7. Vector Splines

7.1. Characterization of Variational Vector Spline
Functions

7.1.1. Direct Sum of Semi-Hilbert Spaces

Let X1, ..., X, be arbitrary Hilbert spaces. The direct sum of the Hilbert spaces
X = @™, X, consists of vectors u = (u1,...,un), u; € X;, 2 =1,..,n and is a
Hilbert space with respect to the scalar product

n

(w,0)x =) (ui,vi)x;- (7.1)

=1
Lemma 7.1. Any linear continuous functional L € X* is of the form
L(u) = Li(u1) + ... + Ln(un) (7.2)

where L; € X?. The representation of the functional L in the form of sum (7.2)
is uniquely defined. ‘

Proof. Let vs introduce the reproducing mappings 7 : X* — X, m; : Xf 3
X;, i=1,...,n. Then (7.2) is implied by the equalities

L(u) = (m(L),u)x = Z(W(L)i,ui)xi — ZW{I(W(L)i)(ui)

where 7(L) = (n(L)1,...,7(L)n) is an element of the direct sum. The uniqueness
of representation (7.2) is also obvious. This completes the proof of the Lemma.
O

Assume now that in X7,..., X, is defined the additional semi-Hilbert struc-
ture with scalar semi-products (-,-)p,, where P; are closed subspaces in Xj,
i = 1,...,n. In the space X, define the additional scalar semi-product and
semi-norm in the following way: ‘ '

(u,v)p = Z(Uz',vi)P;, | (7.3)

i=1 i=1

n 1/2 f 1/2 v
|ll,|p = (Z(ui,u,-)p;.) = (Z lu,'lr‘;;l.> 5 (74)
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The space P is a direct sum P, @ ... @ Py, ie. a closed subspace in X =
X19..8X,.

Theorem 7.1. The direct sum of the Hilbert spaces X = X1 @...dX,, with ad-
ditional scalar semi-product (7.3) and semi-norm (7.4) is a semi-Hilbert space.

Proof. Under the assumption X; are semi-Hilbert spaces, i.e. there exist con-
stants ¢; > 0 such that

luilp: < cilluillx,, VYui€ X; (7.5)
and the factor spaces X;/P; are Hilbert spaces with respect to scalar products
(ui + Py, vi + Py)i = (ui, vi)p;. | (7.6)

Making use of inequalities (7.5), the definitions of the norms and scalar products
in the space X, we have ‘

n 1/2 n 1/2
lulp = (Z Iua'lfo,-) < (EC?IIU:‘II%;) < max_ciflullx.

i=1 i=1

The semi-norm introduced is thus majorized by the norm, and condition (2.8)
is satisfied.

It is obvious that the factor space X/P is a direct sum of the spaces X;/P;,
¢ = 1,...,n, and by virtue of (7.3) the scalar product in the space X /P is defined
similarly to (7.1):

(u+ PV +P)=) (ui+P,Vi+ P).

i=1

It means that the space X/P is a Hilbert space as a direct sum of the Hilbert

spaces. This completes the proof of the Theorem. o
Now as X1,..., X, choose semi-Hilbert spaces of functions with the repro-

ducing kernels Gy, ...,G,. Then the direct sum X = @i X; will be called a

semi-Hilbert space of vector functions. ‘

Theorem 7.2. Let Ly, ..., L, be representation (7.2) for the functional L € X*.

Then the mapping 7p : X* — X:

WP(L) = (LlGl,...,LnGn) (77)

is reproducing for the semi-Hilbert space of vector functions of X.

Proof. It is necessary to verify equality (2.7). Let the functional L € X* vanish
on the space P. Then (7.2) implies that the functionals L, ..., L, vanish on the
space P, ..., P,, respectively. Then equality (2.7) is implied by the properties
of the reproducing kernels Gy, ..., Gp: '
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L(u) = ZL (u;) = Z L;G;,u)p, = (xp(L),u)p.

=1

7.1.2. Analytical Representations of Vector Spline-Functions

Let Li,...,Ln be a linear independerit set of functionals in X*. In Chapter
2, we have introduced a variational interpolating spline as the solution to the
constrained optimization problem

Li(u)=r;, 1=1,.,N, uwelX

|o|p = min |u|p.

(7.8)

The reader knows that if the space P is finite-dimensional, the functionals
Ly, ...,Ly form an L-set for the space P, the solution to problem (7.8) exists
and is unique. Henceforth, we will assume these hypotheses to be satisfied.

In the case where X is a direct sum of semi-Hilbert subspaces of functions,
the interpolating spline ¢ which is the solution to problem (7.8) will be called
a vector spline function. Our aim 1s to formulate the theorem on the character-
ization of vector spline functions based on the fact that we know reproducing
mapping (7.7).

According to (7.2) write down the expansions of functionals

Ll(u)=L1,1(u1)+---+L1,n(un)
e e e e be et iy _ . (7.9)

and by I; denote the sets of functionals over X:
li =(L1.51"'1LN,'E), 1: 1,...,??,.

Despite the fact that the set of functionals Ly,..., Ly is linearly independent
and forms L-set for the space P, the sets of functionals [; may prove to be
linearly dependent in the subspaces X; and may not form L-set for the spaces
Pioi=1,..,n. :

Theorem 7.3. The interpolating vector spline function o in the semi- Hllbert
space of vector functions A is of the following form:

ﬂdl

Z AiLji(Gr) + Z CJ,IPJ,

......... (7.10)
M!l

Z)\ LJ n(G )+ ch,npj n
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where py ;,...,pu, i is the basis of the space Py, 1 = 1,...,n. The vectors of
coefficients A = (A AN)T €5 = (e1,iseeyen i), i = 1,...,n, are determined
from the following system of linear algebraic equations:

’- kizl(Gk)ikt,c (Pi)t, ... (P, 1A ( '
(Pl')?:' l c1 ~ 0
Lo
. | . .
i (P)F | J Llend L0 J

Here, the matrices (Gy);,;, have the elements gg-c) = L; (L xGk), and the

matrices (Pg )i have the elements pg-c) = L x(pj.x)-

Proof. Let us make use of Theorems 2.12 and 7.3. Substituting expression
(7.7) into equality (2.33), we have

N M .
0= A(Lj1Gh,..., LjnGn) + Y bp;. (7.11)
=1

i=1

In the direct sum P = P, @ ...® P,, the basis can be chosen in the following
way:

pr=(P1,1,0,..,0), .., pat, = (Pay 1,0, ..., 0)
DM, +1 = (O,PI,Q, 01 ey 0)! o PMi+M, = (01PM2,21 01 )
PM—-M,+1 = (0, seey Oapl,na e PM = (0, reey OapMn,ﬂ)'

Then, changing the notation of the vector of coefficients (b1,...,ba1)T of repre-
sentation (7.11) to (cq,...,¢,)7, we obtain from (7.11) the sought form (7.10).
The system of equations for determining the coefficients of vector spline func-
tion (7.10) coincides with system (2.48). This completes the proof of the The-
orem. ‘ O

The following two corollaries are actually other formulations of Theorem
7.3 for the case of vector functions of two components.

Let X and Y be two semi-Hilbert functional spaces with the reproducing’
kernels G and H, respectively, and let P and @ be kernels of semi-norms in
the spaces X and Y. Introduce sets of the functionals v = (v1,...,un) and
w = (wy,...,wy) in the spaces X and Y, respectively, such that the set of
functionals v(u;) + w(uy), u; € X, uz € Y forms a linearly independent
system in X @Y and is an L-set for P @ Q.

Corollary 7.1. Let § belong to IR"| then the solution to problem

v(up)tw(uz) =46, ueX, ey
( ;12) (22) ' 12 22 (7.12)
1[5 + |o2]g = min [uy |} + uz2]g
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exists and is unique, and can be presented in the form

N M,
o1(s1) = Z Aivi(G(s1,+)) + Z c1,ipi(s1)
’I‘V‘ | ;4‘ (7.13)
oa(s2) =) Aiwi(H(s2,")) + Y e2,i6i(s2).
=1 =1

Here, p1(s1), ..., pm, (1) is the basis of the space P, and ¢1(s2), ..., ¢ar, (s2) is the
basis of the space Q. The coefficients of representation (7.13) are determined
from the system of equations with the non-singular matrix:

va + wa P, Qw A T
PI 0 0 ci| =10 (7.14)
Qg 0 0 Co 0

where the matrix G, consists of the elements g;; = v;v;(G(s1,t)), the matrix
Hyy consists of the elements h;; = w;w;(H(s2,%2)), the matrix P, consists
of the elements p;; = vi(p;(s1)) and the matrix @, consists of the elements
gij = wi(gj(s2)). -

Note that the components of the spline ¢ = (71,03) can formally be func-
tions of different number of variables, i.e. the domains 2y and 2, of the func-
tional spaces X = X(§2,) and ¥ = Y (§2;) can have different dimensions.

. There frequently arises a situation where the derivation of the vector spline
o = (01,02) brings about separate linear constraints imposed on the compo-
reuts oy and o2, and there are also joint linear constraints. Let @ = (21, ..., zn, )
and z = (z,,..,2n;) be sets of functionals over the space X, while y =
(Y1, yn,) and t = (t1,...,tn,) be sets of functionals over the space Y.

Corollary 7.2. Let a € R™, 8 € RV, 4 € IR™® be vectors. Then the solution
to problem

z(u)) =a, ylu)=p
z(ur) +t(uz) =7, w €X, weY (7.19)

2

lo1]% + |02|2Q = min |u; |5 + fuzlg
1s presentable in the form

gy = (pla Gr) + (R,G:) + (CI’P)
My

N, Na
= Z Pi.li‘i(G) + Z Hi':i(G) + Z Ci,1Pi
=1 =1 i=1

(7.16)
gy = (szHy) + (K"-Hf) + (C:’:ﬂQ)

M 2

N Na
= Z pi2yi(H) + Z Kiti(H) + ) cingi.
i=1 i=1 im1
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The coefficients of the expansions are determined from the following system of
equations:

G, O G P, 0 P1
0 Hy, Hy, 0 @ )
G. Hy G..,+Hy P, Q: K
P o  pT 0 o0 ¢
0 Q{ QzT 0 0 C2

(7.17)

1
co W™K

Proof. Interpolation conditions (7.15) can be rewritten as follows:

z(u1) + 0y, (u2) = a
0N, (u1) + y(uz) = B (7.18)
2(u1) + t(uz) = v

Introducing the sets of functionals v = (2,0n,,2), w = (On,,y,t) and, also,

the vector 7 = (a, 3,7), problem (7.15) can be reduced to problem (7.12). In
this case, we have

Gzz 0 Gy 0 0 0
Gw=|0 0 0|, Hy=|0 H, H,
Gz:c 0 Gzz 0 th Htt
P, 0
Pv: 0 ) sz Qy
Pz Qt

Note that the superfluous terms are removed in expansion (7.16) as compared
to (7.13). The complete expansion is of the form

g1 = (pIVGI) + (pZ’GONz) + (H"GZ) + (Cl,P),
03 — (pl)HONl ) + (p27Hy) + (K;th) +(621 Q)a

and the coefficients A = (\y, ..., A\y) are determined as follows; A = (py, p,, K).
This completes the proof of the corollary. a

7.1.3. Vector Splines on Subspaces

Let E,,...,E, be finite-dimensional subspaces in X,,..., X, containing the
spaces Py, ..., P,, respectively.

Definition 7.1. The functionoc € E = E, @ ... & E,, is said to be an interpo-
lating vector spline-function on the subspace if 1t 1s the solution to constrained
optimization problem as follows:

Liu=r;, ¢i=1,..,N, ueE &..0E,

|o|p = min |u|p.

(7.19)
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The spline in the subspace is thus the solution to minimization problem
(7.8) not in the entire space X, but only in its finite-dimensional subspace. It
is obvious that if the space E is equipped with the topology induced by that
of the space X, spline (4.1) is a spline in the semi-Hilbert space E.

Denote by ¢1,..., ¢ the basis of the space E. Any function of the space E
can be presented in form '

K
= uipi = (u,0) (7.20)
=1

where w = (uy,...,ux) and ¢ = (¢1,...,¢K). Introduce interpolating and en-
ergy matrices A and T in the following way:

Lipr ... Lipk (991,991)13 (99199.!\')}’

A= : S , IT'= : :
Lnei ... Lyeg (erp1)p ... (PrPK)P

Then, we arrive at

Theorem 7.4. If the functionals Ly, ..., Ly are linearly independent, form L-
set for the space P and are non-contradictory in the subspace E, i.e. there exists
at least one function from E, which satisfies the interpolation conditions, then
the spline ¢ in the subspace exists and is unique. If its expansion in the basis
is written in form

K
o=Y dipi=(d,p), (7.21)
=1

the expansion coefficients are determined from the following system of linear
algebraic equations:

PSRN (122

Proof. This theorem with a modification in system of equations (7.22) was
proved in Chapter 4 by the Lagrange multiplier method. Here, we will give
another proof based on the verification of orthogonal property.

The second group of equations Ad = r of system (7.22) represents interpo-
lation conditions. Indeed,

K K
(Ad); = Z Lipjd; = L; Zdjtp_j = Lio.

=1 ) j:]
The orthogonal property for the spline in the semi-Hilbert space FE is as follows:

(o,u)p=0 Yue E, Au=0. (7.23)
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Let us show that this orthogonality is implied by the first group of equations
in (7.22). To this end, rewrite condition (7.23) using the coefficients of the
expansions. We have

K

.
(oyu)p = (Z digi, » Hi%‘) =(To,u) = 0.
=1 P

i=1
Whence,
(To,u) = —(X, Au)

and since Au = 0, from the first group of equations in (7.22) we obtain the
orthogonal property. .

The spline o thus satisfies the orthogonal property and interpolation con-
ditions. Hence, it is the solution to constrained optimization problem (7.19).
Note that the vector A plays the role of the Lagrange multipliers.

Let us show now that the solution to problem (7.22) always exists. Indeed,
the solvability in the vector & is obvious, because the spline exists and is unique.
The vector X is determined from equations

A*A=f=-To. (7.24)

As is known from the theory of the Fredgolm operator, the solution to (7.24)
exists if the right-hand side f is orthogonal to the kernel of the matrix A.
But it is just orthogonality condition ( 7.23). This completes the proof of the
theorem. O

Let w;1,...,w; ki, be bases of spaces E;, + =1,...,n. Then the dimension of
the space E=E, & ... ® E, is equal to M = K| + ... + K,,.

Theorem 7.5. Under the hypotheses of Theorem 7.4, the vector spline function
o = (o1,...,0,) in the subspace E = E; & ... @ E,, exists and is unique. If we
write down its expansion in the bases of the spaces E; in the form

g1 = d;,lwl,l + ..+ dl,l\'lwl,l\',

............................ (7.25)
Op = dn,lwn,l + ...+ dn,!\',,wn,[\'“
the coefficients of the expansion d; = (i, .y di g, 7' = 1,...,n, are deter-
mined from the following system of linear algebraic equations:
T AT 14, 0
. 0 . .
_ =1, (7.26)
0 T, Al'l |d, 0
A - - - A, 0 A r

where the matrices 4; and T;, i = 1, ..., 1, are as follows:
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Ll,iwi,l ces Ll,iwi,K.'

A = : : )
Lyiwin ... Lywik,
(wiswin)p, o (win,wi K, )P

T = : :
(Wi, wi1)p: o. (wiki Wik )Py

Proof.  The proof is implied by Theorem 7.4. So, (7.25) evidently follows from
(7.21). To this end, choose a basis in the direct sum of subspaces Ey & ... ® E,
in a conventional way:

w11 W K,y 0 0 0 0

0 0 wy 1 w2 K,
0 0
0 0 0 0 wn,l Wn, K,
T T T T T T
©1 e PR, PKi+1-++ P +Ey - - PK—Kp+1-++ PK

Then, taking into account the choice of the basis, the choice of scalar semi-
product (7.3) and representation (7.9) of functionals, we obtain the following
representations of the matrices and system (7.22):

T
T = - , A=[A1. An].

T,
This completes the proof of the Theorem. 0O

7.1.4. Merging of the Analytic Splines and Splines on Subspaces

Let us have to interpolate the data by the vector function (u,uz) with two
components u; € X1(f21), uz € X(f2;). Assume that we know the reproducing
kernel G(s,t) of the semi-Hilbert space (X1(f21), |- |p), but the reproducing
kernel F(s,t) of the semi-Hilbert space (X2(£2;), |- |g) is not known. How
could we solve the interpolating spline problem (7.8)? One way is to consider
the vector spline on subspaces, i.e. problem (7.19). Another way is also possible,
when the analytic and finite-dimensional approaches are merged.

Consider a finite-dimensional subspace E; in X, and the following problem
for finding the two-component spline ¢ = (0y, 03):

Liu=r;, i=1,.,N, ue X() Es,

_ (7.27)
lo1 |3 + [02% = 111111|u1|%3_—i—_|152|é.
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Theorem 7.6. The interpolating vector spline function ¢ in the semi-Hilbert
space X1(§21)) @ E; is represented in the following form

N M,
oy = Z AiLi1(G(s,t)) + Z cipi(s),
i=1

=1

Ky
oy = E diw;,
i=1

where M; is the dimension of the space P, K, is dimension of the space Es.
The vectors of coefficients are determined from the following system of linear
algebraic equations

(7.28)

(Gl)llh (Pl )11 Az A r
Ag‘ 0 -1 d 0

Here the definition of matrices may be taken from Theorems 7.3 and 7.4.

Proof. Representation (7.28) follows from more general one (7.13). The first
group of equations (7.29) represents, evidently, the interpolating conditions for
functions (7.28). The second and third group present the orthogonal property.
Thus, the Theorem is proved. O

7.1.5. Smoothing Vector Spline Functions

Let X be a semi-Hilbert vector space with n components. The solution to the
following problem with the real positive a, a, ..., a,

. = }u'l%}| N 2
Oa = argmina Z; T + E(L,‘u — ri). (7.30)
= i=
we will call a smoothing vector spline.

Theorem 7.7. The smoothing vector spline function o4 = (071, ...,0,) is rep-
resented in the following form

M,

N
g1 =@ Z AiLia(Gh) + Z Ci 1P
=1

=1

............................ (7.31)
N M,

On = Qp Z /\iLi,n(Gn) + Z CinPin-
i=1 i=1

The vectors of coefficients are determined from the following system of linear
algebraic equations

.
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[ kE (G, +al | (P (P | [A1 [T
=1
(pl)ifl‘ ¢y 0
. ! =|-|. (32
| 0 .
- i
L (Pn)f | | Lend L0

Compare (7.31), (7.32) to (7.10), (7.11).
We leave the proof of this Theorem to the reader as the proof of the following
Theorem 7.8. The smoothing vector spline function oo = (071,...,0,) on the

finite-dimensional subspace E = @™, E; is represented in form (7.25), where
the coefficients of the representation are determined as follows

AT+ AT Ay AT A, e AT A, d, ATy
AT A, BTy + AT A, ... AT A, - :
AT 4, . cor BuTn+ATA, ] Ld, ATy

Here 31 = a/ai,...,3n = a/a,. Other vectors and matrices are defined in
Theorem 7.5.

7.2. Rational Splines

This Section follows the results of the thesis by (Rozhenko 1990).

7.2.1. Object of Interpolation

Let us assume the function f of the following form f(P) = fi(P)/f2(P) to
be interpolated, where f; € WJ*(2), f. € WJ*(12), W]*(12) is the Sobolev
space. Such representation in the form of the ratio is not evidently unique. An
example is the function

1, if O0<z<i,
fw)—{_L if —1<az<0.

If X;(02) = X2(2) = WJ*[-1, 1], then one can prove that any functions fi(z) =
|| - 2™~ - p(x), fa(x) = a™ - p(z) satisfy the equality f(z) = fi(z)/f2(2).
The function p(z) > 0 can be arbitrary from C*°[—1,1]. Other example il-
lustrates that the ratio function can reach the infinite values. Naturally, if
fi(z) =1, fa(a) = @, then f(x) = 1/2 has the "break” at the point 0.
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Now, let W] (2) W;™(£2) be the direct sum consisting of the pairs [u;, uy],
which is the Hilbert space with respect to the norm

' 1/2
el = (sl oy + el o)

Definition 7.2. The point P € 2 is called q regular point for the pair [u1,uz),
z,_ﬁ"uf(P) + u3(P) # 0. The set of all regular points of the pair is denoted by

[ulyuz] "

Definition 7.3. We call the pair [u1,u2] regular in the set A(C 2), iff any
point of the set A is a regular point for the pair [uy,us).

For the previous two examples, the set of non regular points consists of only
one point {0}. '

7.2.2. Interpolating Rational Splines

Let £2 C R" is a bounded domain with Lipshitz boundary, f/f, be a rep-
resentation of the function f € W (2)/W3(2), m > n/2, w C 2 be an
interpolating set. Then, one says that the ratio o1 /02 interpolates the function

f on the set w, iff '

fa(P)oy(P) = fi(P)oz(P) =0, VP e w. (7.33)
Clearly, equalities (7.33) determine the set of linear functional restrictments
lp(6) =0, PeA (7.34)

on the Hilbert space W™ ( )W (12). Thus, we can consider the vector spline
function minimizing the composite energy functional

B(u) = (lurlf, + fua[},)!/?

1/2
(7.35)

> ’;“—: [(D%u1)* + (D*uy)?] dP

2 lol=m

under restrictions (7.34). However, the solution to such a variational problem
is equal to zero. Thus, we have to add one or more functional restrictions, like

(o) =1(f) (7.36)

where I(f) # 0. For example, one can take a regular point P and consider two
restrictions:

a1(P) = fi(P), o3(P) = f2(P).

Definition 7.4. The function 01(P)/o2(P) is called the interpolating rational
D™ -spline for the ratio function f = f, /f2 on the mesh A C 12, iff
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[o1,02] =arg  min  |ug?, + |ug|?,
[u1,u2]€1a

where
Ly=AT(H)nL7(f),
AT ={lwr,u2] € WH(2) @ W) -
- f2(P)o1(P) — fi(P)o2(P) =0, VP e A}
L) = {[ur, u2] € W™ (2) @ W (82) : li(w) = I(f), i =1,..,N}

Theorem 7.9> If A™'(f)NL7(0) N (Pm-1 @ Pm_y) = {0}, then the 1nterpo-
lating rational D™-spline exists and is unique.

 Definition 7.5. The function g(P)/ga(P) is called the limit rational D™-
spline for the ratio function fi/fa, iff
2 2
[91392] arg[ul,rnl]%f iullm + !uzlm‘

Theorem 7.10. If fi/f; # pi/ps, where py,ps € Pm_1, then the limit D™-
spline exist and is unique.

7.2.3. Convergence of Rational D™-splines
Here we only formulate the results, and do not give any proofs.
Theorem 7.11. If the meshes A;, Ay, ... form a embedded condensed h-net in

the domain {2, then the interpolating D™-splines for the ratio function f on
the meshes A;:

[o1,03) = arg  min  |uy[2, + [uzf?,
[u1,u2]€l4;

converge to the limit spline [g1, g2], when ¢ — co.

Denote by Q = Q[ f‘ SN !2[91 ,g2) the intersection of the set of regular points
of the pairs [fi, fa] and [g1, g2].

Theorem 7.12. There a point-wise convergence takes place of the ratios
oi(P)/ak(P) to the ratio f; (P)/ f2(P) on the set Q.

Let € > 0. Introduce Q. = {P € Q : B(P,¢) C Q}. The set Q, is called the
é-interiority of the set Q. Fix a constant M > 0 and separate Q. on two sets:

QM = (P €Q.:If(P) < M},

Qe = {P €Q.:|f(P)] < M}.
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Theorem 7.13.. The ratio functions 0% = ¢i/c} uniformely converge to the
function f = f1/f2 on the set Qf‘fe, and the function ;! uniformely converge
to the function f~! on the set QQ’IE In addition, the following asymptotic
estimates take place:

1D%(e = Pllzeatr,y + 11D (0 ™" = F)lzaqy,) = o(h™ 4 />4n/r) (7.37)

Proof. We want to give a plan of the demonstration.
L If f,g € W*(R2), then fg € WJ"(2), i.e. the space WJ"(2) is C* -
(Diksmiex) algebra.
2. 1f f,g € Wi"(2) and min |g(P)| > &, then f/g € WJ*(£2) and
PER

ID™(f/9)lL2 2y < C/ﬂmH||f||w;*(n)||9||"vff;"(n)- (7.38)

3. If w C 2 is an arbitrary subset, then for all § > 0 there exists ws C 2,
consisting of finite number of domains with the Lipshitz boundary, such that -

waCBM@:{UBwﬂ}

tEw

The proof of estimates (7.37) is based on Lemma 5.5 about the Sobolev
functions with condensed zeros. First note that we can prove the estimates for
the difference (o — g) instead of (¢ — f), because f = ¢ on the set QM.. Since
ws contains the condensed mesh of zeros for (¢ — g), then by Lemma 5.5 we
can have

1040 = 9)lzsque. < 1D*(@ = 9)llas ey
< k™R D™ 5 — )| 2.

Further, on the basis of (7.38) we obtain

192 — 02401
1™ (o = g2y = IID"’TIIB(W)
C

S llo1gs — 7291l wpr (o) 029211 m (w5)-

The expression ||o2g2||w;(ws) is bounded, because of the convergence o3 — g5
and the fact that W;"(ws) is C*-algebra and, consequently, 0,9, € W (ws).
The expression [|lg192 — 0291 ||wy (wy) converges to zero, because

llo1rg2 = o2g1llwyr sy < o1 = 91)g2llwyr (wsy + ll91(o2 — g2)llwp (-

Estimates for ||[D¥(o—1 — p~H)llLr(qn ) may be analogously proved. O
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7.3. Application of Vector Spline-Functions

7.3.1. Curve Approximation by Parametric Cubic Spline
Let the curve I" on the plane be given in the parametric form
T = z(s)
I'=
- y=us)

, s€]o0,5].

Assume the parametrization to be natural, i.e. the length of the curve beetween

the points (2(51),y(S1)) and (2(S2),y(S;)) be equal to S, — 5.

Definition. The curvature of the curve I' at the point (z(s),y(s)) is the es-

pression k(s) = \/2""2(s) + y"2(s). The integral curvature of the curve I' is the

s
value K(I') = [ k2(s)ds.
0

Obviously,
’ 5
K(z,y)= K(I') = f z"(s) + y"*(s)ds.
0
Let (zi,yi) = (2(s:),y(si)), i =1,..,N be points of the unknown curve I'.

Introduce the problem of finding the curve with the minimal integral curvature,
which lies at above-mentioned points:

(ui(s1)ua(si)) = (ziy9i), i=1,..,N, ui,uz € W3[0, 5],
K(o1,02) = min K (uy, uy).

It is easy to see that this problem is reduced to two independent spline prob-

lems:

uy(si) =a;, t=1,...,N uz(si) =vyi, 1=1,...,N
uy € WJ[0,5], ' uy € W0, 5],
s s s s ‘
: /a;’z(s)ds = min /u'l'z(s)ds, ]Ué’z(s)ds = min /u"z(s)ds.
0 0 0 0

The latter problems are classical ones. These are the problems of cubic spline
interpolation. : .

Now introduce the problem, where the vector spline approach is essential.
Let in addition to the interpolating condition one hase to satisfy the "slope”
conditions at given points, for example at the extremal points (2(s1),¥(s1)) and
(z(sn),y(sn)). Let the slope at the point (2(s1),y(s1)) be equal to (ay, ),
and the slope at the point (z(sn),y(sn)) be equal to (an,Bn). Then, at the
extremal points we have to satisfy the equalities:

.
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o(z'(s1),9'(51)) = (e, 1), B(z'(sn),y'(sn)) = (an, Bn)

with some constants o and . To avoid the difficulties with the choice of the
constants a, 3 introduce the following vector spline problem

(u1(si), uz(si)) = (zi,9i), 1=1,...,N, uy,uy € Wor[0, 5],
Brui(s1) — aruh(sy) =0,

Bnui(sn) — anuy(sy) =0,

K(oy,00) = min K (uy, uz).

Obviously the spline (0y,0;) satisfies the interpolating conditions and the
"slope” conditions at the final points. This problem is not reduced to two
independent problems like in the previous case, and it is possible to apply the
methods of spline construction described in Section 7.1. Really, we can choose
an easier way. We know that the solution to the Iatter problem is the pair of
cubic splines. Thus, we can take the Hermite spline as basis. The interpolating
conditions will give us the coefficients of expansion in a part of basic functions
immediately. The remaining coefficients will be determined from the ”slope”
conditions and minimization principle. This way was considered in detail in
(Rozhenko 1983) for a similar problem.

7.3.2. Rational Splines with the Given Derivatives

In Section 7.2, we considered the interpolation with prescribed finite or infinite
values. Here we show that the described approach allows us to find the rational
splines with prescribed finite derivatives.

Since ¢ = o1 /09, then the condition o'(z;) = s; 1s reduced to

o (1) = (::E:‘:;)' _ Ui(xi)az(x;)%(—;rg(:vs)aé(ﬂ’i)

Applying the interpolating condition o1(zi)/o2(zi) = r; we come to o} (z;) —
(rioh(x;) + s;joy (zi)) = 0. Thus, we can introduce the following problem

= s;.

(01(2i) —rioa(zi) =0,
oy (x:i) — (rioy(z;) + si02(2i)) =0, &= 1,...,N,
l(o1,00) =1, o1,00 € W," [a, b],
b
/0’;’2(1‘) + 04*(x)dz = min,

L]

{

whose solution interpolates the values r; and derivatives siy, 1=1,...,N. Here
the functional / is introduced to avoid zero solution. The infinite interpolating
values r; may be satisfied in the conventional manner, but at these points we
cannot give the derivatives.
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7.3.3. Collocation Method for Differential Equations

The differential equation of the first order with n components

#(0) = uo
u(t) = A(t)u(t) + b(t), t>0

we propose discretization as follows:

u(0) = ug
u(ti) = A(t)u(t) + b(ti), 0<t; <ty <..<tn.

and to add the minimization functional

n 1/2
alp = (z ;u,-ﬁs,.) |
=1
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which has the reproducing mapping in an explicit form. Then, according to
Section 7.1 the discretized problem may be solved with the help of a system of

linear algebraic equations.

This approach is more important for the more difficult problems, when there
do not exist the explicit methods like the Runge-Kutta method. Our example

was only illustrative.



