In this case the initial data z; will be
interpolated and the data z; will be smoothed. Now if we introduce the Hilbert
space Fy =Y x Z; with the scalar product .

([ylsz;]'l [yZ, Z‘I'Z’])Fz = a(y,y2)y + (z;’ z‘?)Ze!
the composite operator Ly : X — F; by the formula
Loz = {T:B,AQ.T,]

and the fixed vector a; = [@y, 23], then variational problem (1.8) can be re-
duced to

On = ar min Loz — ap||%..
¢ gzeﬂ;l(zt)“ i ZHF:

With respect to the general consideration (see Theorem 1.1) it means that
the existence and uniqueness of o, are provided if LyN(A;) is closed in F;
and N(4;) N N(Lz) = {Ox}, but N(Lz) = N(T) N N(4z). To simplify the
formulation of the existence and uniqueness theorem we do not assume the
most general but very suitable in practice conditions:
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1. Null space of T is finite-dimensional.

2. Ranges R(T), R(A1), R(Az) are closed in Y, Z;, Z,, respectively.

3. Intersection of the null spaces N(T'), N(4,), N(4;) is only zero vector of
the space X.

Then the pure interpolating spline (A4 is absent), the pure smoothing spline
(A1 is absent) and the mixed interpolating- smoothing spline do always exist
and are unique. o

We write now the crthogonal property for the mixed spline. From the trivial
geometrical representation (see Fig.1.3)

Fig.1.3.

we have N
Vz € Al_l(zl) (L20q — Ly7. Loyog —az)p, =0,
or in detail

Va e AT (=) ([T(0q — 1), As(og ~ )], [Toa, Azoq — 23))F,
Y —a(Too.Ta)y + (A200 — 22, A204 — Agz)F, = 0.

=a|To,
Finally, the following orthogonal identity is valid

A(Toa,Ta)y + (4200 ~ 22, As7 — 22) 7, = a||To, % + || Az — 22|%,(1.9)

for every z € X under the constraints A,z = z,. The right-hand side of this

identity is indepeflden_t: of z. :

Remark. We have already considered the problem of the uniqueness for the
main type of splines. In ¢very case the condition N (TYNN(A) = {0,} is
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necessary for the uniqueness of a spline. If the subspace N(T) N N(A) is not
trivial, then the suitable spline is not unique and can be determined with the
accuracy to the arbitrary element from this subspace. But sometimes we do not
need to find the spline & € X but only Bo, where B is a linear operator from
X to some space U. If the null space of the operator B includes N(T) N N(A),
then the element Bo is the same for every solution of the spline-problem. So,
if

N(B) D N(T)NN(A),

then the element Bo is unique while the spline ¢ is not unique.

1.1.5. Functional Equations on Splines

We obtain now the general functional equations on the mixed interpolating-
smoothing spline, and in particular cases of the pure interpolating and smooth-
ing splines we obtain the corresponding equations too.

We assume that the conditions providing the existence and uniqueness of
the mixed spline o, take place. Then to find the spline o, it is necessary to
minimize the quadratic functional

Pa(2) = o||Tz|[y + [ 422 — 2|1%,

under the linear constraints A;z = z;. The corresponding Lagrange function
has the form

1
L(z;A) = Eéa(x) + (A A1z — 21)z,,

where A € Z; is any Lagrangian parameter. We rewrite L(z, ) in the following
form

o * 1 * *
L(Z,A) = E(T T:z:,x)x + —2'(A2A2CL‘,$)X - (A222,$)X
1 *
+ 5”22”222 + (Al/\,:ll)x - (/\,2:1 )Zz'

Using the Frechet differentiations with respect to the arguments z and X we
obtain the following conditions for the point ¢4, Ao of the minimum

oL

ol aT*Toq + AjA204 — A3zs + AT A = Ox
oL

a—’\ =A10—21 =621-

Then in the matrix form we have functional equations

QT‘T+A;A2 A; ] [00] _ [14222}

Ay 9Z1—~X Aa 21 (1'10)
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where ©,,_., is zero operator from Z; to X. For the pure smoothing spline
(the constraint A;o, = 21 is absent) we obtain equation

(aT*T + A*A)o, = A'z, (1.11)

since Az = A, 2z = z. For the pure interpolating case we have

aT*T A* o 6.
[T 1] 1%] o
with an arbitrary constant a > 0 (for example, @ = 1); in this situation the

operator A; is absent, A; = A, z; = z. In fact we assume that the uniqueness
for the pure interpolating and pure smoothing splines takes place.

1.1.6. Pseudo-Interpolating Splines
Sometimes in practice the interpolating spline as solution of the problem

oc=arg min |Tz|}

g, iy 7} ,
does not exist because the set A7!(z) is empty or, in other words, the inter-
polation condition A¢ = z is contradictory. In this situation it is natural to
change the exact interpolation condition Ao = z to the least square condition

— 22 = mi — 2|2 .
lAs - 2||7 = mig || Az — z(Z. (1.13)

If the range R(A) of the operator A is closed in Z then the solution of this
least square problem does always exist, but is not unique if the null space of A
is not trivial. It is easy to show (with the help of the Frechet differentiation)
that condition (1.13) is equivalent to the equation A* Ag = A*z which is always
solvable.

Definition 3. The pseudo-interpolating spline is the solution of problem

_ : 2 ' ,
o = arg xE(AIP.ﬁ:!)J"(z) 1 Tz||y, (1.14)

where (A*A)71(2) is a set of solutions for the equation A*Ax = A*z.

It is easy to modify a suitable functional equation for the pseudo interpo-
lating spline. Really, change the operator 4 for the operator A*4 in (1.12) and
obtain

™T A*A o| _[Ox
5 et 13- (3] 119
where A € X is the Lagrangian parameter. It is a trivial fact that N (A*A) =

N(A) and a special theorem on the existence and uniqueness for the pseudo-
‘interpolating spline is not required.
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1.1.7. » Any Smoothing Spline is Interpolating One”

Let us consider a closed subspace R(A) in Z. For z € R(A) the interpolation
condition Az = z is non-contradictory. Thus, for every z € R(A) under the
standard condition the interpolating spline

o=arg_min |Tslf

does exist and is unique. Then the spline space S(A,T) arises.

Theorem 1.4, For.every z € Z the smoothing spline which gives the solution
to the problem

00 = argminalToll} + |4z — 2|
z€X
belongs to the space S(A,T).

Proof. Let o, be the solution of the smoothing problem Consider the element
2q = Aoy and the corresponding interpolating spline &, which we find from
the problem

b=arg min | =%

Then ||T4||} < ||Toa|l3- On the other hand
a||Toall}y + [|Aoa — 2|l < a|| T3]} + |46 - 2[)%.

As Ao, = A6, therefore |Toq||} < ||T6||%. Finally ||To'o,|]y = ||T&]%; usmg
the uniqueness of the interpolating spline we have oo = & € S(4,T).

This proof can be repeated for the mixed splines without serious tra.nsfor—
mations.

1.2. Splines and Equivalent Norms in Hilbert Spaces

1.2.1. Main Theorem

Let X,Y and Z be some Hilbert spaces, T : X — Y, A:X — Z be some
linear bounded operators. We assume the standard requirements on these op-
erators, (dim N(7T) is finite, the ranges R(T') and R(A) are closed and the
intersection of the null spaces N(T') N N(A) is only zero vector). In this situa-
tion we call (T, A) the spline-pair because the existence and uniqueness of the
non-contradictory interpolating spline problem is provided.

Theorem 1.5. If (T, A) is the spline-pair, then the special norm ||z||(r,4) in
the space X introduced by the formula

Izller.a) = (IT2l} + 1 42]1%)? (1.16)
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is equivalent to the initial norm l|z]], i-e. independent of = constants C, >Cy >
0 do exist such that

Cillzllx < llzller,a < Callz]x. @)

Proof. The expression introduced by (1.16) is actually the norm in X , since
the expression llz]| (T, 4) is positively homogeneous, the triangle inequality takes
place and the condition llzll(z,4) = 0 brings about to z = Ox because N (THyn
N(A) = {@x}. The constant C, trivially exists,

lzllcz,a) < 1Tz -y + 1415 = 2|zl x = Csl2]|x.

Now we consider the operator L : X — ¥ x Z introduced by the formula
Lz = [Tz, Az], the inner product in ¥ x Z will be determined in the natural
manner:

(lv1, 21, [z, 22))y xz = (v1, 92)v + (21, 22) 2.

Then L is the bijective mapping from X onto the closed range R(L). By the
Banach inversion theorem the bounded inverse operator L~! does exist and

Ci= sup |loflx= sup [a|x
"""'"(T.A)=1 Zllyxz=1
= sup  [[L7'f|lx = |[L7Ylyxz—x > 0.
Iy xz=1
Theorem is proved. O

1.2.2. Examples of Equivalent Norms in Sobolev Spaces

Example 1. Let [a,5] be any finite interval of the rea] line and X = W}*[a, ]
be the Sobolev space of the functions with the squared integrable derivatives up
to the order m > 1. We introduce the norm in this space in the usual manner

b

m b
lall3ys = / (0t + Y [[O@)ar (1.18)

a

Let m = 1 and T = d/dt is linear bounded operator from W} to Y = L,,Z =
R! and A4 be a linear functional

b

Az = /w(t)x(t)dt,

a

where w(t) > wy > 0 for a < ¢ < b. The ra,ngeé of the operators T and A are
trivially closed. The null space of T is only constants and N (T)NN(A) is only
a zero constant. Therefore by Theorem 1.5 the norm defined by expression
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f b b :
lelizr = ([ wt)ean? + [ oPar )

is equivalent to initial norm (1.18).

Example 2. Let us preserve the notations of Example 1, i.e. X = W*, Y =
Ly, T =d™/dt™. Let Z = E, be the usual Euclidean n-dimensional space and
the operator A be defined by formula

Aa(t) = [2(t1),a(t2), o 2(tn)] (1.20)

where @ < t; < t3 < ... < t, < b is any mesh in [a,b]. It is trivial that
R(A) = E,, is closed. The null space of T' is the space 7,1 of the polynomials
of the degree less than m. The null space of A is the set of the functions from
WJ* which vanish at mesh points. Then the intersection of these null spaces is
only a zero function, if the number of a mesh points is greater than m — 1. So,
if n > m then the a norm defined by the formula

n b
||$”(2dm/dtm,A) = Z 2 (t:) + /[x("‘)(t)th (1.21)
=1 2 .

is equivalent to the initial one.

Example 3. Preserve again the notations. Let Z = E,, and the operator A be
defined by '

Az(t) = [z(ts), 2'(t), ey (™71 (2,)], (1.22)

where t, is any fixed point in [a, b]. The intersection of N(A) and 7m—; is the
only zero function, because only zero polynomial of the degree m — 1 has the
root of the multiplicity m at the fixed point. Thus, the norm defined by

m=1 b
I2lfam jzm,ay = D [a® (@ + ] [ (6)]7dt (1.23)
k=0 2

is equivalent to norm (1.18).

Example 4. Let X = W}[a,b],Y = Lza,b], T = d?/dt* + w?I, A being a
mesh operator (1.20). The null space of the operator T is functions of the type

f(t) = Cysinwt + Ca coswt

with arbitrary constants C, C;. By the well-known transformation it is possibie
to obtain

f(t) = Ag sin(wt + ),
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where A} = \/C} + CZ, ¢ = arcsin(C3/1/C? + C2). The distance between
the neighbouring roots is equal to 7/w. Therefore the number of roots is not
greater than s = 1 4 entier ((b — a)w/7). Finally if n > s then the norm
introduced by

n b
lzll?r, 4y = sz(tk) + j[ﬂ’"(t) + w?z(t))?dt (1.24)
k=1 P4

is equivalent to norm (1.18).

Example 5. Let 2 be any bounded domain in R™. Consider the Sobolev space
W3 (£2) with the norm

Il = D [(D*z)*de2. (1.25)
la|<m g

This space consists of the functions with the square summarized generalized
derivatives up to the m-th order. Let us introduce the operator T = D™ of the
generalized gradient of the m-th order in the following form

!
D™z(ty, .., tn) = [(1;‘-!:)1/21)%, la| =m]|. (1.26)

If the domain {2 is a star one with respect to any ball (i.e. we are able to
observe the boundary of £ from every point of any ball lying in £2) or if 2
is the union of the finite number of the star subdomains, then the range of
the operator D™ is closed in the Cartesian product ¥ = @& L,(f2), where
R = (n+m —1)!/(m = 1)!/n! is the number of various multi-indices a =
(a1,@z,...,an) with the condition |a| = a; + ... + an, = m (see Appendix 1,
Sobolev 1950).

The null space of the operator D™ is the space Tm—; of the polynomials
with n variables t,,1,,...,¢, of the degree m — 1. The dimension of MTm—1 18
exactly R.

Assume that m > n/2 (the embedding of the space W*(£2) to the space
C(2) of continuous functions is provided) and let P, P;, ..., Py be arbitrary
situated points in £2 (in other words, the scattered mesh). We introduce the
mesh operator A from W;*(12) to the Euclidean space Ey of the dimension N
by

Az(t) = [z(Py),z(Py),...,z(PN)). (1.27)

The intersection N(D™) N N(A) is a set of the polynomials Qm_; € Tm_y
which vanish at the points Py, P,, ..., Py. If we express the polynomial @,
in the form

Qm-a(t) = Y Cat®,t = 121452, 42n

la|<m -1
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then it means that

Y CuPr=0,i=12,..,N,

|aj<m—1

and with respect to the variables C, a homogeneous linear algebraic system
arises. The matrix of this system is a rectangular of the order N x R. To
provide the only zero solution of this system it is necessary to assume that the
rank of this matrix is not less than R. In other words, there exist R points
P,I,P.,, , Pi, such that the square matrix R x R composed of the elements

P2, la] £ m —1,k = 1,2,..,R is nonsingular. The set of points with this
property is called the Lagmngmn set or, shortly, L-set. Finally, if the scattered
mesh Py, P, ..., Py contains any L-set then the norm introduced by

lel2om 4 = Zmz(PkH PO ](D%)?dﬂ (1.28)

|a|<m .

is equivalent to the initial norm.
In the simple case n = m = 2, L-set always contains three points which do
not lie on the straight line.

1.3. Examples of Splines

1.3.1. One-Dimensional Splines by Point Evaluations
Let us consider the finite interval [a, b] of the real line with the mesh
a<t; <ty<..<tn<b

and introduce subsets Jy, J1, ..., J;m—1 of the set J = {1,2,..., N}. We want to
interpolate the function by its values at the mesh points with the numbers from
Jo, by the values of its first derivatives for the numbers from J; and so on and,
at last, by its (m — 1)-th derivatives at the mesh points from J.n_l In other
words, we have the interpolation conditions of the form

o(tx) = Zg, ke Jo,
oty =z, keld
() = 2, " (1.30)

a(mrl)(tk) = zim_l)a k € Jm-—l-
In the simple case Jy,J2,..., Jm—1 are empty sets, Jo = J, and we have the
classical interpolation problem. To formulate this problem in the spline form
we introduce the Sobolev space X = Wj*[a,b], m > 1, and find the spline-
function o(t) € WJ"(a, b] minimizing the functional
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b
[iem e (1.31)

under linear constraints (1.30). Thus, X = Wi*[a,b], Y = L2[a,b], T =
d™ /dt™, the measurement operator A is defined by (1.30), the data vector z is
defined by the right-hand sides in (1.30).

" The range of d™/dt™ is the whole space L;[a,b] and the range of A is
finite-dimensional. Both ranges are trivially closed. It is clear that interpolation
conditions (1.30) are always non-contradictory, and the suitable spline o(t) does
always exist.

The null space of d™ /dt™ is the polynomial space Tm—1 of the degree (m—1).
The null space of A is a set of functions from W;" which vanish at tx, k €
Jo, these 1-st derivatives vanish at tx, k € Ji, and so on. There are many
possibilities to provide N(T) N N(A) = {Ox}. For example, if the number of
integers in Jo is greater than (m — 1), then only zero polynomial of the degree
(m — 1) vanishes at the mesh points tx, k € Jo (the main algebra theorem).
In this case structures of Ji, Ja, ..., Jm—1 do not matter, and the interpolating
spline is always unique.

Remark. It is possible to analyze the uniqueness of splines with a more com-
plicated operator T (for example, T is the ordinary differential operator with
constant coefficients). In this case the null space of T consists of any quasi-
polynomials (exponents, trigonometric functions, polynomials and, probably,
their multiplicative combinations). In the general case we have no results on
the number of their roots, but in the particular cases this analysis is possible
(see example 4 in Section 1.2).

1.3.2. One-Dimensional Splines by Local Integrals

Consider again the finite interval [a,b] and assume that the initial information
on the function is its local mean integrals,

+
tk

1 ,
e /a(t)dt =z, k=12,.,N (1.32)

[
t

k

where t; < t}, and they both lie in [a, b]. Moreover, the open interval (i)
does not intersect with others. Formally, we have X = W*[a,b], m > 1,Y =
Ly[a,b], T = d™/dt™, A is the measurement operator, defined by (1.32). The
requirements providing the existence of the minimal point of the functional

b
[le™(t))?dt under constraints (1.32) are trivially valid.

The null space of A consists of the functions from W3" with zero integrals
(1.32). It means that any of these functions changes the sign in every interval
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(t5,t}) and it has the root in any interval. Thus, if N > m — 1, then mp,_; N
N(A) = {O;} and the interpolating spline is unique.

1.3.3. Multi-Dimensional D™-Splines by Point Evaluations

Let 2 C R™ be some bounded domain star with respect to any bail (or a
union of the finite number of this type subdomains), X = Wj"(f2) be the
Sobolev space with the standard embedding condition m > n /2 to the space
C(£2), T = D™ be the operator of the generalized gradient of the order m. We
introduce the scattered mesh Py, P,, ..., Py in £2 and the suitable measurement
operator A is the trace operator to the scattered mesh,

Az(t) = [2(Py),z(P2),...,z(Pn))].

Then the interpolating D™-spline o(t) € W*(£2) by point evaluations is the
result of minimization of the quadratic functional

m df m! o
ID™ )2, 0% 3 a—/(D 0)2d0 (1.33)
]

|a|=m
under the interpolation constraints
o(Py) =z, k=1,2,..N. (1.34)

As we know (see example 5 from Section 1.2) the ranges R(D™) and R(A)
are closed and D™-spline o(t) does always exist if the scattered mesh does not
contain equal points.

The null space N(D™) = mp,,_; is the space of polynomials of the degree
m — 1, and D™-spline o(t) is unique if the scattered mesh P, ..., Py contains
any L-set.

1.3.4. D™-Splines by Local Integrals

We preserve the notations of Section 1.3.3 and assume that instead of interpo-
lation conditions (1.34) we have the conditions in the following form:

/a(t)d!? =z, k=12,..,N, (1.35)
By
where By are any subdomains in 2 (for example, balls or cubes) such that
the intersection of every By with other subdomains is empty or a set of zero

measure. D™-spline by local integrals is the result of minimization of functional
(1.33) under constraints (1.35). The suitable operator 4 defined by

Az(t) = L/ 2(t)d, ..., ] (t)d2 | (1.36)

1 By .
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has the null space of the functions with zero integrals over By, k = 1,2,...,N.
Therefore, any of these functions has the root in By, k = 1,2,...,N. Thus
N(D™) N N(A) consists of only zero vector if there are Biis Bgsuss B, do
exist such that the product By, x Bi, X ... x By, contains L-sets only. In this
situation o(t) is unique. :

1.3.5. Finite-Dimensional D™-Splines

Let X = Wj*(2), £ C R" be the Sobolev space, m > n/2, and E, be
the finite-dimensional subspace in WJ*(£2). We consider the scattered mesh
Py, P,, ..., Py in 2 and the following interpolation problem: find ¢ € E, pro-
viding interpolation, '

o"(P) =z, k=1,2,..,N (1.37)
and minimizing the functional
1omo"I, = 3 2 [(07omyan (138)
g Li = & a! g . .
ajl=m n

Interpolation conditions (1.37) being non-contradictory in the whole Wi (R2)
may be contradictory in the finite-dimensional space E,. Actually, let E, be
some finite-element space connected with some division of the domain £ into
the finite number of simplexes. If the large number of scattered points is con-
centrated in one finite element it is impossible to provide the interpolation
in this element because the number of free parameters is not sufficiently large.
For this reason we change the pure interpolation condition’s (1.37) with pseudo-
interpolation condition

N n
D lo"(Pe) — z)? = min > T (Pe) -z (1.39)
k=1 k=1

Then using the convensional consideration of the existence and uniqueness
for the pseudo-interpolating spline 6™ € E, we obtain that existence always
takes place and o7 is unique if the scattered mesh Py, P,, ..., Py contains any
L-set.

1.4. Structure of Spline Projectors

1.4.1. Maximal Spline-Pairs

Let us return to the general consideration of the interpolating and smoothing
spline processes. Let X,Y and Z be the Hilbert spaces, T: X - Y, A: X - Z
be linear bounded operators. Remember (see Section 1.2) that (T, A) forms
the so-called spline-pair if the ranges of these operators are closed in Y and Z
respectively, N(T) N N(A) = {6.} and ¢ = dim N(T) is finite.
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Definition 1. We say that the spline-pair (T, A) is submaitted by the other
spline-pair (T, A) if N(A) D N(A), N(A) # N(4).

Definition 2. We call (T, A) is the mazimal spline-pair with respect to the
initial spline-pair (T, A), if (T, A) is submitted by (T, A) but there is no other
spline-pair which submits (T, A).

It is easy to see that the maximal spline-pair with respect to any fixed
spline-pair is not unique. Let illustrate us Definitions 1, 2 and non-uniqueness
on the following simple example.

Let [a,b] be the finite interval with the mesh

A={a<z1 <r2<..<a2y <b}

and X = W[*(a,b), Y = Ly(a,d), T = d™/dz™, m > 1, Z = En be the usual
Euclidean vector space, and

Au(z) = [u(z1),u(z2),...,u(zN))].

As we already know, (T, A) forms the spline-pair if N > m. If we consider any
submesh A C A and the corresponding mesh operator A, it is easy to see that
N(A) D N (A). If the number of mesh points in the submesh A is greater or
equal to m, the spline-pair (T, A) is submitted by (T, A). The maximal spline-
pair (T, A) is any spline-pair corresponding to the mesh operator A on the mesh
A with exactly m nodes from A. It is clear that this operator is not unique if
N >m.

We return again to the general consideration. The following theorem is valid

Theorem 1.6. Let (T, A) be the maximal spline-pair with respect to the initial
spline-pair (T, A). Then

X = N(A) + N(T). (1.40)

Proof. N(A)+ N(T) is a closed subspace in X. Consider some basis ny,
. . 4

n2,...,nq in N(T). Since N(A) N N(T) = {@x}, the equality A(} \in;) = O;
i=1

q . -

leads to 3> A? = 0. It means that the elements Anj, An,, ..., An, are linear
i=1

independent. .

Assume that N(A) + N(T) is not the whole X. It means that the element
zx € X does exist and is orthogonal to the subspace N (A) + N(T). Let us
construct an operator A which is equal to A in N(A)+ N (T) and is expanded
by zero to the orthqgonal complement. It is obvious that N(A) strictly contains
N (A) But An; = An;, i =1, 2,...,q and these elements are linear independent

q
as before. It means that the equality A(E Ain;) = @4 leads to 3 A? = 0,
=1 i=1

and N(A) N N(T) = {Ox}. In other words, the maximal spline-pair (T, A) is
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strictly submitted by spline-pair (T,fi). This situation is impossible and the
theorem is proved. O

Remark. 1t is obvious that R({i) = /i]y (T'). Therefore using the linear inde-
pendence of the elements An;, An,, ..., Ang we obtain

dim R(A) = dim N(T) = q. (1.41)

In other words, the action of the ”maximal” operator A can be always described
by ¢ linear independent functionals over X.

1.4.2. Interpolating Spline-Projector

Let (T, A) be the maximal spline-pair with respect to the initial spline-pair
(T, A). Let us introduce in the space X a special scalar product by the formula

(u,v)s = (Au, Av) 5 + (Tu, Tv)y (1.42)
and the corresponding norm by .
llull = (u, u)i’?, (1.43)

which is equivalent to the initial norm |lu||x. Consider the null space N(T)
and its orthogonal complement N(T')} with respect to a special scalar product
(1.42).

Theorem 1.7. N(T)L = N(A).

Proof. Let ny,ny,...,n, be some basis in N(T') and u € N(T)%. It means that
(u;n:)i = (z‘iu,x‘in,‘)z =0, :=12,..,q.
Using R(A) = AN(T) we have
~ q ~
Au =" )jAn;,
i=1

where A; are any constants. Hence the linear algebraic system arises with re-
spect to the coefficients \;:

g
Zx\j(finj,zing)z =0, :1=1,2,..,q.
=1

The elements An,-, 1 = 1,2,...,n are linear independent and the system has
only zero solution. It means that u € N(A). Conversely if u € N (A), then we
have

(u,ni),, = (TU,TTL,')Y =0
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and u € N(T)i. 0
Let us fix any element ¢, € X and approximate it by the interpolating
spline 0 € X which is the solution of problem

Ao = Ap, = 2, (1.44)
|To||? = min. -

It is natural that (T, A) is the spline-pair, and (T, A) is any maximal spline-pair
with respect to (T, A). We introduce the interpolating spline-operator S : X —
X which maps every element ¢, € X to the spline ¢ = Sy. by the solution
of problem (1.44). It is obvious that S is the linear projector (see functional
equations (1.12)).

Let us represent the element ¢, € X as the sum

Pu = pr + 92,

where @l € N(T), 2 € N(T)L. It is easy to see that Sl = ! (the elements
from the null space N(T') are exactly reproduced in the spline-interpolation
process because the energy ||To||2 of these elements is only zero!). Thus, the
non-trivial interpolation process takes place only in the subspace N(T)%, and
problems of the convergence and error estimates can be considered only for the
elements i € N(T)E.

In the closed subspace N(T)} the expressions

(uvy)* =_(Tu7TV)Y1 ”u”* = “Tu“Y

become the scalar product and the norm. For simplicity we preserve the no-
tation A for the restriction of the operator A to N(T)}. Let ¢ € N(T)L.
We transform initial interpolation spline problem (1.44) for the subspace: find
ot = Syt from conditions

Aot = Ap},

L (1.45)

flo™]|; = min.
Thus, we have the problem for the normal spline ot in the Hilbert space
X. = N(T)} with the special scalar product. Using the general functional
equations for the interpolating splines (see Section 1.1.5) we have

I A [al] _[ex

4o [ 12]
where [ is identical operator in X, A* is the adjoint operator to A with respect
to the special scalar product, A € Z is the Lagrangian coefficient.

Since the range of the operator A : X — Z is closed in Z we assume that
R(A) is the whole Z. We prove now that N(AA*) is only zero. Really, if for
any z € Z AA*z = Oz, multiplying both sides by z we have (44*z,2); =
|[A*z||*> = 0, i.e. z € N(A*). However N(4*) = R(A)L = Z1 = {©z)} and
(AA*)™! does exist.

(1.46)
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Using equation (1.46) we obtain
ol + A*A=0x, Aot = Ap?,
or acting with A into the first equation we have
 AA*A = —Act = —Ap?.
If we express A we obtain
ot = A*(AA*) 1Ayt

Finally, the interpolation operator S in the subspace X. = N(T )&+ can be
expressed by formula

S = A*(AAY)TA. (1.47)

It is evident now that the interpolating spline operator S : X, — X, is re-
ally the projector (S? = §) and the self-adjoint operator in the special scalar
product (§* = S) and therefore the orthogonal projector. Actually,

Vu € X. (Su,u— Su). = (Su,u)s —(5*Su,u). =0.

1.4.3. Smoothing Spline-Operator

Let (T, A) be any spline-pair, ¢, € X. We consider the smoothing spline prob-
lem: find 0, € X from the condition

ol Toall} + || 40a — Ay = minalTz|f + Az - Ap.|3. (1.48)

The corresponding smoothing operator we denote by S,. So maps the element
. onto the smoothing spline 0o = Saip.. It is easy to see that

Vne€ N(T) Sen=n (1.49)

independently of @ > 0. Actually, the corresponding functional equation for
the smoothing spline (see (1.11)) is

(aT*T + A*A)o, = A% Ap. (1.50)

and has the unique solution for any a > 0. If ¢, = n € N(T'), then this solution
is only n independent of a. Thus, the element n from the null space of the energy
operator can not be smoothed. Finally, the non-trivial smoothing process like
that in the interpolation case takes place only in the subspace N(T)t. In the
subspace X, = N(T)i corresponding to the special scalar product (u,v).
problem (1.48) can be reduced to

allog|li + 4oy — Agillz = min of|z|l] + |4z — Api |-

This is equivalent to the functional equation
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(alx,—x. + A*A)ot = A* Aot (1.51)

where Ix,_.x, is the unit operator from X, to X,. Act by the operator 4 on
(1.51) and obtain

ador + AA* Ao} = AA* Ao},
or
((A4") ™ + I 7)Aot = Agt,
or in the other form:
Aot = Izo5 +a(AA") ] Ak,
If we interpolate the data Aol we obtain ol. It means that
oy = A*(AA*) VAot = ANAA*) VIz_z + a(AA*) 1 4ep,.
Finally,
Sa = A%(alz_.z + AA*)A. (1.52)



