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Richardson’s extrapolation
without interpolation in problems
of advective—diffusive transport*

A.V. Scherbakov, V.V. Malakhova, F.A. Eremeev

It is offered to use Richardson’s extrapolation on the basis of the up-wind
scheme. Four difference problems with double grid steps at each grid point are
solved simultaneously in one iteration process, which allows one to obtain a differ-
ence solution with the double grid step for all the grid points. The effect of this
approach is illustrated on examples of solution of the two problems: of advection
and of advective—diffusive transport.

1. Introduction

Advective processes are of central importance in the geophysical fluid dy-
namics and their treatment is crucial in numerical modeling of the transport
of tracers constituents in the ocean models. During the past decades, a wide
variety of finite difference methods have been proposed for the numerical so-
lution to the advection equation.

In the global ocean climate simulation, when advection dominates over
diffusion, it is difficult to obtain a sufficient resolution to use symmetric
differences for approximating advections. In case of a coarse dimensional
resolution, the obtained difference solution can qualitatively vary when re-
ducing a grid step [1]. The applied upwind scheme with large computational
viscosity, to be exact, computational diffusion, will probably, result in a tem-
perature trend, when the deep ocean temperature slowly increases with time.
For overcoming this problem it is offered to use Richardson’s extrapolation
based on the up-wind scheme, when at each time step the problem is solved
on two embedded grids with steps h and 2h, [2]. A linear combination of
two poor solutions of first accuracy order allows us to obtain more precise
solution with second accuracy order. The deficiency of this method is de-
riving the improved solution on a coarse grid with a step 2h, that results in
inevitable interpolation. _ .

Four difference problems with a double grid step at every grid point is
simultaneously solved in one iteration process, which allows us to obtain a
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difference solution with a double grid step for all the grid points. The effect
of this approach is illustrated on examples of solution of two problems of
advection and advective—diffusive transport.

2. The advection-diffusion transport problem

We first consider the two-dimensional advection—diffusion equation in the
domain G with the boundary I' ([2])

~edv+am ) I+ 0T = e, Wepk=0 )

where a(z,y) = y — 2.5, b(z,y) = 1, f(z,y) = 1, € = 0.01. The differential
operator of the equation for dimensionless variables describes the behavior
of an integrated stream function.

In the domain G = {0 < z <1, 0 < y < 5}, construct the uniform grid
G" with the steps Az = 1/N, Ay = 1/M, where N, M are the number
of points. On the grid G* we approximate equation (1) by the upwind
difference scheme
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This scheme has the first order of approximation, is monotonic and has
large computational viscosity that exceeds physical one. Alongside with the
grid G we introduce a grid G** with the steps 2Az, 2Ay such, that all its
points coincide with the points G*. On the grid G?* we also approximate
equation (1) by the upwind difference scheme
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Further it is proposed to solve simultaneously four difference problems
with the double grid step at every grid point in one iteration Gauss-Zeidel
process, which allows one to come to the difference solution 32" with the
double grid step for all the points of the grid G».
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Figure 1. Construction of grid G*: o - G*, v - G3*, A - G2#, x - G2t
(G* > G2+, G* 5 G*, G» 5 G2, G* 5 G2, GM = G2 U G2h U G2* U G2H)

Problem (1) is solved on the grids G3*, G3*, G2, G2 by using scheme
(3). Grids with the double step G?* are not interconnected everywhere
except for boundary points, where they are connected because of boundary
conditions. So, for example, in the ratio (Y15 + oj)/2 = 0, P € G%",
Yoj € G3*. Thus the additional boundary conditions will be used (_; +
¥2;)/2 =0, Y15 € GI*, g5 € G3.

Similar relations also take place on other boundaries. In the case of
another boundary value problem, for example, zero flux through boundary,
additional computational boundary conditions linking grids are a natural
approximation of zero flux with the step 3h.

After obtaining the difference solutions ¢ and %2 of problem (1) it is
possible to arrive at a solution with second accuracy order using a simple
extrapolation formula

P".= 2yt — . (4)
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Figure 2. Isolines of difference solution (1): a) by the symmetric scheme for N =
300, b) step 2h for N = 40, c) step h for N = 40, d) Richardson’s extrapolation by
formula (4)

Let us consider the results of numerical experiments. First of all, Figure 2
shows the difference solution of problem (1), obtained on the grid G* with
thin resolution at N = 300, M = 300 by the symmetric central-difference
scheme along both coordinates. It is possible to assume that the solution
is close enough to the precise one, as it is obtained with second order of
accuracy on a sufficiently fine grid. Further, we shall call it “precise”.

In Figure 2, the isolines of the obtained solutions %2, y* %" for N = 40
are presented. The internal boundary layer becomes intense with increasing



Richardson’s extrapolation without interpolation in pfablems cen 81

140

120 =

NI/ 78RS SSSNY

ol 1) ASSN

60 &\\

40-7;[ NN
A\

20

0,00 0,20 0,40 0,60 0,80 1,00
[ ~Fih —Fizh - FiK —fi(x)300°300 |
o}
250
200
N
150 — \
100 ;&’,’::ﬁﬁ\\
50 —
0 +
0,00 0,20 0,40 0,60 0,80 1,00
[ ~Fh —~Fizh -~ FIK —fi(x)300"300 |

Figure 3. The difference solution (1) for N = 20: a) for y = 2.5, b) for y = 3.5

approximation order. The maximum values of the function are 159, 176,
196, respectively. The difference solution ¥(z,2.5), ¥(z,3.5), obtained at
N = 20 is shown in Figure 3. Thus, the solution with second order of
©accuracy Eh significantly improves the solution ".

3. The advection transport problem

Let us dwell on an exception of numerical diffusion in an evolution problem
on an example of solution of the following advection equation ([51)

7] i
ot + u—:i +-v2‘£ =0, ¢=¢p(tzy). (5)
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For equation (10), the Cauchy problem with the initial condition and
zero boundary conditions is considered:

100cosy for |y| < /2,

6
0 for |y| > n/2, ()

o(2,y)lt=0 = {

v= 2%\/(3 —20)% + (v — v0)*.

Here zg, yo are the coordinates of the impulse center, R is radius of the
initial impulse. Problem (5), (6) describes the rotating impulse with the
constant angular velocity  in L x L square with period T' = 2x /). The
center of rotation is in the center of the square.

Let us introduce a regular grid with a step Az = Ay = L/M: G =
{(Az(i - 1),Ay(j — 1)) : ¢ =1,...,M, j =1,...,M}. The time step
is At = 120 s, and the full cycle occurs for 208 steps. Equation (5) is
approximated by the implicit upwind scheme with respect to z and y:

e 2 A o i TR vk 2 il
At G Az + Az +
ntl _ ntl ntl _ onitl (M
Ul:; Pij Pij—1 +o; Pij1 ~ ¥y 0,
Ay I Ay

the boundary conditions: ¢(1,7) = ¢(i,1) = (M, j) = ¢(i, M) = 0.

Run | Experiment | maxy | ming Ew}'/ Z GP? E('P?)"/ E('P.?)O
step 2Azx 5.26 0 0.60 0.03

R1 | step Az 9.58 0 0.82 0.06
correction 14.15 -1 0.99 0.12
step 2Az 8.12 | —0.01 0.74 0.05

R2 | step Az 8.14 | —0.01 0.76 0.05
correction 8.16 | —0.01 0.75 0.05
step 2Az 33.37 | —5.09 1.05 0.33

R3 | step Az 33.96 | —5.33 1.05 0.34
correction | 34.54 | —5.61 1.05 0.35

In the first experiment R1, solutions are defined on coarse and fine grids
through a full period of time (208 steps), and then formula (4) is once
applied. The first solution is defined on 18 x 18 grid with the step 2Axz,
the second - on 35 x 35 grid with the step Az, and the third solution with
second order of accuracy is obtained by extrapolation formula (4) on the
18 x 18 grid. The results of calculations are contained in the table. The
upwind scheme has large scheme viscosity, which results, as well as in [6], in
decreasing maxima of an impulse for one period by 5-10% depending on a
grid step. Decreasing 3" ¢?/ 3" ¢? up to 60-82% is explained by using zero



Richardson’s extrapolation without interpolation in problems ... 83

=

s
g

SRER
g

Figure 4. Difference solution of problem (5), (6) in one time period: a), b), c) ob-
tained in experiment R1 with steps 2Az, Az and Richardson’s extrapolation, re-
spectively; d), e), f) in experiment R2; and g), h), i) in experiment R3

boundary conditions. Richardson’s extrapolations improve the solution, but
only insignificantly. .

In addition, Figure 4 a—c demonstrates that isolines of all the solutions
are distorted, are lengthened forward stream.

In the second experiment R2, the scheme viscosity is eliminated not
only with respect to space, but also with respect to time. The problem
is solved on two the above-described grids simultaneously, but in this case
Richardson’s extrapolation by formula (4) is made in one step with respect
to time 2At on 18 x 18 grid and in two steps with respect to time At for a
fine grid. The'improved solution obtained on 18 x 18 grid will be employed
as previous approximation for both problems, interpolating it for 35 x 35
grid. The results of Run 2 are also presented in one full time period. The
table and Figure 4 d-f demonstrate that the use of interpolation results in
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Figure 5. Difference solution of problem of the cone transport:
a) in one time period, b) in two time periods

making the solution worse on a fine grid, and all clarifications disappear, as
consequence application of Richardson’s extrapolation is not reasonable.

In experiment R3, the problem of interpolation is solved with the use of
four embedded grids, as is depicted in the second partition. In remaining
this experiment retries R2.

All the four grids with twin steps are inter-connected at the expense of
adding computational boundary conditions. The solution with a step 2Az is
obtained for each point of a fine 35 x 35 grid. The maximum impulse is 34%
in one time period, the waveform kept better as well. However negative
values of the function are generated, although insignificant in magnitude.
Also, there appeared a phase error, the result of which this solution is 10
time step’s per rotation ahead of the analytical one.

Another experiment was made with an other waveform - the cone, [7].
The experiments R1 and R3 were repeated, the result being shown in Fig-
ure 5. The waveform has essentially influenced on the result. Since in the
case of the cone the scheme viscosity is absent everywhere except for its
edge and base, as the second derivative is equal to zero, then on the whole
both experiments have appeared more effective as compared to calculations
with an impulse as cosine (6). Richardson’s extrapolation in Run 1 in one
time period keeps 57% of amplitude of a precise impulse, instead of 14% for
cosine, and the use of the four embedded grids save 77% of an impulse, not
35% as earlier. It is interesting to emphasize that the second time period
decreases the amplitude of a signal only by 7% when using four grids, while
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using one embedded grid — by 14%.
The presented results indicate to good prospects of the proposed method
as applied to solution of advective-diffusive equations.
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