Joint NCC & IIS Bull., Comp.Science, 5(1996), 69-82
© 1996 NCC Publisher

Agents as constraint objects

I.E. Shvetsov, T.V. Nesterenko

In the paper a multi-agent technology based on integration of the object-
oriented approach and constraint programming is proposed. The key notion of
this technology is an ”active object” that has three specific features. First, an ac-
tive object has the ability to change its state based on the analysis of the states of
other ”visible” objects. Second, the interaction of active objects is asynchronous
and controlled by events rather than messages. Third, the behavior of an active
object, that is, its transitions from one state to another, is described by constraints
rather than methods. In addition, we propose a new solution to the problem of inte-
grating imperative programming with constraint programming. In the technology
of active objects, it is the constraint paradigm which plays the leading role. It is
extended by the capability of simulating sequential processes, using the mechanism
of conditional constraints and the semantics of the tick-by-tick computations.

Introduction

The agent paradigm is very popular in modern programming, especially in
the field of artificial intelligence [1]. It considers the software system as
a collection of independently specified entities that can communicate with
each other and the external world. In contrast to the ordinary objects,
agents are more intelligent and more independent.

In this paper we propose a multi-agent technology based on integra-
tion of the object-oriented approach and constraint programming. The key
notion of this technology is an “active object” that has three specific fea-
tures. First, an active object has the ability to change its state based on
the analysis of the states of other "visible” objects. Second, the interac-
tion of active objects is asynchronous and controlled by events rather than
messages. Third, the behavior of an active object, that is, its transitions
from one state to another, is described by constraints rather than methods,
whereas methods are used only to implement the basic machine-dependent
functions, for instance, output of the graphical image of the object to the
screen, or the object’s interaction with external devices (mouse, keyboard,
sensors, etc.).

The principal advantage of the constraint-based approach is declarative
programming style. However, usually this approach is used to solve a rather
narrow class of problems which are reduced to the constraint satisfaction
problem (CSP). The solution to this problem consists in the transition from



70 LE. Shvetsov, T.V. Nesterenko

the domains of values of parameters linked by constraints to precise values
or subsets of the initial domains which satisfy all of the constraints simul-
taneously. Thus, by solving the CSP we can find some state of the object
with given constraints for its parameters.

At the same time, dynamic change of the states of an object, relat-
ed to changing the values of its parameters, cannot be described in the
framework of the ordinary constraint paradigm. Consequently, in practical
problems constraints are often used in a combination with other, more uni-
versal programming technologies, for example, object-oriented 2], logic [3]
and concurrent [4] ones.

In most cases of integration with other technologies, constraints are re-
garded as an additional tool enhancing the user-oriented and computational
capabilities of the base mechanism. In the technology of active objects
(TAO), however, it is the constraint paradigm which plays the leading role.

The main contribution of the present paper is the application of the
constraint paradigm to specification of the structure and behavior of multi-
agent systems. In addition, TAO proposes a new solution to the problem
of integrating imperative programming with constraint programming. TAO
essentially uses only one method of computation control — constraint prop-

_agation. It is extended by the capability of simulating sequential processes,
but the means for imperative flow control are not explicitly provided at the
user level.

It was decided to base TAO on the local constraint propagation tech-
nique suggested in so called subdefinite models (SD-models) [5,6]. We con-
sider SD-models to be one of the most universal, flexible, and efficient ap-
proaches existing within constraint programming. SD-models support joint
computations on finite domains and numerical intervals and allow one to
solve problems described by arbitrary, in particular, cyclic constraint sys-
tems, which may include nonlinear dependencies [7]. An important feature
of SD-models, which had an essential influence on their choice, is the mech-
anism of conditional constraints. This mechanism makes SD-models close
to concurrent constraint programming.

The paper is structured as follows. First, we consider the relationship
between TAO and other constraint programming technologies. Next, we
introduce the notion of an active object, describe its structure and compu-
tational semantics. We distinguish objects of three activity levels which are
characterized, respectively, by a dependence on the current events ("event-
driven”), on the previous state of the environment (”state-driven”), and on
time (”time-driven”).

In addition, the paper informally describes and illustrates the main com-
ponents of the specification language for active objects. We consider some
important aspects of the functioning of active objects, including graphical
visualization and interaction with the outer environment.



Agenls as constrainl objects 71

1. TAO and other constraint programming
technologies

Since TAO is an extension of SD-models, for better understanding we will
characterize briefly their main properties and capabilities. First of all, note
that SD-models are one example of the constraint approaches, which were
classified by E. Davis as propagation with interval labels [8]. This means,
in particular, that SD-models work not only with exact data, but also with
domains of values of variables, including numerical intervals.

The principal distinction between SD-models and other methods of con-
straint programming is that the domains of values of the variables are treated
as subdefinite data types (SD-types) over which the corresponding multisort
algebra of operations is constructed.

An SD-type extends a certain ordinary data type which can be numerical,
symbolic, or logical. The domain of its values is constructed as the set of
all subsets of the domain of values of the original type. Thus, an exact
value is a special case of an SD-value corresponding to a one-element set. A
completely indefinite value corresponds to the set coinciding with the entire
domain of values for the given type.

On the surface an SD-model looks like a system of constraints (equa-
tions, inequalities, logical formulas, relations, etc.) linking data of various
types — integer and real numbers, Booleans and sets. Computations in SD-
models are an asynchronous data-driven process of performing operations
on the domains of values of the variables. The algorithm is close to toler-
ance propagation proposed by E. Hyvonen [9] for computations on intervals
of real numbers. Unlike the last one, however, our algorithm can be applied
for computations over data of different types.

Consider a small example demonstrating the use of SD-models to solve
a system of numerical constraints.

2 +6+z =y—2F

kxx+ 7.7y =24;

(k-1)%* < 105

(2 <25+y) = (kxy<3)&(k >y +1);

Here z and y are real numbers and k is an integer. In this example
the fourth formula is a conditional constraint. Its semantics consists in
the following: the constraints on the right-hand side of the implication will
be activated only after the constraint on the left-hand side becomes true.
In fact, the left- and right-hand sides of the implication correspond to the
"ask” and "tell” expressions in the terminology of concurrent constraint
programming.

Before the computations, to all the variables we assign intervals with
very wide, almost infinite boundaries. The application of the constraint



72 LE. Shvetsov, T.V. Nesterenko

propagation algorithm for the example in question yields the following result:
k=[0,4]; z = [-6.4132,0,4406]; y = [0.0828,3,6433).

Like other algorithms based on local inference, our algorithm generally
ensures only local consistency of the solution. This means that the result-
ing sets of values may contain elements which satisfy only some part of all
constraints. To eliminate these "superfluous” values, and to find an exact so-
lution in the set of all feasible ones, SD-models also use an exhaustive search
with backtracking (for discrete sets) or bisection (for intervals). Applying
this method in the last example, we find two exact solutions:

1) k =2 z = —0.6586; y = 0.4826:
2) k=3;r=-1.6078; y = 0.9381.

The above capabilities of SD-models are used in TAO to define relation-
ships between internal slots of active objects. However, they are not suffi-
cient for implementation of multi-agent systems. We tried to find a minimal
extension of the computational semantics of SD-models which would allow
us to solve the following three main problems staying within the framework
of constraint programming. First, we must provide the reaction of active
objects to the signals coming in from the outside world. Second, we should
organize the interaction of active objects. Third, we must support the main
capabilities of imperative programming related to specifying a sequence of
actions, as well as recomputing the states of objects on the basis of their
previous values.

To solve these prob®ms, TAO includes the notion of an abstract clock.
Each tick of the clock represents a computational process, as a resul! of
which all objects get new values which possibly coincide with the old ones.
That is, we associate a complete set of objects’ values with each tick.

The approaches close to TAO are timed concurrent constraint program-
ming [10] and the Kaleidoscope language [11]. However, as far as we know,
the problem of implementing multi-agent systems was not considered in the
framework of these approaches. The first approach is mostly concentrated
on the development of reactive real-time systems, making use of an appro-
priate extension of constraint programming language. The main feature of
the Kaleidoscope language is the integration of an object-oriented langy»oe
with constraints.

In our view, the joint use of the imperative programming constructions
and constraints, in particular, the availability of two kinds of assignment
(destructive and refine) makes the semantics of the programming language
too complex. TAO does not have the operators of ordinary imperative pro-
gramming and uses only one kind of assignment (refine). At the same time,
the software technology proposed in the present paper supports the main



Agenis as constraint objects 73

features of imperative languages using the mechanism of conditional con-
straints and the semantics of the tick-by-tick computations.

2. Principal properties of active objects

Every software system is built in TAO as a collection of interacting agents
of a certain kind which we will call active objects. Numerous approaches
may claim the rights to the term "active object,” but we propose an original
interpretation for it.

An active object is an autonomous entity which is capable of changing its
own state independently and asynchronously, using the information about
the states of some external objects which are visible from this entity. Aside
from its name, an elementary active object includes three components:

1. a set of references to external objects which are visible from this one;
2. a set of internal objects (slots) which are assumed visible from outside;

3. a function mapping the values of external objects into the values of
internal ones.

No active object can change the values of external objects. Computation
of all visible external objects has been completed, and this is the fact which
is the necessary and sufficient condition for its activation.

TAO assumes that as a rule the function computing the values of the slots
of an object is specified as a system of constraints. However, this function
may as well be an arbitrary program written in some base language, for
instance, C++. '

In TAO, an important role is played by active ghjects whose set of ex-
ternal objects may be empty. The modification of the states of these objects
is controlled by information sources lying outside the environment of active
objects. Examples of such sources are various control devices (mouse, key-
board, pen. etc.), sensors, timer, etc. The connection between active objects
and external devices is implemented via functions written in the base pro-
gramming language. Henceforth, we will use the generalized term ”sensors”
for such active objects.

Computations in the environment of active objects are organized as fol-
lows. First, the sensors which do not depend on other active objects are
evaluated in arbitrary order or in parallel. Next, the objects that depend on
sensors only are evaluated (again, in arbitrary order). Then those objects
are evaluated which depend only on the values computed earlier, and so on,
until the states of all objects are computed. It is natural to demand that the
dependencies between objects constitute an acyclic graph. The sequence of
computations for an example is schematically shown in Figure 1.



74 LE. Shvetsov, T.V. Nesterenko

() (o) (&)
I " (A,)
Il ' & |
(&) @'Q

Figure 1

&)

The process after which each active object assumes a new state is called
a computation step. An important point is that the state of each ob ject is
rigidly linked to the number of the computation step. At the beginning of
each step, the values of all objects are set to an indefinite value. The step
completes when each object gets some concrete value. Once the value of an
object is found, it cannot be changed at the same step.

It is a quite ordinary situation when a new state of an active object
coincides with its old state. If, for some object, the values of its external
objects did not change in the current step, its new state can be obtained
without computations at all, by simple copying of the previous state. Careful
tracking of such situations is important if we want to make the computations
in the environment of active objects more efficient.

The totality of the states of objects which were computed in some step
is called the state of the environment. On the whole, the process of compu-
tations in an active environment is a sequence of computation steps. The
process stops when either a prescribed number of steps is completed or a
special instruction (e.g., STOP) is executed inside an active object.

If inconsistency of data and constraints in a computation step is detected,
then all the values computed in this step are ignored. Formally one may
think that the step was "idle,” and all the objects switched to their new
states without changing their values. A special error signal is produced,
which may affect the computations in the next step.

Note that the control of all computations in the environment of active
objects is based on a single approach which can be characterized as an asyn-
chronous data-driven process. It is used both in organizing the interaction
of active objects as well as in the constraint satisfaction algorithm used to
compute the states of the objects. There are some distinctions between the
two processes, but the principle of control remains the same.



Agents as constraint objects 75

3. Three levels of active objects

We distinguish three groups of objects which differ in their activity level.
The first group (the first level) comprises those ob jects which react only to
current events, without accounting for the previous state of the environment.
Such objects are, for instance, sensors or those active objects which depend
only on the values computed within the current computation step. Active
objects of only this kind are necessary for the implementation of systems
which are controlled exclusively by sensors. For example, they may be used
in the construction of relatively simple interactive graphical interfaces.

Objects of the next group corresponding to the second activity level, take
into account the information about the previous state of the environment. In
practice this means that the statements of constraints may refer to the values
of objects which were computed in the preceding step. In particular, this
enables one to express a situation when the new state of an object depends
on the previous state of the same object. We can write, for instance, a
constraint of the form A = A’ 4+ 1. where A’ denotes the previous value
of the object A. Since the previous state of the environment is assumed
known at the beginning of the step. and cannot change anymore, those
active objects which depend only on this previous state will be evaluated
flirst. independently of each other.

Active objects of the second level extend the class of solvable problems
and provide means for modeling dynamics and evolving processes. Further-
more. it can be shown that the second-level objects combined with the mech-
anism of conditional constraints, which is supported by SD-models. allow us
to specily most algorithms expressible by means of the ordinary imperative
programming. It is important to note that the principle of asynchronous
control of the computations is maintained. :

The third group is constituted by the active objects whose behavior
depends on time. It is assumed that the computation steps are executed
instantly. with equal intervals of time between them. These intervals may
vary in different applications. The introduction of time allows us to provide
tools for treating the numbers of steps as the values of some special (tem-
poral) data types. For these data types. we define operations and relations
which make it possible to express such notions as. for example. "earlier,”
“later.” Tevery five minutes.” “for two hours,” ete. Thus. the validity of
the constraints which determine the behavior of objects in this group can
depend on whether the number of the current step satisfies given temporal
constraints. Sensors can also be specified as the objects of the third group

they may produce new values only at prescribed times rather than at
every step.

Since active objects of cach of the three levels are connected with a
certain specific version of data-driven control. we introduce the following



76 LE. Shvetsov, T.V. Nesterenko

terminology. We say that the first level consists of objects depending on
events, or "event-driven,” the second level contains objects depending on
the state of the environment, or "state-driven,” and the third level contains
objects depending on time, or "time-driven” objects. The original term
"data-driven” will be applied only to dependences between internal slots of
an active object. The relationship between various control types used in
TAO is shown in Figure 2.

Sl-l S I+1

tia —_—

Figure 2

Although control in the environment of active objects is asynchronous,
there are at least two possibilities for setting the order of computations
indirectly. First, within one step the computation of one object may be
made to depend on another object (or other objects). That is, it will be
computed only when all the objects it depends on will get their new values.
Second, the behavior of an active object may depend on the value it (or
some other objects) had -ﬂ the previous step.

4. Programming in the environment of active
objects

In this seation, we consider the language of active objects. The description
of a typical active object has the following form:

object <name> : <prototype>;
out <set of external objects>;
in <set of slots>; '
model <constraints>
end.

Consider a concrete example. Suppose that an active object is a square
with sides parallel to the coordinate axes, which autonomously changes its



Agents as consiraint objects 77

size depending on the signals arriving from the mouse. Suppose also that
in each step it moves two positions along the X axis until it reaches a fixed
wall. Then its description is as follows:

Example 1.

object act_square : square;
out M : mouse; W : wall;
in area : number;
model
M.right = true -> edge = edge’ + 1;
M.left = true -> edge = edge’ - 1;
(M.right & M.left) = false -> edge = edge’;
area = edge”2;
area <= 36;
x =x' +2;
x + edge > W.x -> STOP;
end. '

Here the object square is the prototype of an active square (act_square),
from which the latter inherits the slots "edge” (the size of an edge) and
»z” (the coordinate of the top left angle). The object "square” itself is not
active, since it does not have external connections. Therefore, it can be used
only as a constant object (on the top level) or as a component or prototype
of another object. Note that TAQ prefers the object-oriented model of the
" prototype-instance” kind to the more traditional one, ”class-instance.” The
justification of this choice is beyond the scope of the present paper.

The active object "act_square” has two external objects; one of them
(M) is the sensor connected to an external device of the type "mouse,” and
the other (W) is the constant object, a vertical line simulating a wall. The
identifiers M aud W are in fact pointers to the values of external objects
whose names must be concretized by the moment when this object is to be
used. After the colon, we specify the name of the prototype which must
belong to the list of the object’s ancestors substituted for the corresponding
reference.

The object ”act_square” specifies one more slot in addition to those in-
herited from the prototype — “area” which denotes the area of the square
and is used to limit its size. Unlike M and W, the identifier "area” is a
specific instance of a numerical object rather than a reference.

The implications contained in the model must be treated as the con-
ditional constraints which perform a dynamic modification of the set of
constraints. In this case, the dynamics means, firstly, that the set of un-
conditionally true constraints is extended by those constraints which were
found to be true in the current computation step, and, secondly, that the



78 LE. Shvetsov, T.V. Nesterenko

truth of a condition is established, in general, not immediately but only at
a certain point of the process of constraint propagation.

The "Main” part of a program in the TAQ language contains creating,
initializing and linking active objects. For Example 1, this part has the
following form:

main (Examplel)
initialization
mouse;
const Wi: wall(x = 60, y = = 50);
Al: act_square (edge 1, const y = 5);
linking |
Al (mouse, W1);

[
= O
o

-

end.

When creating an object at the computation step 0, we can set the
initial values of some of its slots. The slots and objects whose values do
not change in the entire computation process are labeled as constants. The
proper computations start at step 1. Undefined slots initially have default
or completely indefinite values.

The ”Linking” section specifies the relations between objects. A concrete
name is assigned to each reference to a visible external object. Herc we con-
sider the simplest (static) case, when all objects and relations are initially
defined and preserved until the end of the computations. The dynamic case,
in which the creation/destruction of objects and the modification of rela-
tions between them are possible in any computation step, demands separate
investigation.

Consider the interaction of active objects which depend on cach other.
Suppose that the wall in Example 1 is not fixed but moves towards the
square. The process stops when the two objects meet. This leads to the
following changes in the program. The description of a new active object
"act_wall” is added; the object ” act_square” becomes external for this object.
The largest changes are made to the "Main” part of the program.

Example 2.

object act_wall : wall;
out R : act_square;
model
x=x'-1;
R.x > x -> STOP;
end;
main (Example2);
initialization



Agenis as constraint objects 79

mouse;
Wi: act_wall(x = 60, const y = 0, 1 = 50);
Al: act_square (edge = 1, x =1, const y = §5);
linking
A1 (mouse, W1);
Wi (A1’);
end.

In this program, object Al reacts to a change of the state of object W1
within the current computation step, whereas object W1 detects a change
of the state of Al only in the next step. That is, the dependence of the
type A — B is described in the language of active objects via two links
A« B and B «— A’ or, conversely, B — A and A «— B'.

5. Specification of sensors and graphical objects

Sensors in TAQO are objects which can change their state even without con-
tact with other objects of the active environment. This means that inside
the sensors there is a software component connected with the outside world.
In fact. sensors play the role of event generators for the active environment.

At the same time, some aspects of the operation of sensors may depend
on the states of other active objects. For example, the shape of the cursor
may depend on the object it presently points to. As mentioned above, the
activation of a sensor may depend on time. In general. a sensor is a complete
active object which is extended with a program providing the communication
with the outside world. For the program, the lists of its input and output
parameters must be specified. as well as the condition for its activation. It
is also necessary that all of its input parameters have concrete values at the
time the program is activated.

Example 3.

object mouse;
out A : hor_line;
in
X, ¥y : integer;
left, right : boolean;
mp: mouse_picture;
model
y > A.y -> mp.form = 1;
y <= A.y -> mp.form = 2;
program mouse_prog;

input
output : x, y, left, right;
cond : NOW > 10;

end.



80 LE. Shvetsov, T.V. Nesterenko

In this example we describe a mouse which begins to work only after the
tenth computation step and is capable of changing the shape of its cursor.
NOW is a built-in global object whose value is the number of the current
computation step. The shape of the mouse cursor changes depending on
its position relative to a given horizontal line. To draw the cursor, the
specification of the mouse includes the graphical object "mouse_picture.”

Since TAQO’s minimal representation unit for any kind of information is
an object, it is natural to introduce the notion of a graphical object. A
graphical object, as any other one, may be active, have a built-in model of
behavior, react to sensors, etc. The only distinction of a graphical object is
that it is associated with a screen image. '

All graphical objects specified by the user are eventually built with a
limited set of basic objects, such as point, segment, arc, circle, rectangle, etc.
The basic graphical objects have the same status in TAO as the other basic
notions, for instance, number, string, or logical value. The only function of a
basic graphical object is to draw an image of itself on the screen (the image
depends on the specific values of its slots). Thus, it has only one associated
method, image drawing, and does not contain any constraints.

The introduction of basic graphical objects makes it possible to localize
a low-level, machine-dependent component related to drawing them. All
other aspects of the behavior of graphical objects are described within TAQ
with the help of systems of constraints. For example, consider again the
user-defined graphical object ”square.” Suppose that its prototype is the el-
ementary graphical object "rectangle” with four slots: z, y (the coordinates
of the top left corner), "wide” and "high.” In this case, the description of
the square may be as follows:

object square : rectangle;
in edge : number;

model
wide = high = edge;
edge > 0;
end.

Note that the first constraint in this example performs two functions.
On one hand, it states the obvious truth that the sides of a square must be
equal. On the other hand, it relates the value of the new slot "edge” with
the slots of the basic graphical object, that is, with the parameters of the
corresponding drawing method.

For the convenience of working with graphical objects as data of a special
kind, one usually defines specialized spatial relations and operations, for
instance, inclusion, intersection, distance, to the right of, touches, etc. In
TAO such notions are described as parameterized systems of constraints.



Agents as constraint objects 81

For example, the relation of inclusion for two squares may be described as
follows:

relation inside (A, B : square);

A.x > B.x;

A.y < B.y;

A.x + A.edge < B.x + B.edge;

A.y - A.edge > B.y - B.edge;
end.

Here, as in the preceding examples, we consider the simplest case in
which the square’s sides are parallel to the coordinate axes, and the square
lies completely in the positive quadrant.

The objects are redrawn after each computation step is completed. To
this end, the system uses a built-in graphical processor whose main function
is implementation of the drawing methods. The work of the graphical pro-
cessor can be made more efficient, if we redraw not all objects in each step,
but only those whose state changed, and take into account possible overlaps
and intersections.

Conclusion

In the present paper we propose a technology for creating multi-agent sys-
tems which is based on integrating constraint programming with object-
oriented programming. The technology makes it possible to describe nat-
urally and laconically complex application systems which are organized as
sets of active objects interacting in a dynamically changing environment.
Examples of such applications are various complicated mechanisms (e.g.,
robots), manufacturing processes, transport simulations, or warfare.

At the same time, TAOQ has good chances qfefficient implementation.
Firstly, this is due to the efficiency of SD-models used as the basic com-
putational mechanism. Secondly, TAO provides a multi-level asynchronous
computation control process which is easily parallelized. Thus, the efficiency
of this technology can be manifold improved by using computers with paral-
lel architectures. At present, implementation of the first version of the TAO
software is almost completed. It is designed for use in the development of
interactive graphical interface. The basic computing engine of this system
is the corresponding module of the UniCalc constraint solver [12].

We considered only some basic principles of TAQ. A more detailed de-
scription of this technology can be found in [13]. Further studies are related
to the development of time modeling features and means for dynamic mod-
ification of the environment of active objects. However, the most important
goal at present is to perform convincing experiments on applying TAO to
the solution of real-world problems.



82

LE. Shvetsov, T.V. Nesterenko

References

[1]

2

(3]
[4]

(5]

[6]

(7]

(8]
[9]
[10]

(1]

[12]

(13]

M. Wooldridge, N.R. Jennings, Agent theories, architectures and languages: a
survey, ECAI-94 Workshop on Agent Theories, Architectures and Languages,
Amsterdam, Netherlands, 1994, 1-39.

J.-F. Puget, M. Leconte, Beyond the glass boz: constraints as objects, Proc.
of International Logic Programming Symposium, Portland, Oregon, 1995,
513-527.

J. Jaffar, J-L. Lazzer, Constraint logic programming, Proc. of POPL-87, Mu-
nich, Germany, 1987, 111-119.

V.A. Saraswat, Concurrent Constraint Programming, Logic Programmihg and
Doctoral Dissertation Award Series, MIT Press, March 1993.

A.S. Narin’yani, Subdefiniteness in knowledge representation and processing,
Transactions of USSR Acad. of Sciences, Technical cybernetics, Moscow, No. 5,
1986, 3-28 (in Russian).

L. Shvetsov, A. Semenov, V. Telerman, Consiraint programming based on sub-
definite models and its applications, Proc. of International Logic Programming
Symposium, Workshop on Interval Constraints, Portland, Oregon, 1995, 15 p.

A. Semenov, Solving Integer/Real Nonlinear Equations by Constrainl Propa-
gation, Technical report, Institute of Mathematical Modelling, Lyngby, Den-
mark, 1994, 22 p.

E. Davis, Constraint propagation with interval labels, Artificial Intelligence,
32, No. 3, 1987, 281-331. '

E. Hyvonen, Constraint reasoning based on interval arithmetic: the tolerance
propagation approach, Artificial Intelligence, 58, 1992, 71-112.

V.A. Saraswat, R. Jagadeesan, V. Gupta, Foundalions of Timed Concurrent
Constraint Programming, Proceedings of LICS, 1994.

B. N. Freeman-Benson, A. Borning, Integrating constraints with an object-
oriented language, Proc. of the European Conference on Object-Oricnted Pro-
gramming, 1992, 268-286.

A.B. Babichev, et al., UniCalc, a novel approach to solving systems of algebraic
equations, Proc. of the International Conference on Numerical Analysis with
Automatic Result Verifications, Lafayctte, Louisiana, 1993.

1. Shvetsov, Basic principles of the technology of active objects, Russian Re-
search Institute of Artificial Intelligence, Preprint No. 3, Novosibirsk, 1995,
26 p. (in Russian).



