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Some results of autowave modelling
by cellular neural network

A.V. Selikhov

. Two-layer cellular neural network as a simulating model of wave processes is
considered. The wave speed dependence from an intralayer connection weight is
presented.

1. Introduction

Complexity of different phenomena being investigated in nonlinear dynam-
ical systems has achieved now such a level when application of traditional
mathematical models becomes rather difficult even when powerful comput-
ing systems are used. In this situation some other approaches to effective
studying complex processes may be interesting. Among them a particular
attention should be paid to highly parallel computing models which allow
to simulate such processes with minimal time spending.

Nowadays many interesting results in simulating different complex phe-
nomena were obtained using Cellular Neura] Networks (CNN) proposed by
L.O. Chua and L. Yang [1]. Being a model of parallel information pro-
cessing CNNs have the following properties expected to be essential for the
simulating purpose:

L. A structure of a CNN can be used as a discrete representation of
different media properties.

2. Interactions between elements of the CNN are local and can have dif-
ferent values which make possibility of simulation of media with a wide
range of properties.

3. Each cell of a CNN is a nonlinear system, so, many nonlinear properties
may be simulated.

Today it is possible to select two different ways in a.pp}ication of CNN
to different complex nonlinear processes simulation:

1. Synthesis of CNNs approximating a solution to partial differential
equations (2] both for fully defined equations as its discrete represen-
tation, and in the case when only a rough knowledge of the PDE form
and several values of the system output for a certain initial condition
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are available [3]. Different learning algorithms are used in the latter
case.

2. Synthesis of CNNs simulating complex distributed processes on the
base of knowledge about local properties of the media and their vari-
ations in space and time. Here CNN is a simulating model which can
be used for different computational experiments.

Up to day many interesting phenomena have been simulated by different
CNN models. In this paper we concentrate on the autowave as one of the
base phenomenon observed in different nonlinear distributed systems and
present results of investigation of a two-layer CNN as a model of autowave
processes. In the next section the general formal model of a CNN and
the model being discussed are described. In Section 3 the problem of the
CNN parameters choosing are discussed. Section 4 contains some simulation
results.

2. Formal model

Cellular Neural Network is a regular array of cells usually of 1-, 2-, or 3-
dimension. Each cell has an input u, a state z, an output y and weighted
connections only with neighbor cells. The cell neighborhood is determined
by a cloning template which is identical for all cells of the network.

In the case of 2-D CNN the following state equations [1] are used

dz;;
dtjzg(mij)+ Yo amymt+ Y, buugu+ I (1)
kIEN.(3.5) kleN(i,7)
for continuous time and
sit+1) = Y ayiim®+ > bt + I (2)
kIEN,(1,5) kl€Nr(4,5)

for discrete time.
In both equations the output is a nonlinear function o of the correspond-
ing state:
Yij = 0 (i)

In equations (1), (2), ¢ and j are the coordinates of the cell in a lattice,
the function g determines an influence of a state value z;; on its increment
(1). The coefficients ay; are entries of the matrix A, called a cloning template
matrix. Values of these entries determine the weights of adjacent cell outputs
when a cell (¢, j) next state value is calculated. In the same way the entries
bi; of the matrix B determine weights of adjacent cell inputs. The constant
member I;; defines a bias of the state value. The set N, (4, j) includes pairs of
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coordinates of those cells which belong to the neighborhood of a cell (4,7),
r being the neighborhood size. The variables uijk and yi;p take values
of neighborhood inputs and outputs respectively, including the input and
output value of the cell (i, j), and constitute the matrices of inputs U;; and
outputs Y;;.

Let us enumerate all elements of the matrices A, B, U, and Y;; and
define obtained vectors as A’, B/, Ui’j, and Y:; respectively. If we take

9(2ij) = —wi; according to [1], then equations (1), (2) may be written as
follows:
dz;; Y !
& = hi A+ BUS 4, ®)
zij(t+1) = A'Y; + BU[; + I;. )

It is well-known that almost all autowave processes arise in
two-component systems with a mathematical point model described by a
system of two first-order nonlinear partial differential equations [7]. More-
over, this system of equations is autonomous and contains a sum of a nonlin-
ear function and a diffusion member. Therefore a CNN model of autowave
processes may be presented on the base of general model description (3) as
a two-layer CNN with both intralayer and interlayer connections. The pro-
cesses being considered are supposed to be independent from any external
influence, thus each equation (3) should have no external input members,
i.e., B’ = 0. With such assumptions it is possible to use a two-layer CNN
with simplified connection structure [5], where each cell in one layer is con-
nected to the corresponding cell in the other one only by a single weighted
connection. Such two-layer CNN is a set of interconnected interlayer neuron
pairs. Each neuron pair is described by the system of equations:

dxy ;s
_.c.;t’_ﬁ = =21 + ALY+ anzgive; + D, )
dzy;;
_c_it‘_J = =2 + ApYy; + anijy1is + bayij,
and 1
yi = 5 (i + 1] = |z - 1)) ©)

where a;3;; and @21, are interlayer connection weights, y;;; and Y1,i; are
outputs of the pair neurons in each layer. Figure 1a shows the interconnec-
tion structure of a neuron pair according to system (5). Figure 1b shows
the simple representation of the whole CNN interconnection structure.
System (5) is the formal representation of a cell with coordinates (%, 7)
which constitutes the two-layer CNN being investigated. Operation of the
cell may be represented in a simple way by a second order differential equa-
tion when there are no interactions between neurons in each of two layers
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Figure 1. The two-layer CNN interconnection structure

and y;; (z;;) is a linear function. The cell behaviour becomes rather com-
plex when all nonzero parameters of system (5) are used and y;; (z;;) is a
nonlinear function. The last case is less studied and requires solving the
problem of choosing parameters for system (5). Because of its complex-
ity, this is the main problem of synthesis of the CNN-model for dynamical
systems simulating.

3. CNN parameters

The formal representation of a two-layer CNN in the form of equations (5)
allows to select two different factors defining the dynamics of CNN:

1. Parameters of the neuron pair with the coordinates (z,7) which are
defined by a nonlinear function, by the coefficients (a21,;; and a12,;)
of the pair interneuron interaction, by weight of self output value and
by bias values Iy ;;, I3 ;.

2. Weights of intralayer connections, i.e., the values ay; 3 and ag ki of
the matrices Aj; and Aj;.

Therefore, the possible approach to control the CNN behavior consists
both of determining the dynamical properties of the neuron pair, namely
the nonlinear function y = o(z), coordinates, quantity, quality of equilib-
rium points and trajectory form on the neuron pair phase plane, and of the
diffusion parameter value defining interaction between them.

To have possibility of independent consideration of the neuron pair dy-
namics, we should distinguish the neuron pair equations in the form:

dzy ;i

—R_tﬂ = —Z14j + k11,491,453 + @12,4592.45 + T1,ij,

d.’m“z," . (7)
—Et*-’- = —Za,ij + k22,i¥2,45 + @21,3591,45 + L2,ij,

where kyy;; and kjz;; are interlayer connection weights, y;;; and ys;; are
defined by (6). T
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The neuron pair dynamical properties analysis can be done on the base
of the well-known methods of the second order dynamical systems theory
[6]. In particular, the phase plane of a neuron pair can be considered where
phase variables take the values of neuron state variables z1,; and zg;;. The
quasi-linear function (6) devides the phase plane onto nine linear subspaces
in which an analysis of linearized system (7) may be performed [5].

The following conditions for the neuron pair phase plane should be met
to have a propagation of ring-like autowave with one front in the two-layer

CNN: :

1. There should be a stable closed orbit as a necessary and sufficient
condition [4] to obtain an appropriate oscillation behaviors of the pair.

2. There should be at least one equilibrium to have the initial state of the
CNN being unchanged without a wave formation offset which initiate
wave formation and propagation through the CNN.

The first condition can be satisfied if we choose parameters k11,5 ka2,i4,
@12, and ag; ;; as follows [5]:

ki =kozij=14p, apgi=—ani=-s, 0<p<s.

In particular, we can take s = 1.0 and u = 0.7. ‘

The CNN properties with bias values Iy ;; = —I;; = —0.3 was exten-
sively studied in [5]. Such a neuron pair has two stable equilibrium points
on its phase plane. Here we also consider the neuron pair with only one
stable equilibrium by having I ;; = —0.2 and I,;; = 0.3. Figure 2 shows
the corresponding phase planes of neuron pairs.

It should be pointed out here that in the case of two equilibrium points
the single neuron pair has no closed orbit because being started from one
of them, the neuron pair always has stable equilibrium point on its way.
To have a closed trajectory a neuron pair must have additional offset when
passing through this point.
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Figure 2. The phase plane of neuron pair: a - closed trajectory for one-point
neuron pair, b - two parts of trajectory of two-point neuron pair
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Besides of the properties of a neuron pairs, the propagation of autowave
in the CNN is determined by values of intralayer communication weights,
defined by elements of the matrices A;; and Ao, referred to as diffusion
coefficients. Let us denote them as D; and D;. Then the matrices can be
written as follows:

0 D; 0
A;i=| D; -4D;+1.7 D; (8)
0 D; 0

where i = 1, 2.
The influence of the diffusion coefficients values ranged from 0.005 to 1.4
are shown in the experimental results section.

4. Experimental results

The experimental results presented further are based on computer simula-
tion of a two-layer CNN with 150 X 150 neurons in each layer and with
parameters determined in the previous section.

Two types of autowave processes have been simulated: the propagating
pulse and the propagating front.

The simulating process is divided into two stages: 1) initializing of the
CNN and 2) observing the evolution of cells outputs and states. In the
initialization stage all cells of the CNN are settled into equilibrium condition
except one (central) cell. The state and output values of this cell are shifted
from the equilibrium values in such a way as to have instability propagating
through the CNN. This instability initiates the autowave formation and
provides its propagation through the CNN.

The required initial wave formation values of a central cell can be deter-
mined by the analysis of equilibrium points properties on the neuron pair
phase plane. Each point being considered lies on the boundary between
two adjacent linear subspaces and is stable in one of them and unstable
in the other. Therefore to have propagating instability it is necessary to
shift the cell state values in the unstable subspace. The neuron pair be-
ing considered has one equilibrium point with coordinates (—2.9, 1.0) or two
equilibrium points with coordinates (-3.0,1.0) and (=1.0, —2.4). In the first
case such shifting leads always to a propagating pulse formation while both
a propagating pulse and a propagating front arise in the second one. In the
experimental results presented here the central cell initial state values are
put to (—0.5,-0.9) for the one-equilibria neuron pair and to (—0.5,—0.9)
and (—0.9,-2.0) for the two-equilibria one. In Figure 3 the CNN output
pattern and the state values of the CNN middle cell row for each type of
autowave processes are presented. In the output’pattern, the state value
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Figure 3. Outputs and cell states of the CNN for different types of autowave
processes: a — the propagating pulse, b - the propagating front

equal to —1.0 is represented by black color and the state value equal to 1.0

is represented by white color.

The essential property of the model is “trans-
parency” of the CNN boundaries, i.e., the ab-
sence of wave reflection from the boundaries
of the CNN. It is achieved by using zero-flux
boundary condition realized as inactivity of
boundary cells of the CNN. The annihilation of
two colliding autowave pulses has also been ob-
tained as illustration of autowave properties of
the processes being simulated. In Figure 4 these
two properties are illustrated.

The particular attention was paid to the au-
towave speed dependence on the diffusion coef-
ficient value. The results obtained for the CNN

Figure 4. Annihilation
of two colliding autowaves
and “transparency” of the
CNN boundaries

with different number of equilibrium point on the neuron pair phase plane

are illustrated in Figure 5.

- The speed of autowave is measured as a number of CNN cells between the
central cell and some other fixed one related to the number of time steps until
the selected type of the fixed neuron pair behavior has observed. There are
two selected behavior types used to make the measurements, namely “start”
(Figure 5a - dashed line, Figure 5b — dotted line for z10 = 0.9, 299 = 2.0
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Figure 5. The diffusion dependence of the autowave speed for two types
of the neuron pair phase plane: a — with one equilibrium point, b - with

two equilibrium points
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Figure 6. The influence of a diffusion value on the autowave properties:
a~when D=02,b-when D=12 "
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and dashed line for z,0 = 0.5, 290 = 0.9), when the state values of a neuron
pair begin to change from equilibrium value and “finish” (Figure 5a - solid
line, Figure 5b — solid line for z,9 = 0.9, z20 = 2.0 and for 7,9 = 0.5,
z20 = 0.9) when the values return to the initial states. It is easy to see
that the CNN model with the neuron pair having one stable equilibrium
point on its phase plane allows to obtain propagating pulse with all values
of the diffusion coefficient (see Figure 5a) while the model with two stable
equilibria has only small range of these values (see Figure 5b).

In Figure 6, the influence of diffusion coefficient value on the autowave
properties (the wave boundary sharpness and the wave form) is presented.
The value was put to 0.2 for Figure 6a and to 1.2 for Figure 6b. As a result,
an increasing of diffusion coefficient leads to the autowave boundaries being
more smooth.

5. Conclusion

The two-layer cellular neural network is considered in this paper as a model
which allows to simulate autowaves as a base phenomena in different complex
processes. Simulation results of two different autowave types with different
CNN neuron pair properties are presented. The main attention is paid to
the diffusion dependence of wave propagation speed. The simplicity of a
parallel realization of this model defines an effective application of the CNN
model in simulating of complex processes in large distributed systems with
minimal time spending.
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