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Using of nonlinear regression with fuzzy
input data for analysis of seismisity*

K.V. Simonov, An.G. Marchuk, V.A. Okhonin, A.L. Shchemel

A variant of modified training functional that allows considering fuzzy input
data is suggested. A limiting case when a part of input data is completely undefined,
and, therefore, a problem of reconstruction of hidden parameters should be solved,
is also considered. Some numerical experiments are presented. The suggested
approach yields satisfactory results, which has been already used in a number of
applications.

1. Propounding of the problem

It is assumed that a dependence of known input variables upon output ones
should be found in the classic problem definition, which is widely used in
the majority of neural nets algorithms. The quality of approximation is
evaluated as a performance function

H =Y hyz,A), (1)

where h; is the error of the task number ¢, z is a set of tunable regression
parameters, and A; is an input data of the task ¢{. Often the error of the
task ¢ is evaluated as squared distance between known input data &; and
predicted data oz(z, A:):

bt = (a4(z, As) — &y)e(as(z, At) — &). (2)

The matrix € in expression (2) consists of the coefficients of positive
determined squared form. If this matrix is diagonal, then the coeflicients
are reciprocal to permissible mean squared deviation between predicted and
known outputs. Coefficients £ may be named “precision coefficients”. When
the outputs are not known exactly, natural generalization of (1) is as follows:

H =H+Y (A — A)p(A: — 4y), (3)
t
where known input precision coefficients u and input parameters A; are

introduced, which do not coincide with the best predicted ones A; defined
via optimization of performance function H' with these parameters.
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The limiting case when some or all inputs are undefined is to be consid-
ered separately.

2. Regularization and definition
of the realization of the neural net

It is desirable that the set of tunable parameters was deliberately compact
for training to be converging. In problem (2), it is possible to choose variants
of demands of a priori compactness, which allow meaningful interpretation
in the smoothness of the dependence a; upon A;. For example, two variants
of constraints can be used:

{(Vat)?) < const; (4)
2
—((Y—c:;}l—) < congt. (5)

These inequations limit mean squares of derivatives of input variables
(4) or relations of these mean squares to mean squared inputs (5) in inputs’
space.

The following form of neural net approximation of dependence between
outputs and inputs was used:

ai=b+¢ Zsin(«p“’ + qujA{). (6)
q j

If such approximations were chosen, the case of compactness condition
(4) would be expressed as

(Z (ci)z) X Z(k'”')2 < const, (7)

a,J

and the case (5) as
Z (k%)? < const. (8)

q,J

Asymptotic universality of neural net (ability to approximate various
smooth functions with any accuracy by increase of the number of tunable
parameters) is often the base for selecting a type of neural net approximation
[1, 2]. 1t is possible to show that neural net (6) will approach to the Fourie
integral transform (whose approximate abilities are known) with increasing
of the number of tunable parameters.

Coded neural net (6) demonstrates high performance; it can be trained
quicker than many others. The ability to calculate outputs together with
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their derivatives of different ranks along inputs fast and easy is significant
for some applications.

A case of conjugate gradient algorithm was used to solve problem (2)
modified with taking into account one of conditions (7) or (8). Programs
of data processing were coded as additional functions for “Matlab” and
“Excel”. It has been used to solve a set of applied problems.

According to obtained results, both ways of regularization (7) and (8) are
satisfied. The solution of problem (3) was obtained in two ways: a case when
conjugate gradients algorithm optimized all tunable and input parameters
simultaneously and a case when optimization of tunable parameters and
inputs was performed separately in odd and even iterations.

The second case can be used to adapt every task step-by-step, which
could reduce waste of memory. According to the results of the tests, it
is possible to reconstruct corrupted inputs in some cases. The results of
correction depend on the number of samples.

3. Reconstruction of hidden parameters

In the limiting case, when input data is set with zero precision, the problem
of reconstruction of hidden parameters with observed output data appears.
The problem can be formally propounded this way:

A distribution P(a) of various combinations of observed values should
be estimated. Totality of the combinations is represented by the set of
variables a. The results of observations determine the excerpt {a:}. An
approximation of the distribution is chosen as

P(a) = [ 6(a—a'(4)p(4)d4, (9)

where d(-) is the Dirak delta function, a’(A) is the neural net approximating
function, p(A) is a positive measure in the space of hidden parameters. To
avoid a problem of approximation p(A) it is natural to assume p(A) constant
and a'(A) variable.

Expression (9) corresponds to the approximation of the distribution P(a)
using special Jacobean of the reflection a'(A) in the case when a dimensional-
ity of the observed parameters a coincides with the dimensionality of hidden
ones A and the reflection a’(A4) is turnable:

A(a'))
P(a) = LA@) 10
)= baa)/DA 1o
In the scope of the propounded problem, a continuous (along with its
derivations) homomorphic reflection of the space of hidden parameters to
the space of observed parametess should be found. It allows to reconstruct
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lack information of the inputs when the number of the inputs is not less
than the number of hidden parameters and to estimate the distribution if
information for synonymous prediction of unknown inputs is not sufficient.

The following approach to build approximation based on the excerpt {a;}
is suggested: the excerpt {a:} is complemented with the hidden parameters
{Ay}, which are distributed according to the measure p(A).

Then one should find the correspondence of t' and ¢ which provides that
the best approximation of a; with a'(Ay) is the most accurate. In the
odd iterations, the dependence a’(A) is being optimized (like problem (2) is
solved). The correspondence between t' and ¢ is changing in the case when
error (2) is reducing and the distribution p(A) remains intact.

It is possible to leave the form p(A) intact when the Jacobean of the
transforms A — A’(A) satisfies the following condition:

p(A'(A) x DA'(A)/DA) = p(4). (11)

Therefore, a special transform that obeys (11) is applied to reduce error

(2) at every iteration. If the measure p(A) is constant, then condition (11)
is simplified to

DA'(A)/DA=1. (12)

Such transforms (12) form the bases of the classic theoretical physics
[3], where they are named “canonical” or “volume invariant transforms”
and, therefore, are well-known. We can offer one more interpretation of the
suggested approach.

Let us consider that we have a set of records and want to number them
with a set of rows of indexes and then to create neural net which would con-
tinuously reflect indexes to records. Obviously, the problem could be solved
only when similar indexes correspond to similar records. The suggested
approach builds both neural net and the required numeration.

4. Numerical algorithm of the reconstruction
of hidden parameters

The following variant of the problem of the reconstruction of hidden param-
eters solution was coded (in “Matlab”):

Orthogonal periodic mesh on multidimensional map was considered. Pe-
riodic functions “sin” and “cos” with the period of the number of the nodes
of the mesh were calculated with the arguments equal to node coordinates.
Their values formed a multitude of permissible values of inputs.

Condition (11) was performed due to the transforms were combinations
of shifts of the lines formed mesh parallel to itself with the step multiply to
the distance between nodes. Neural net approximation is based on (6).
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Figure 1. Coordinates of the main 315 Figure 2. Distribution of logarithms of
earthquakes in Krasnoyarsk region earthquakes’ probabilities

Results of the numerical experiments on the reconstruction of distri-
bution were satisfactory. As an illustration, such example can be quoted:
Starting from 1761 year there is a log of earthquakes in Krasnoyarsk region.
These 315 earthquakes are shown in Figure 1.

The grade of gray in Figure 2 corresponds to increasing of logarithm
of probability in this place (i.e., to increasing probability by 2 times). The
location of Krasnoyarsk city on this map is determined by coordinates 56°N,
93°E.

To produce this distribution, the space of hidden parameters was chosen
as a cubic mesh constrained with sphere, reflection of this space to the space
of real data (which included coordinates and energy class of earthquakes)
was made by neural net of 300 neurons. Approximation’s accuracy of 0.987%
of dispersion was achieved.

Numerical realization brings the following problems, in comparison with
the formal propounding:

Discrete analog of condition (11) leads to strict constraints on a number
of samples. Training excerpt is conditioned by mesh parameters and is
difficult to be modified by inserting or removing some records. Perhaps it
is necessary to use other variants of discrete approximations of essentially
continuous condition (11) to overcome these difficulties.

Generally, not natural values of dimension of the space of hidden pa-
rameters are achieved by estimating the Hauzdorf dimension of the excerpt
{a+}, which cause difficulties in applying suggested algorithm.
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Different limitations of discrete mathematics and logic, geometry with
natural dimensions arise during work with complicated information, which
is not adapted for our theoretical paradigm. Encountered hardships in the
developing of the algorithms show insufficiency of discrete approach.

5. Graphic interface for visualization and
analysis of regional seismicity

Now a lot of digital seismic data is collected for different areas of Rus-
sia. The graphic interface with digital geographic mapping is needed for
effective using of this data for seismic zoning and earthquake prediction.
Technology for creating of GIS applications for geophysical investigations
was developed in the Institute of Computational Mathematics and Mathe-
matical Geophysics. For instance, on the base of this technology systems
for analysis and prognosis of seismic situation of the Krasnoyarsk region.
This system uses vector and raster graphics and geophysical data in
specified format. The program of creating pseudo 3D and full 3D images of
selected area is developed for visualization of the Earth relief. Then several
layers with vector geographic data are drawn on this raster background.
Colors and sizes of the elements of geographical map are defined by the
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Figure 3. Vector map of the region with epicenters location -
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Figure 4. 3D background relief with the event selection window

user. In Figure 3, the vector map (without relief) of South Krasnoyarsk
region is shown.

On this background map the epicenters of earthquakes, which were
recorded in this region, can be plotted (see Figure 3). From this large region
the smaller area for detailed analysis of seismicity can be chosen. The pos-
sibility of the land relief visualization and retrieving of seismic events can
be very useful for analysis of seismic situation and earthquake prediction in
the area of interest (Figure 4). In the center of Figure 4, the event selection
window is shown.
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