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S4CAD: a software tool for synthesis,
analysis and modeling of systolic
structures

S.G. Sedukhin and. LS. Sedukhin

This paper presents the S4CAD software tool which allows to synthesize and analyse a set
of admissible systolic arrays for the given matrix algorithm. A systematic approach to
the design is presented as a theoretical background of the s4CAD. The tool runs under
graphical operating environment MICROSOFT WINDOWS 3 placing at the user’s disposal
convenient means for evaluation and choosing an optimal structure observing designer’s
reqmrements, e.g. computmg time, number of processing elements, structure topology,
number of external pins, data flows formats, data pipelining period etc. A number of
basic parametrized algorithms of linear algebra and graph theory have been included in
the s4CAD library, and as an example the design of systolic structures for the transitive
closure algorithm is shown in the paper.

1. Introduction

Investigations in the field of the formal synthesis of parallel VLsI-structures
and parallelizing compilers usually require an automated design tool. In
particular, when systolic algorithms claiming to be efficiently produced in
vLsI or efficiently mapped on a massive-parallel computer architecture are
designed, the following demands are made on the automated design tools:

1. ability to produce a data dependence graph given an algorithm and
problem size parameters;

2. performing equivalent transformations of the dependence graph,
which keep the operational precedence and observe technological or
architectural constraints;.

3. mapping the dependence graph on admissible processor arrays of the
systolic architecture, elements of which belong to the space of given
dimension;

4. ability to simulate the processes going on in the processor array
during its activity period;
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5. availability of analysis means which help to estimate algorithm real-
izations in the different processor arrays;

6. availability of an interface with lower level packages (i.e., silicon com-
pilers and parallel language compilers).

It is usually desired to have an interactive, friendly user-interface with
such design tools, especially on the choice optimization stage.

The existing tools aiming at the design of parallel fine-grain structures
generally realize isolated stages of the design process. For instance, the
following automated design tools may be named: Apvis [9], piasToL [12],
SYSTOL [10], SYSTARS [11], PRESAGE [18], VACS [7] - tools that concentrate
on the systolic structures synthesis; DECOMPOSER [6] — tool that handles
the partitioning and the more advanced software tool for the VLSI-structures
design — ARREST [2].

In this paper’a software tool for synthesis, analysis and modeling of
systolic structures and algorithms — the S4CAD is presented. The paper is
organized as follows:

Section 2 briefly presents a formal approach to synthesis and analysis of
systolic structures; .

Section 3 is an overview of the main capabilities of the S4CAD tool;

Section 4 illustrates the design process of optimal systolic structures on
the example of the transitive closure algorithm;

Section 5 is devoted to development perspectives of the S4CAD in the
frame of the recent research.

2. Formal approach to the design

Traditionally matrix algorithms are represented by a system of recurrent
equations. In this representation each variable is denoted by a name and
by indez variables, which may only be integers and which uniquely deter-
mine the desired variable. The number of index variables defines dimension
of an indez space I = Z" and the admissible range of this variables defines
an internal computations domain P;,;, which is a bounded convex polyhe-
dron for finite algorithms. Initial values have to be assigned to recurrent
variables before equations for any recurrent step can be defined. These ini-
tial assignments form an input computations domain Pin and, respectively,
final assignments form an output computations domain P,,;. The set

P = Pin U Pina U Pt
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is called computations domain of the algorithm.

The original algorithm representation is taken in the form of a system
of affine recurrent equations' '

¥(po) = (5P~ O1(po)), .. 4o — O (p0)), (1)

where po € P; f is an unambiguous function strictly. depending on its
arguments and having the complexity O(1) (in the common case, f may
depend upon py); y(p) denotes the computation of f function at the point
P €P; Oip) € Z,i € {1,...,m} designates a direct data dependence
vector (DDD-vector), which defines the dependence of the computation at
the point py on the computation at the point p; = pg — ©;(py) and which
fits the following condition _

Pi =po— Oi(po) = A; - po + by, (2)

where 4; is a constant (n x n)-matrix, b; denotes a constant column-vector
of n components. .

The p(Z,%) = max; |z; - yi| metrics introduced in the index space 7
defines the notion of a neighborhood for the points of the space 7.

The most common case for the majority of the algorithms of linear
algebra, graph theory, etc. is the case when n <3die, PCcICZ2 =
{(5,5,k)T | 4,5,k € Z}, where Z is the set of integers. Usually, the index
variable k is used to denote a recurrent step. In this case, for any point
P € P vector O3(p) = [0,0,1]" is used for reverse and ©3(p) = [0,0,-1)7
for normal recurrence. Below the assumption Z = Z2 is made, the extension
to I = Z™ is considered trivial.

The equations system (1) with the dependencies (2) may be rewritten
taking into account previously made assumption:

21(p) « y(p - ©1(p)), |

22(1’) - y(P - 92(1’)); (3)
z3(p) < y(p — ©3),

¥(p) — f(21(p), z2(p), z3(p)),

where y(p) is an output and 21(p), z2(p), z3(p) are input variables of the
computation at the point p; ©1(p), ©2(p), O3 are DDD-vectors; f is a func-
tion, which is defined at the point p iff all input variables were defined.
For unambiguityness ¥(p — ©3) is considered a recurrent variable.
The equations system (3) defines a direct data dependencies graph
(DDD-graph)
g= (Pint: {9)(13),, 92(1’)3 93}?6?-‘:“)'

'Or in the equivalent form of a nested loop program -
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For further analysis graph G is supplemented by the input-output nodes
with the necessary arcs.

The equations system (3) (and as a more illustrative form DDD-graph
G) allows revealing an important peculiarity of the matrix computations
namely a global translational dependence of the computations set. In the
common case this peculiarity resides in the existence of a subset P¥) =
{pla LR :Pl} C pa'nh such as

1. all computations from the subset P,.(,f‘) have the input dependence
on the same output variable of the computation at some point p €
Pin U Ping;

2. the number of elements of the subset P}:} lays in a proportion with
a size. of problem solved (i.e., size of input data).

The computations subset P,-(,’:t) forms a domain of affection of the compu-

tation at the point p, i.e., for any point p; € 'Pl-(:t) (7 € {1,...,1}) the
following equality is fulfilled

pj — 0i(p;) = Ai-pj + bi =p.

The global translational dependence is costly when actually constructed
in vLsI or mapped on the existing massive-parallel computer. Thus, it has
to be eliminated by reducing the non-uniform system (3) to a uniform
system of the form like the following

z1(p) — if ©1(p) = Fe; then y(p— ©,) else z1(pt e1) ,

32(1’) — if 92(}3) = Fe2 then y(p'— 92) else x;(p:l: 62) ’ (4)
z3(p) < y(p — ©3),

y(p) « f(z1(p), z2(p), z3(p)),

where p € Pin:; €1,e2,(e3 = O3) are local data dependence vectors (LDD-
vectors), which satisfy the condition |e;| = 1 (condition of locality of the
dependence of the computation p on the neighboring (in the sense of the
T metrics) computation (p — e;)). The following theorem is applied

Theorem 1 (pipelining). For the T = Z3 case the equations system (3) can
be reduced to a system like ({) iff

dimker A, dimker A; € {1,2},

where dim stands for the dimension of the space that follows, ker A designates
a kernel space of the linear transformation A (ve€ kerA & A-v=10).
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A constructive uniformization procedure was given in the proof of this
theorem [16].

A local data dependencies graph (LDD-graph) corresponding to the
equations system (4) has the form

g* = (pinh E c {:*:81, :1:82, 63})’

and being supplemented by the input-output computation-nodes is used by
S4CAD as the source algorithm representation.

2.1. Space-time analysis
2.1.1. Time scheduling
The time scheduling is given by a t:'mi'ng' (step) function

step(p) : Pint — Z,

which makes a correlation between the nodes from Pint and ezecution steps,
i.e., this function sets a complete time-ordering for the partially ordered
computations set. g ‘

The function step(p) is found in the linear form (13, 5]

step(p) =a’ -p+ G,

where p € Pips C 23, a € 23, 8¢l
Having the definition of the timing function step(p) the notion of a flow
velocity vector of a variable v along a direction ey is introduced [5]:

a-p
step(q) — step(p)’

where p, ¢ € P;,; such that the variable v is used firstly at the point p and
then at the point g, i.e., step(p) < step(q).

If we assume step(p™™) = 0 for all minimal points of the partially
ordered computations set, an extension of the input-output computations
domains, necessary to obtain correct allocation of the input-output data
flows on the processing space (see below), is done by the following formulae:

flow(v) =

o for the input data

Pin = po — (step(po) + 1)flow(v),

where pg € P;,, vis the input variable of the algorithm corresponding
to the computation at the point py, step(pin) = —1;
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e for the output data
Qout = o + (step(p™*%) — step(qo) + 1)flow(u),

where go € Pout, u is the output variable of the algorithm corre-
sponding to the computation at the point g9, p™** € Piy: is one
of the maximal points of the partially ordered computations set, .

step(gout) = step(p™*%) + 1.

2.1.2. Spatial allocation

The spatial allocation of the computations set given in the space 7 = Z"
on the space § = Z"! with the metrics induced by the one of the Z is
accomplished by an allocation function

place(p): 7 — S.
This function gives for each computation-node p € P

o cither (when p € Pi,;) S-coordinates of a processing element (PE),
which will execute the computation of the node p at the step(p);

¢ or (when p € P;,UP,,:) coordinates of the point where the element p
of the input-output data will be allocated trough the recurrent steps.

A linear form of the allocation function is used:

 place(p) = Ay - p, ,
where A, is the [(n—1) x n]-matrix of a linear transformation corresponding
to a projection vector 7 € ker A, and which has the rank A, = n — 1.
The set S, = {A, p | p € Pint} C S corresponding to the projection
vector 7 is called a processor array (PE-array). Projection vector 7 is
considered admissible only if the scalar product ‘

(a,m) # 0,

where a is the coefficients vector of the linear form of the timing function.

Data Flow Allocation If a variable v propagating trough the space 7 =
Z" along a direction e} and having a velocity flow™(v) is mapped into the
space $ = Z"1, it will propagate along the direction e?~! = A, - e and
have the velocity flow™!(v) = A, -flow™(v). When flow™!(v) = 0, variable
v is said to be stationary. ‘

Variables having the same velocity-direction' vector form a data flow.

In the case when non-stationary variable is going to be allocated on
any PE it is expected to move the data flow having this variable out from
the PE-array, certainly increasing a task processing time.
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Figure 1. s4cAD Screen

3. S4CAD overview

S4CAD runs under the graphical operating environment MICROSOFT WIN-
DOWS 3. S4CAD gives to a designer convenient control means and presents
the information graphically for better understanding,

At the current realization stage parametrized local dependencies graph,
timing function in its linear form and data flow vectors (direction-velocity
ones) form the source specification of an algorithm for the s4cap.

S4CAD allows user the following: (see Figure 1)

e interactively choose an algorithm from a library and adjust its input
parameters (problem size);

¢ obtain and view on the screen the set of all admissible projects of
the systolic architecture for the given algorithm;

* execute step-by-step simulation of the data processing and commu-
nications for any chosen project;

e get a visual information about the following project characteristics:

— structure topology,

— number of computations and processing time,
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— number of PEs and delays,

number of external links,

— data flows formats,

— number of active PEs on the current processing step,
— PEs specialization,

— executed operations types etc.;

¢ get a parallelization time profile (histogram), estimate the effective-

ness of the resource use and the speedup of a parallel execution over
the sequential one;

get the different space-time schedulings of the computations set of
the algorithm;

make a use of a number of the service functions: get a help, informa-

‘tion on the algorithm chosen, change scale, placement and style of

the view, save/restore data in files, get a printed copy of the design
and so on;

¢ enrich the library by new algorithms.

The parametrized algorithms now contained in the S4CAD library are
the following: banded matrices product, the Gaussian LU -decomposition,
Cholessky’s triangularization, matrix inversion by Gauss-Jordan, transitive
closure algorithm by Warshall, shortest path problem by Floyd, finding
minimal spanning tree algorithm by Maggs-Plotkin.

One of the main goals of the existing version of S4CAD is a help to the
designer to choose an optimal project from a set of alternative ones. Some
of generally applied criteria are the following:

L)

problem solving time;
number of PEs and delays;

PEs specialization (PE doing one predefined operation firstly, sim-
pler when constructed and secondly, it does not require coutrol over
itself);

structure topology (in certain cases the orthogonal dépendencies may
be preferable to the hexagonal ones);

data flows formats (in the case when different systolic structures
combination is required the data flows formats may be essential);
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e number of the external links (number of the external input-output
pins is essential for VLsl-implementation);

* structure modularity (the structure is said to be modular when one
may easily combine modules to solve a problem of a grater size, for
example, four modules for matrix multiplication of the order n may
form a device for matrix multiplication of the order 2n).

4. An example: transitive closure algorithm

Let’s illustrate the design of systolic structures on the example of the tran-
sitive closure algorithm.

4.1. Problem constitution

An incidence matrix A;, = [af;-‘],.xn of a graph U of n nodes is given. It
is demanded to find out matrix Aoyt = [a{-’;“]nx,, possessing the following

property
out

a;; = true & Jw,_,;,

where w;_,; is a path begining from the node i and ending in the node j
of the given graph U.
The following Warshall’s algorithm essentially depends on the property

of the incidence matrix of a graph: ai? = true when i = j.

4.2. Affine recurrent equations?

// input computations
forall 1<i,5<ndo a(i,7,0) := af;‘;
// internal computations
for k:=1 to n do
begin
a(n+k,n+k,k):= a(k,k,k) := a(n + k,k,k) := true;
forallk+1<i<n+k-1do
a(i,n + k, k) := a(i, k, k) = true;
forallk+1<j<n+k-1do
begin
forall k+1<i<n+k-1do
a(ivj,k) = a(i’j’k - 1) A a(i’k’k) v a(kaja k)v

2The source script is given in the form of nested loops [17].



46 S.G. Sedukhin, 1.S. Sedukhin

a(k,j, k) := a(k+ 1,5 + k, k — 1);
a(n + k, j, k) := true;
end
end

// output computations ,
for all n <i,57<2n do a°“' = a(i,j,n);

It is evident that for p = [i,4,k]T ©3 = [z,_',', k)" -[i,j,k-1]T =[0,0, l]T
O2(p) = [i, 7, k" — [i,k, K]T = [0, — k,0]", ©1(p) = [i,4,k]" — [k, 5,k]"
[i - &,0,0]7,

100 100 0

A3= 010 ,b3=—®3,A2= 001 ,A1= 0

001 001 0
According to dimker A; = dimker A; = 1 we may apply the pipelining

by = by = 0.
Theorem and reduce the affine equations to uniform recurrent equations.

o -=-o
— O

4.3. Uniform recurrent equations

// input computations

{ a(p) = a::;-‘; P € Pin(Ain)

// internal computations

[ z1(p) = ifi<n+k&i>kthen

{ifi=k+1 then a(p - ¢)
else z;(p — e1)};

za(p) = ifi>k & j> k then
{if j=k+1 then a(p-—e3)
else z3(p— e2)};
za(p) = ifi<n+k & j<n+kthen a(p-e3);
¢ a(p) = ifi=j=k then true P € Pint

else if i = k then z3(p)

elseifi=n+k & j=k then .1:1(p)

else if j = n+ k then z;.

else if j = k then z3(p) when z,(p)

else if i = n + k then z,(p) when z;(p)
else if i = j then z3(p) when z,(p) with :cz(p)
else z3(p) A z1(p) V z2(p) .
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/[ output computations
{ a:?;‘t = a‘(p)i p € paut(Aout):

where e;.= [1,0,0]7, e, = [0, L,0]",e3 =1[0,0,1] are LDD-vectors;
Pin(Ain) = {(4,4,0)7 |1 < 4,5 < n}, Pout(Aout) = {(i+n,j+n,n+1)T |1 <
h7 < n}y Pine = {(4,5,0)T [ 1<k <'n, k < LiSntk, (i£k)V(#
n + k)}, operations a when b and q when b with ¢ mean the unit delay of
the variable a synchronized by the presence of values in the variables b and
¢ at the point p.

The data flow vectors are: flow(A;,) = flow(A,,:) = [0,0, 1]T = 5.
The minimal form of the timing function is: step(p) = i+ 5+ k - 3,
e, @ =[1,1,1)7, # = ~3. The minjmal point is p™" = (1,1,1)7, the
maximal point is pmer — (2n,2n,n)7, ie., the least processing time is
step(p™%) = 5n — 3,

4.4. Projective solutions analysis

n=[1,0,0]" (Figure 2) This project is characterized by the least admis-
sible processing time: 5n — 3, number of PEs: (n — 1)2, delays: 2n,
data pipelining period: (e, m)| = 1, number of external links: 2.

n=[1,1,1)7 (Figure 3) This project has the least among others number
of PEs: (n—-1)?—n=n2_p4 1, delays: 2n + 1, processing time:
7n — 4 (2n because of data flows movement out), data pipelining
period: |(a,n)| = 3, number of external links: 2(2n — 1) = 4n — 2.

1=[1,1,0]" (Figure 4) This Project is characterized by the data processing
time: 57 — 3, number of PEs: (2(2n = 1) = 3)n = 4n? — 5n, delays:
4n, external links: 4n — 2, data. pipelining period: |(a, =2

5. Conclusion

Thus, the main properties of the existing S4CAD realization were considered
above. Let’s mark the development trends.

1. Parse a high-level recurrences description to the data dependencies
graph (for example, the ALPHA language [4]).

2. Automatical uniformization including one that deals with a limited
broadcast [15]. -

3. Analysis and simulation of the computational and communicational
processes of the source data dependencies graph (for instance, aiming
at the optical computing and three-dimensional VLSI-circuits).
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4. Wavefront analysis and modeling with a vast consideration of com-
putation and communication costs.

[54]

. Automatic synthesis of control signals for PE-arrays [14, 19)].

[=>]

. Computations arrangement on the systolic structures with a bounded
number of PEs (i.e., partitioning [3]).

-3

. Application of different allocation methods including non-linear ones
1] o
(a) Use of s4cAD in the education for formal synthesis and analysis
of highly-parallel fine-grain algorithms and structures,
(b) Interaction with silicon and parallel language compilers.

(c) Application of s4cap for mapping some algorithms onto the

existing massive-parallel computers, which allow realization of
the systolic computations [8].

%
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