
Bull. Nov. Comp.Center, Comp. Science, 48 (2024), 47–55
© 2024 NCC Publisher

Experimental research of automatic active
knowledge bases profiling and optimization

based on machine learning methods on
the example of array sorting problem*

Valeriy Sinyukov

Abstract. Paper discusses the problem of automatic determination of non-func-
tional properties of operations and variables based on profiling in the active knowl-
edge concept. Under the topic a wide range of issues outlining the direction of
further research are identified. The solution architecture is proposed, the proto-
type of this solution is described. The viability of the main idea of this work is
shown experimentally on the example of a simple computational model.

Keywords: automatic program construction, active knowledge, active knowledge
bases, profiling, program optimization, non-functional program properties, AKA
system, LuNA system.

Introduction

Creating an efficient application is a laborious process, which requires a
specific qualification from the programmer. Gradually, as the amount of
software increases, the main workload in programming shifts from writing
code to finding external solutions (libraries, frameworks, modules, etc.) and
adapting them to perform required tasks. This conditions the relevance
for the automation of searching solutions and assembling programs from
them. One of the solutions could be to use the active knowledge concept
[1], which is based on the theory of parallel programs synthesis and systems
on computational models [2].

As is with manual programming, for a given task there can be multiple
programs that perform it, these programs may be written in different pro-
gramming languages, they may implement different algorithms, use different
external solutions, etc. Therefore, dependencies of non-functional proper-
ties of these programs on input data and the computer may vary. Ideally
this factor should be taken into account when constructing the program. In
order to accomplish this it is required that the subject constructing the pro-
gram possesses information about these dependencies. This information can

*The study was carried out under state contract with ICMMG SB RAS FWNM-2022-
0005.



48 V. Sinyukov

sometimes be provided by a subject area specialist. Also this information
can sometimes be obtained automatically based on statistics of constructed
programs execution. The main idea behind this second approach is neither
new nor unique for the active knowledge concept, it is that the efficiency of
the program can be enhanced automatically as it is being used. Both of the
described approaches are not universal and have their own scope. Thus, the
main benefit of the second approach is its scalability: human could solve
this task efficiently only for relatively small-sized systems. An automatic
approach does not have such a flaw. It seems like machine learning is a
good candidate for implementing such a task. The paper discusses an au-
tomatic determination of dependencies of non-functional properties and its
particular case based on machine learning.

1. Terminology

Before formal problem statiting, we should introduce required terminology
with simplifications, which are not essential in the context of this paper.
Detailed description of the below terms can be found in [2].

The key concept in the active knowledge concept is a computational
model. Computational model is an oriented bipartite finite graph, whose
parts correspond to the set of operations and the set of variables. A variable
represents some value, which is meaningful in the subject area, an operation
is an ability to compute variable values based on other variables. Incoming
and outgoing arcs of the operation determine input and output variables
of this operation. For every operation there should be a software module
without side effects that implements it. One module can correspond to mul-
tiple operations. A module can be represented for example as a consecutive
procedure written in C++ programming language.

To construct a program based on the computational model the set of
input variables, V, values of these variables and the set of output variables,
W, which are to be computed, must be determined. If these sets are specified
it is said that a VW-task is given.

If there is a subset of operations that can be executed to compute variable
values until all the variables from W become computed, that subset is called
VW-plan. It is worth noting that there can be multiple VW-plans, or there
can be none.

Active knowledge base is an aggregate of computational model and de-
scription of non-functional properties of variables and operations.

Active knowledge system is a software, which constructs programs based
on active knowledge bases.

In this paper, special attention is given to the concept of non-functional
properties. Generally speaking, non-functional properties can vary a lot in
different subject areas. An example of non-functional property of an oper-



Experimental research of automatic active knowledge bases profiling . . . 49

ation could be its running time or memory consumption. Non-functional
properties can be dependent on the input data and the computer, for ex-
ample running time of a program implementing bubble sort quadratically
depends on the size of the array being sorted. In more sophisticated cases
dependencies between non-functional properties, input data and computer
can be very non-trivial. For constructing better programs it can be ben-
eficial to make predictions about non-functional properties as it will pro-
vide an opportunity to select operations that work better with given input
data and computer. This process of predicting non-functional properties
and constructing programs based on those predictions will be called active
knowledge base optimization.

Active knowledge base optimization can be done based on statistics of
active knowledge base usage. This statistics is represented with a profile.
A profile will be understood as a subset of non-functional properties values
collected during execution a program.

2. Problem statement

Now, when the required terminology has been introduced, we are going to
state the problem, it is to automatically determine non-functional properties
based on the profile to optimize active knowledge base. To reveal the topic of
profiling and optimization in the active knowledge concept we shall consider
its common and unique features compared to traditional software, like JIT-
compilers [3] and MPI [4]. We shall also consider how exactly an active
knowledge base optimization can be performed.

In MPI, processes communication is being profiled, for example, infor-
mation about number of messages, their size and time for their processing is
collected. In JIT-compilers, to perform speculative optimizations the num-
ber of jump instruction executions is counted. Systems like this most often
operate on a low level, for example, level of intermediate representation of
the program. Because of this, generally, they cannot perform algorithm-level
optimizations like changing bubble sort to quick sort.

The situation in the active knowledge concept is the opposite, program
and profiling information are defined on a high level, level of operations and
variables. Such representation allows to perform algorithm-level optimiza-
tion, like choosing a specific sorting algorithm depending on the input data.
Generally such scenario can be described as follows: let there be two oper-
ations, which both use variables from set V* and both generate values for
variables from set W*. It can be possible to approximate the dependency
between some non-functional properties of those operations, for example,
execution time, and some properties of the input variable v* from V*, for
example, its size. In turn, during program construction the operation that
fits the input data better will be chosen based on this approximation.



50 V. Sinyukov

There can be multiple operations which are computed by the same soft-
ware module. Thus, determined dependency of non-functional properties
might be relevant to all operations, which are computed by the given mod-
ule. This allows some non-functional properties of a newly added operation
to be determined based on the module computing it.

As it was stated previously, non-functional properties can be arbitrary,
specific to the subject area, they can depend on other non-functional prop-
erties and the computer non-trivially, but based on the profile these depen-
dencies can be approximated. VW-task can contain an optimization criteria,
for example, “It is more important to decrease memory consumption of the
program, then to improve its speed”. Depending on this criteria, the result-
ing program can vary. Since non-functional properties can be arbitrary, this
allows constructed programs to be “sharpened” for a specific subject area
and a specific use-case.

In an active knowledge system program can be constructed statically
and dynamically. Such approach allows to predict non-functional properties
statically, perform deduction of VW-plan and then adjust it dynamically as
the program is being executed.

In this section, we have discussed some questions that arise in the wide-
ranged topic of automatic profiling and optimization in the active knowledge
concept. To perform a quality research of this topic these and other related
questions should be investigated. In the next sections, the initial elaboration
of the topic is described, the viability of the main idea of this work is shown
on the example of a simple computational model. Also the initial research
on a promising approach of approximating non-functional properties using
machine learning methods is described.

3. Solution architecture

It is proposed to implement the above idea as a separate component of the
active knowledge system. This component computes a number, which is
an estimate for a non-functional property of a given operation or a given
variable. This component does that based on the profile, VW-task identi-
fier and the target operation or variable identifier. That estimate is used
during VW-plan composition. For example, an estimate could correspond
to an expected execution time of the operation. Further on, the described
component will be called the optimizer. It is worth noting that even though
the optimizer should not be tied to a particular active knowledge system, it
is mainly targeted to be used with the LuNA system [1, 5].

The profiler should be implemented as a separate component also. In
the context of this paper it is important that the profiler is a module that
can somehow collect required execution statistics and save it in the profile
storage accessible by other components of the active knowledge system.



Experimental research of automatic active knowledge bases profiling . . . 51

During program construction and execution, modules perform the fol-
lowing actions:

� During construction, the optimizer is being queried to provide esti-
mates, which affect how the program is being constructed.

� When queried, the optimizer extracts relevant profiles from profile
storage and computes the estimate based on these profiles.

� The program is being executed.

� During execution, the profiler collects the profile and saves it in the
profile storage.

The aforementioned workflow of an active knowledge system with the opti-
mizer is shown in Figure 1.

Figure 1. Active knowledge system with the optimizer and the profiler architec-
ture. Ellipsis marks modules performing program construction and execution

4. Prototype

Amonolithic prototype that is both the optimizer and the profile storage was
developed using Python programming language. This prototype consists of
the following parts:

� The core part contains the logic of processing requests for starting a
new task, computing an estimate, saving profile and finishing a task.

� Estimating modules, which compute the estimate based on profile.

� Frontend. The prototype provides an ability to access it using com-
mand line interface and HTTP.

� Collected profiles, estimates, identifiers of tasks being executed. This
information is stored in JSON files.



52 V. Sinyukov

Sources of the prototype can be accessed as a repository on the Gitlab
server1 of the Laboratory of parallel programs synthesis of Institute of Com-
putational Mathematics and Mathematical Geophysics of Siberian Branch
of Russian Academy of Sciences.

5. Testing

Testing of the above prototype was conducted on the array sorting com-
putation model shown in Figure 2. In this model there are two variables:
initial array and sorted array, and two operations, which compute the value
of the second variable based on the value of the first one. These operations
correspond to two sorting algorithms: quick sort and bubble sort. Soft-
ware modules that compute given operations are developed using “sorting”
Python library [6].

Figure 2. Array sorting computational model

Let us consider the task of optimizing sorting execution time. It is ex-
pected that bubble sort would work faster when sorting is performed on a
small array, and quick sort would work faster when sorting is performed on
a big array (the exact size depends on the computer and data type). In this
experiment, array size and sorting execution time is used as a profile. Thus,
the task for the optimizer is to predict operation execution time based on
the array size and previous execution profiles.

Active knowledge system used for this experiment is the AKA system
[7], into which the profiler and the module querying the optimizer were built
in. Queries were performed using HTTP.

Testing was conducted for integer arrays of different sizes, elements of
these arrays were generated randomly on every launch of the active knowl-
edge base. Decision tree [8] was used as an estimating module. For each
of the two operations there was one decision tree that was predicting its
running time. Before a decision tree can be used for prediction, it must be
trained. In this experiment, decision trees were trained on all the available
profiles every time when a new request was made. Also it should be noted
that these decision trees were not used until a corresponding operation was

1https://gitlab.ssd.sscc.ru/akso/akso



Experimental research of automatic active knowledge bases profiling . . . 53

Figure 3. Dependency between the launch number and real and estimated
execution time of sorting the array of size 50 using bubble sort

Figure 4. Dependency between the launch number and real and estimated
execution time of sorting the array of size 100,000 using quick sort

performed 50 times, before that moment the optimizer was answering each
request with an estimate equal to zero. The result of this experiment is
shown in Figures 3 and 4.

Launches that were a part of the first 50 launches, when decision trees
were not predicting, are not shown in the diagrams. As you can see, pre-
dicted values are close to the average execution time for the given operation
and given array size. This result can be considered good because of two
reasons. Firstly, when estimating execution time no array properties other
than its size were taken into account, thus, it would be unexpected to get
a better approximation. Secondly, such an approximation gives an estimate
about which operation would work faster on a given array size on average,
so it allows one to choose the operation which fits the given array better.
In the table, the predicted execution time after 6,000 active knowledge base
launches is shown for bubble sort and for quick sort.



54 V. Sinyukov

Predicted execution time of sorting operations for arrays of different sizes

Array size
Bubble sort

predicted time (ms)
Quick sort

predicted time (ms)

3 17.14 18.18
5 17.16 17.43
10 18.07 17.08
20 18.76 17.02
50 17.48 18.91
100 17.89 17.22
500 32.75 17.79
1000 86.49 18.67
10,000 6,934.28 34.18
100,000 787,246.89 212.32

From the content of the table a conclusion can be drawn that on a given
computer for sorting an array that has under 100 elements both operations
can be used with almost equal efficiency, and for sorting an array that has
500 elements and more it is better to use the operation that uses quick sort.

Conclusion

This paper discusses the problem of automatic program construction from
ready-made external solutions based on the active knowledge concept. Un-
der this topic paper discusses the problem of automatic determination of
non-functional properties of solutions based on profiling. This determina-
tion should assist in choosing appropriate external solutions based on the
input data and the computer. A wide range of questions related to this topic
is stated, architecture of solution is proposed, prototype of this solution and
its testing results are described.

References

[1] Malyshkin V. Active knowledge, LuNA and literacy for oncoming centuries //
Programming Languages with Applications to Biology and Security / C. Bodei,
G. Ferrari, C. Priami (eds). –– Springer, 2015. –– P. 292–303. –– (LNCS; 9465). ––
DOI: 10.1007/978-3-319-25527-9 19.

[2] Val’kovskij V.A., Malyshkin V.E. Synthesis of Parallel Programs and Systems
on Computational Models. –– Novosibirsk: Nauka, 1988 (In Russian).

[3] Ishizaki K., Kawahito M., Yasue T., et al. Design, implementation, and evalu-
ation of optimizations in a just-in-time compiler // Proc. ACM 1999 Conf. on
Java Grande (JAVA ’99). –– ACM: New York, NY, USA, 1999. –– P. 119–128. ––
DOI: 10.1145/304065.304111.

[4] Gropp W., Lusk E., Skjellum A. Using MPI: Portable Parallel Programming
with the Message Passing Interface. 3rd ed.––MIT Press, 2014.



Experimental research of automatic active knowledge bases profiling . . . 55

[5] Malyshkin V.E., Perepelkin V.A. Construction of active knowledge bases for au-
tomatic design of solutions to applied problems based on the system LuNA //
Parallel’nye vychislitel’nye tekhnologii––XVIII vserossijskaya nauchnaya konfer-
enciya s mezhdunarodnym uchastiem, PaVT-2024, g. Chelyabinsk, 2–4 aprelya
2024 g. Korotkie stat’i i opisaniya plakatov. –– Chelyabinsk: YuUrGU publ.,
2024–– P. 57–68. –– DOI: 10.14529/pct2024 (In Russian).

[6] Python “sorting” library web page. –– https://pypi.org/project/sorting/ (Ac-
cessed 15.10.2024).

[7] Gorodnichev M., Lebedev D. Semantic tools for development of high-level inter-
active applications for supercomputers // J. Supercomput.–– Vol. 77.–– 2001.––
P. 11866–11880.–– DOI: 10.1007/s11227-021-03731-6.

[8] Quinlan J.R. Induction of decision trees // Mach. Learn. –– Vol. 1. –– 1986. ––
P. 81–106.–– DOI: 10.1007/BF00116251.



56


