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The specific basis of trigonometric
functions in the problem of approximate
solution of integral equations with

the kernel of the kind K (z — t)
V.V. Smelov, V.P. Kutov

1. In this paper we will deal with the approximate solution of Fredholm’s
and Volterra’s equations with the kernel of the kind K (z —t). We shall use
the known algorithm for the search of the approximate solution in the form
of a linear combination of preassigned basic functions

n
T) ~ Z ckpr(T),
k=0

with the help of Galerkin’s method.
The principal matter of the paper is the:choice of the specific basis

. {¢x(z)} which:

1) possesses high approximate properties, i.e., makes possible to find the
approximate solution with a good accuracy, but w1th a small number
of basic functions;

2) makes possible (by using the inner properties of the functions ¢k (z))
to easily transform the double integral by Galerkin’s algorithm to a -
simple (of multiplicity 1) integral;

3) reduces the problem to a system of equations with a reducible ma-
trix, i.e., reduces it to parallelizing an algorithm to two independent
subsystems of equations if the kernel is K(|z — t|).

In the Appendix we illustrate the use of the specific basis of functions
by solving the integral Peierls equation.

2. Let correspond the interval [a, b] to an integral equation. We take for the
basis {¢r(z),a < z < b} the eigenfunctions of the problem

~¢"(z) = Ae(a), w’(a—£)= ’(b+£)=0 (H=b-"a).

2
(It is very 1mportant that problem (2) is considered in the extended interval
[a — b+ 2] but its eigenfunctions will be used only within the interval

fa,8))
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The solutions to problem (2) are the functions

Tk .
wk(z)—cosm( b- z), k=0,1,2,...,

that are even with respect to the point ¢ = 0.5(a+ b) for even k and are odd
for odd k.

An important property of functlons (3) follows from the below stated
fragment of the book [1].
Let L be the Sturm-Liouville operator

r(a:)[ d.'z )dd‘HI( )], A<z <B,

where p(z) > po > 0, r(z) > ro > 0, g(z) > 0 are sufficiently smooth
functions. Let us consider the spectral problem

Lo(z) = Ap(z), A<=z <B,
op(A) + bog' (A4) = 0, 4)
my(B) + 61¢'(B) =0,
where the constants ng, 89, 71, 6, satisfy the conditions
n+6#£0, (-1)'mf; <0, i=0,1.

Let pi(x), k =0,1,2,... be the normalized (||@x|l® = fAB r(z)@?(z)dz = 1)
eigenfunctions of problem (4). In this assumption holds the following

Theorem 1. Any function ¢(z) € HN(a,b), N >0, A<a<b< B,
admits infinitely many representations in the form of series in the eigen-
Junctions of problem: (4)

0 .
p(z) =Y epr(z), a<z<b,
which are convergent in the norm of the space H™ (a,b). The coefficients of
series (5) for k > 1 are representable in the form
Ck =70'kk_N, k=1,2,...,

where

L= <]
Za;‘: < 00.*
1

*It is assumed that the smoothness of the functions r, p, g ensures the inclusions
ok € HY(a,b).
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If the function ¢(z) is sufficiently smooth (i.e., N 3> 1), then the law of
the decrease for coefficients (6) means the asymptotic ra,pld convergence of
the whole infinite set of ambiguous expansions (5).

Since problem (2) is a partial case of problem (4), functions (3) (by
virture of Theorem 1) corresponds to the above-mentioned Item 1), if a
solution of the integral equation is sufficiently smooth.

3. At first we will consider the equation

A [ K(e - ot de = 1(2),

where X is not an eigenvalue of the kernel K (|z —t]).
We will seek the coefficients cx in (1) with the help of Galerkin’s method
i.e, by solving the next system of linear algebraic equations:

n b b
> a( [ eu@en@) da-Aim) = [ f@)pn(z)dr, ()
k=0 a a .
m=20,1,...,n,
where

i = [ [ K(lz = thor(thpm(a) e ®)

Remark 1. The possibility to find with & good accuracy the solution of the
integral equation on the basis of approximate equality (1) assumes as well
the good accuracy in the following representation of the right-hand side:

f(z) = igwk(x)

k=0
where the coefficients gr may be found from system (7) for A = 0.

Now we will transform the integral I, with the help of the following
change of variables:

2H 2H
z=ct—(+7), t=ct—((-7)
where ¢ = 0.5(a + b), H = b — a. Then

i = 8(2)" [* K (LY ar [*7 (a6, 7) 4 T, 7)

where
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2 : 2H
Hkm(gsf) = ‘Pk(c - TH(E - T))Sﬂm(c - T(E“" T)) +
H 2H
ot Ze+)on(c+ ZEe-mn). @
Using the particular basic functions (3) we find*

im (&, 7) = 2cosk(% - r) cosm(g + 'r) cos k€ - cosmé +

2sink(% —'r) sinm(-;-r-+r) sin k€ - sin m§. (10}
If we use the identij;ies
| cosk(g —r) = (—l)kcosk(%+7), sin'k(—g— —1_') = (—1)F!sin k(g+r),
then we have
Mm (€, 7) + Mmi (€, 7) _

= 2[(-1)F + (—l)m]{cosk(g + -r) cosm(g- + r) cos k€ - cosm€ —
sin k(g+1') sin m(g-+r) sin k€ - sin m&}. (11)

Hence Iy, =0, if k and m have the different parity. It is easy to see that
for such k and m the expression in the parentheses in equalities (7) equals

zero. .
If the finite system of basic functions (3) is ordered as

wo(z), p2(2), - - ?1(3)1 ®3(z), ..,
then the matrix of system (7) will be of the following stucture:

(A 0

A_OAg’

(12)

where A; and A; are the square matrices. Thus, the algebraic system (M
decomposes into two independent subsystems of the half dimension.

According to formulas (11) the values Ii,, may be easily reduced to a
simple integral, namely

Too = _2(4H)2/0% I((EET) (} - ) dr; (13)

m™

*Here and below the important role play the inner properties of functions (3)-
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I = (—l)k(ﬂ)z . '
./O%K( ){( 1) (Z-r)cos2kf+ﬂsmk( 21’)}4"', .(‘14)

k # 0; ,
o = CALE
[xes meimitenied,
sin[(k + m)(% - ;)-]:f:[ (k—-m)(3+ T)]}dr, (15)
k # m.

4. In the case of the equation

b
ola) = [ K(e-1pt)dt = f(a),
(where X is not an eigenvalue of the kernel K (;v ~t)) it is sufficient to perform
the following substutions: '
(a) in formulas (13) and (14) it is necessary to replace

K)o IS e ()
(b) in formulgm (15) it i=s- necessary to replace | ’
(0" +0mIK () o (uri (- g oy ().

It is necessary to note, that the matrix of the system in this case has not
the form (12).

5. As a next example we consider Volterra’s equation of the second kind

ol(z) - ij K(z - t)p(t)dt = f(z), a<z<b.

After the realization of the whole above-described procedure of transforma-
tion of the double integral

T = j & [ K@ - )oult)om(z) de

which appears in Galerkin’s method, we obtain the results, that are com-
pared to (13)—(15). Namely, in the present variant it is necesary to take
the right-hand side of formulas (13) and (14) with coefficient 1/2, while in
formula (15) it is necesary to replace (—1)* + (—1)™ for (=1)™. In this case
the matrix of the system is also 1rreduc1ble to the form (12)
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6. Now it is appropriate to clarify statements 1) and 2) from Item 1. Since
polynomials are the simpliest functions, it is interesting to compare the basis
(3) to an arbitrary polynomial basis

{Pe(z)}e, Prlz) is the polynomial of degree k.

(It is necessary to note, that all bases of the kind (16) are equivalent). We
state that the basis (3) has clear advantages as compared to the polynominal
basis. _ '

In the first place it is impossible to get such a refined separation of the
variables T and £ like in formula (10) and in the subsequent equality (11).
As the final result the polynominal variant reduces to the expressions iy,
which are incomparable with respect to the simplicity of formulas (13)-(15).

In the second place, for the rows

o0
p(z) =) ckPi(s), a<z<b, (17)
k=0
it is possible to attain the convergence to a smooth function p € HN(a,b),
N > 2 in the general case only in the norm ||+ || ys(y5), Where M = [§ —1],
but the convergence of rows in the basic functions (3) is attained (by virtue
of Theorem 1) in the norm || - [[g~(44). The convergence of the polynomial
row (17) in the uniform metric is also slower than of the rows in basis (3).
The latter facts are proved in [1], where all investigations with rows (17) are
realized with the use of the basis of the Legendre’s polynomials..

It is low-probability that there exists the possibility of constructing the
bases {@k(z)}3, for other functions, which are different from trigonomet-
ric and polynomial functions and which are more efficient than (3) (more
efficient whithin statements 1) and 2) from Item 1).

Appendix

The above-stated algorithm is realized to solve a one-dimensional problem of
the search for a one-velocity neutron flux density in a homogeneous plate in
the presence of a distibuted isotropic source inside of the platc and external
isotropic sources outside of its each side.

Mathematically this problem may be writen in the form of the following
integral Peierls equation [2]:

o) = 55 [ lowplt) + 20O Es(le—t) dt + Q1 Bx(a) + QuEa(H—2), (18)

where @(z) is the neutron flux density, ¢(z) is density of the inner source,
0 < 0, < o are the macroscopic scattering cross-section and the total cross-
section of neutrons, @, and Q; are the external isotropic sources and E,(z)
is the integral exponent function:
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1 —
En(x)=]0 e}(pf}—nb‘x)du, z>0.

(Note that equation (18) is written in mean free paths I = 1.)
If one introduces the function ®(z) = o,p(z)+2¢(z), then equation (18)
takes the form

H
o) - A [" @B (e -t de = f(a),

where A = 2, f(2) = 2q(2) + 0,[Q1 Fa(z) + Q2 Ea(H — 2)]. |

Since Ey(z) ~ (=Inz) for z — 0 (z > 0), the integrals in formulas
(13)—(15) are improper. This case represents a certain inconvenience for the
numerical integration. In order to get rid of the improper integration, we
will transform the integral I;,,. To this end we take the integral

H z : - H )
| Eute - ther® dt = ["Eie-0e@dt+ [ Eae - poryat, (19
~ and using the identities

dE,.(z —t)
dt

dE.(t - z)
dt

we twice realize integration by parts of every summand in the right-hand
side of (19). As a result integral (8) (with the basis functions (3)) takes the
form : .

= Bas(z - 1), = —En.(t - o),

H
Ixm = 2'[0 ©k(z)om(z) dz -

rk (H .
cosfkjo em(2)[E2(H — z) + (—I)kEg(;-)] dz —

™ nk [H '
L2 sin Tk | om(z)[Es(H — ) + (—l)kb?g(w)] dr —

2H 4
i H rH .
Ga) [ [ Balle - thom(olionte) dede. (20)

The functions E,(z) for n > 2 have not singularity near zero, and the
double integral in the right-hand side of equality (20) should be calculated
by formulas (13)-(15) for K (47) = E3(4 7). It should be noted in passing,
that every summand in (20) is equal to zero if k and m have a different parity.

The results of a series of calculations by using twelve basis functions (3)
are compared with the values that are obtained from the transport integro-
differential equation. This equation is solved by a difference method on the
basis of the splitting algorithm [2]. These two approximate approaches turn
out to be in the good conformity with each other, i.e., they have sufficient
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accuracy for practical purposes. In the presence of external sources and in
the absence of an interior source the problem is considered at H of the order
of two mean free parts (see Remark 1).

Remark 2. The derivative %%»may have a logarithmic singularity near
the boundaries of the plate [3]. In this case ¢ € H(0, H) and therefore
according to Theorem 1 series (5) must converge sufficiently slowly. However
such a deterioration of the smoothness of ¢(z) has the local (near-boundary)
nature, so that on the whole this circumstance has a -small effect for our
method. '
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