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A numerical model of density currents in estuaries
of the siberian rivers∗

V.A. Shlychkov, A.I. Krylova

Abstract. A numerical model for studying the dynamic mixing of the sea and
river water in the estuarial area is proposed. Computations are based on the two-
dimensional longitudinal vertical stratified fluid mechanics equations and the equa-
tion of transport of salt. The model focuses on the reproduction of local density
currents at the mouth of arms branched deltas of the rivers of Siberia. The results
of numerical experiments are given, the dynamic structure of the flow and salinity
profiles are compared to the observational data.
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1. Introduction

The problem of the influence of river flows on the sea water is attracting
increasing attention of domestic and foreign researchers because of the eco-
nomic development of the marginal seas of the Siberian Arctic. The removal
of substances from freshwater fluvial systems into the sea is accompanied by
complex phenomena due to the stratification and difference in water densi-
ties through mineralization [1]. The observations reveal that in the process
of mixing, the sea water forms a thin layer of salt on the bottom of the chan-
nel, extending upstream, while the brackish river water moves on top to the
mouth. The result is a water front, i.e., a narrow contact boundary between
the river and sea water, and the flow is a divergent bundle of two greatly
different in their characteristics layers: the upper fresh and the underlying
cold salty. A zone of a dynamic rupture is formed because of a large density
gradient on the waterfront line, the vertical exchange between the layers is
blocked, thereby isolating and stabilizing the salt wedge.

The inflow of saline water into the channel significantly impairs the con-
sumer and hydro-biological quality of water making it unsuitable for drinking
and industrial needs. For a waterfront, the concentration of dissolved oxy-
gen decreases, the normal functioning of the river ecosystems is complicated
and hydro-chemical composition of the river water changes. The estuarial
flow, in turn, has a significant impact on the water balance of receiving ma-
rine water, thus causing the desalination of the upper layers, changing the
thermal and ice conditions of the ocean water.
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Water mixing is exclusively mobile, and the configuration and position of
the waterfront depends on many factors: the water flow in the river, the force
and direction of wind, stratification, etc., and changes in the diurnal and
seasonal time scales. Detecting the boundaries of penetration of salt water
into the channel and the influence of rivers on the marine area of water is
of great scientific and practical interest for the development of monitoring
systems and forecasting of hydrological processes in the sub-Arctic regions.

By now, patterns of the interaction of water flows at the mouths of the
northern rivers have not been sufficiently studied in terms of theory. The
first mathematical models of estuaries were formulated based on simple one-
dimensional equations that describe processes of longitudinal displacement
of the sea water into the channel under the influence of the pileup effects [2].
More meaningful 2D models from the standpoint of physics have already
contained the vertical detailing of interaction processes [3], [4], however the
description of the turbulent exchange was based on relatively simple postu-
lates of the turbulence scale.

The nature of estuarial processes largely depends on the morphometry
features of the channel and occurs differently in the mouth of each. Most
earlier performed theoretical studies of the Siberian rivers concerned large
estuarial areas such as those of the rivers Ob and Yenisei with characteristic
scales of processes of about 100 km.

Gradient density flows are evolving in estuarial areas of other morpholog-
ical types such as branched river deltas. An example of such a river system is
the river Lena delta. The main channel of the river is divided into a number
of channels, which are then divided into a dense net of branches flowing into
the Laptev Sea. Each river sleeve forms a local zone of water mixing at its
mouth, the whole set of such zones having the total determining influence
on the flow field near to the coast as a whole. Note that in recent years the
research into the delta of the Lena River has received impressive support.
In particular, a laboratory and test sites with modern equipment have been
formed that are intended for expeditions on the coast of the Laptev Sea [5].

For obtaining integral estimations of the influence of the continental
runoff on the mouth coast, it is necessary to consider local features of flows
with spatial scales of individual branches of river deltas. According to the
above-said we define the objective of this study as constructing a numerical
model of an estuarial area, based on stratified fluid hydrodynamic equations,
aimed at investigation of local density currents through mixing the sea and
river water.

2. Statement of the problem

The use of a three-dimensional mathematical model for describing the above-
mentioned processes as applied to watercourses in northern latitudes is not
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optimal due to the lack of morphometry data needed for spatial detalization.
In addition, it seems important to study the mechanisms of mixing water
in estuarial areas of simple geometry. For this reason, the schematization of
a longitudinal vertical flow is taken as basis, which has shown satisfactory
results in a number of studies [3], [6].

For obtaining the basic equations we start with a system describing the
flow in a stratified fluid [7]. Let y = b(x, z) be a variable width of a channel
flow, the axis x is directed horizontally along the main flow, the axis z
is directed vertically upwards. The averaged over cross-section (along the
coordinate y) equations of motion and continuity, as well as the transport
of salinity in the longitudinal vertical plane will take the form [8]
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where u, w are the horizontal and vertical velocity components, z = ζ(x, t)
is the equation of the free surface, ρ is the average density of water, ρ′ is
the density perturbations due to mineralization, Kx, Kz are the coefficients
of the horizontal and vertical turbulent exchange, s is the concentration of
the sea salinity, Sc is the Schmidt number for the salt solution. In (1), the
hydrostatic approximation conventional for natural watercourses is taken as
suggesting a relative smallness of the vertical velocities and accelerations.

System (1) is supplemented by the equation of state that relates density
with salt concentration

ρ = ρ(s). (2)

System (1) is closed by relation (2), which is used to calculate buoyancy
forces and variations of the density field in the equation of motion. The
temperature effect on the dynamic behavior of estuarial water in a cold
climate is insignificant [9], therefore the thermal factors are not taken into
account in (1), (2).

Let us denote the equation of bottom surface by z = zb(x), the vertical
flow of salt by Pz = b

(
ws−Kz

∂s

∂z

)
, and formulate the boundary conditions.

On the bottom line let us set

Kz
∂u

∂z
= cd · |u| · u, w =

∂zb

∂x
u, Pz = 0 at z = ζb, (3)

where cd is the coefficient of the bottom resistance. On the free surface, the
surface boundary conditions are of the form
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The calculation of parameters of the vertical turbulent exchange is based
on the balance equation of turbulent kinetic energy e and the equation for
its dissipation rate ε, which according to [10] have the form
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where αe, cµ, c2, c3 are empirical constants, J = u2
z + g

ρ

∂ρ′
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replenishment of the turbulence energy.
Before proceeding to the boundary conditions for the fields of turbulence,

let us note the following. In some publications [3], the following ratios on
the free surface are used:

∂e

∂z
= 0,

∂ε

∂z
= 0 at z = ζ.

These conditions do not provide the damping of Kz on the free surface,
which is typical of the flow in the absence of wind. On the contrary, from
system (5) it follows that under these conditions ∂Kz

∂z
holds, which means

that a monotonic increase in the coefficient of turbulence with a distance
from the bottom and reaching a maximum at the surface. Such a profile
as Kz contradicts the observed vertical structure of the flow, in which the
shift rate is zero, and the flow of turbulent energy is decreasing towards
the free surface. Consequently, the above-written conditions for e and ε are
physically incorrect and one should use other conditions, such as

e = 0,
∂ε

∂z
= 0 at z = ζ. (6)

On the bottom, let us set the following boundary conditions

∂e

∂z
= 0, ε = cε

e3/2

zsb
at z = zb, (7)

where zsb is the roughness of the bottom, cε is an empirical constant.
When setting boundary conditions on the upstream section (in the chan-

nel of the river) there is assumed to be no significant heterogeneity of a flow,
for example, due to a sharp change of the bottom topography at the input
alignment. As consequence, in equations (1), (5) the horizontal variations
of desired fields can be neglected, and it appears possible to consider the
stationary one-dimensional (with respect to z) problem:
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For equations (8), the boundary conditions (2), (3), (6) are set. The
functions u1, e1, ε1, obtained with one-dimensional model are boundary val-
ues in the boundary condition on the section x = x1:

u = u1, s = 0, e = e1, ε = ε1 at x = x1. (9)

At the exit alignment of the section x = x1 (the mouth seashore) set the
conditions

∂u
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= 0 at x = x2, (10)

where s2 is the sea water salinity.
The system of equations for determining the shape of the free surface

is formed from the equation of motion and the continuity equation in (1),
integrating with respect to z in terms of boundary conditions. The integra-
tion is carried out over a discrete space. The equation of motion produces
a ratio for the total momentum Qi =

∑K
k=1 bikuik∆z, and the continuity

equation implies an unsteady relation between Qi and ∂ζi

∂t
. With excluding

Qi from the system we obtain a one-dimensional finite difference equation
for the level ζ, whose differential analog can be presented as
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where Fζ contains combinations of the terms, integrated by z, of the equa-
tions of motion. Equation (11) is hyperbolic and describes non-stationary
wave oscillations of the free surface. The equation is solved by the factor-
ization method with the boundary conditions

Q = Q1 at x = x1, ζ = ζ2 at x = x2, (12)

where Q1 is a given flow of water in the channel, ζ2 is a certain level of the
sea.

Numerical methods for solving the problem are based on implicit algo-
rithms using conservative schemes. Finite difference analogs of the numerical
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model are derived from the energy relations and preserve the total mass of
liquid at each time, as well as the balance of kinetic and potential energy (ex-
act execution of the Bernoulli integral in without vortex flow) [11]. When
integrating the transport equation of concentration the monotonic TVD-
scheme of the second order of accuracy is used. Bottom topography is taken
into account by the transition to the curvilinear sigma coordinates. The spa-
tial resolution is characterized by the grid steps ∆x = 100 m horizontally
and ∆z = 0.1 ÷ 0.5 m vertically.

3. The calculation results

The solution domain in the vertical plane is shown in Figure 1 and is a
river channel passing into the estuarial coast. The origin of coordinates is
compatible with the “river–sea” boundary. The slope of decreasing bottom
we define to be 0.5 · 10−3, which is close to characteristic values of the slope
of the coastal zone of the Laptev Sea [12], and the slope of the free surface
of a uniform river flow ∂ζ

∂x
in system (8) is chosen so that the unperturbed

velocity be 0.25 m/s at a maximum. The depth of the flow is assumed to
be 5 m. In the river part of the stream, the channel width b is assumed to
be constant, and in the marine waters it increases linearly with the angle of
32◦, which is observed in the process of spreading the river flow [13].

Water flows and velocities in the sleeves of deltas widely vary and can
differ in either direction from that presented above [5]. However, at high
velocities of a river flow, the counterclaims sea waters are replaced by the
runoff current, and the intrusion is insignificant and the effects of advancing
the salt wedge into the channel are weakly expressed. The accepted values
of parameters make possible to distinctly reflect in the solution the most
interesting details and distinguish characteristic features of the stream.

The total length of the computational domain we define to be equal to
70 km, of which 20 km stretch of the river belong to the river part. The
initial distribution of the longitudinal velocity and fields of the turbulence
model is given by an ensemble of the vertical profiles, calculated by system
(8) at each node of the horizontal grid. At the initial moment, the salinity
s is taken to equal zero in the river part (x < 0) and to equal smax in the
sea water (x > 0), where smax = 30 ‰ is the concentration of salt on the
Laptev Sea coast [12].

The equations were integrated with respect to the time with a step
∆t = 30 s before attaining the steady state. In the course of integration,
the initial salinity field varied with forming the internal and surface waves.
Since the sea water is heavier than the river water, the salt water descends
and spreads above the bottom layer thus forming a mineralized “tongue”,
which penetrates into the channel. The salt water intrusion into the sea is
accompanied by the formation of a deep oncoming flow directed to the shore.
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The circulation in the area of interaction is shown in Figure 1a presenting
the calculated steady flow streamlines.

The streamlines reflect the presence of two dynamic structures in the
stream: the basic runoff flow directed to the sea, and the compensating
countercurrent, formed a result of leakage of the saline water from the bot-
tom into the channel. The interface between the sea and river waters coin-
cides with isotach of zero velocity, which determines the hydro-front position
and develops the jump salinity. In Figure 1a, the hydro-front (a dotted line)
starts on the bottom of the channel at the point that is about 6 km apart
from the estuarial alignment then it rises into the flow interior and in the
marine waters it gradually merges with the water table.

Figure 1. Calculation results: a) contours of the stream function; b) the salinity
field in the estuarial area; c) the distribution of the longitudinal velocity on the
surface and on the bottom (Curves 1, 2) and the surface salt concentration (Curve 3)
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The interface between water masses is distinct when analyzing the salin-
ity field in the solution obtained (Figure 1b). In this case, the hydro-front
can be identified by rather a sharp color boundary between the dark color
(salt water) and the light color (fresh water) areas. On a part of the estu-
arial sea coast, the interface gradually blurs (x > 7 km) at the expense of
the turbulent mixing of the layers. The salt water is flagged for the upper
part of the watercourse, on which salt is factored back into the sea. The
surface salt content slowly increases downstream as shown by Curve 3 in
Figure 1c (the absolute values s can be identified by the value smax given in
the figure).

An undisturbed flow in the upper reaches is only fresh water. A river
stream is pushed up when impinging the hydro -front, a fresh layer be-
comes thinner thus resulting in an increase of velocity. This is illustrated by
Curve 1 in Figure 1c, which shows the value of the longitudinal velocity on
the free surface. In the mainstream, the velocity from the value 0.25 m/s
has increased up to 0.57 m/s at the mouth (x = 0) i.e., more than doubled
(Figure 1c). Further, on the sea section (x > 0) the velocity falls that is
mainly due to the planned divergence of the current lines when extending
the jet in the receiving water body. A maximum of the vertical velocity field
w in the calculation was 1.2 mm/s.

The longitudinal velocity in the lower part of the flow is negative and
directed against the main stream, its amplitude being relatively low not ex-
ceeding modulo 0.08 m/s, vanishing down the stream. Curve 2 in Figure 1c
gives an idea about values of the bottom velocity.

A density gradient is an important inner force when forming the hydro-
front, which forces the salt wedge move toward the river flow. The trans-
lational motion of the front terminates and the flow structure is stabilized
when the density gradient is balanced by the force of inertia, i.e., the dy-
namic pressure of the incoming flow becomes comparable in magnitude with
the term of density difference. In this case, a part of the kinetic energy of
water is spent on overcoming the resistance generated by the interface in its
flow around.

The described model structure of the flow in mouth area is qualitatively
confirmed in the observations made [1, 2]. A difference between the results
proposed from the known model structures for the Arctic rivers consists in
the scales of processes under study. Thus, from the observations it follows
that the length of the halocline in the Ob Bay is a few hundred kilometers
[4]. Such a large size of salt water leaking can be associated with low flow
velocities, which decrease when leaving the channel into the estuary with
rather a large cross-section. A weak dynamic mode cannot provide a neces-
sary resistance to salinity gradients in estuary and the hydro-front extends
unhindered deep into the inland waters. In the mouths of estuarial delta
ducts, the estuarial extension is absent and the flow velocities are not ex-
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tinguished that is essential for the generation of blocking mechanisms of the
hydro-front.

Figure 2 presents a vertical profile of salinity (Curve 1) measured at the
mouth seashore in the inflow sleeves of the Lena River delta into the Laptev
Sea [12]. Curve 2 is built according to the model field salinity on the outflow
boundary of the computational domain at x = 50 km.

Note the qualitative and quantitative prox-
imity of the profiles compared in Figure 2,
which indirectly indicates to the adequacy of the
model. Certain differences can be explained by
insufficiently accurate input data about param-
eters of the river water flows in the delta and
natural environment in the process of measure-
ments. The slightly expressed upper mixed layer
in the model profile (Curve 2) is probably due to
incompleteness of the model of the vertical tur-
bulence exchange.

The vertical distribution of salinity essen-
tially determines the density stratification of the
upper layers in the northern seas. As Figure 2
shows, a layer of the density jump at the mouth

Figure 2. Real and cal-
culated salinity profiles
(Curves 1, 2) at the exit
outlet of the area

seashore is located in the surface layers. The power and depth of the jump
affect the efficiency of the oxygen supply of the lower layers, thus regulating
the aquatic life of hydro-bionts in the deep horizons. Therefore it is impor-
tant to correctly describe the transformation processes of the river water
at the mouth seashore and to define parameters of the salinity fields of the
coastal area.
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