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Nuinerical solution of Volterra integral
equatlons of the second kind by implicit
Runge-Kutta method

A.O. Savchenko

An effective multistep algorithm for numerical solution of Volterra integral equa-
tions of the second kind, based on the implicit Runge-Kutta (RK) method, is con-
structed. The choice of the Gauss scheme for the implicit RK method allows to
obtain algorithm, having a higher approximation order for one-step method and
maintaining the same accuracy for most calculations in multistep method. The
comparison of solutions computed by algorithm, presented in this paper, with the
analogues ones, obtaining earlier by explicit RK method, reveales more precise re-
sults for the first of them and possibility to integrate with much more longer steps
without essential loss of accuracy.

1. The implicit Runge-Kutta (RK) methods, developed by Butcher and his
followers more than 20 years ago [1], presented itselves in a good light in
numerical solution for systems of differential equations.

A comparising with the more known explicit RK methods, shows that
the implicit ones possesses the following properties:

» absence of considerable restrictions on their stability [2], which allows
to integrate them with more long steps;

e an algorithmical possibility for construction of unrestricted approxi-
- mation order schemes;

o choosing of more convenient integration scheme for different tasks of
mathematical physics.

2. Consider the implicit RK scheme for the solution of differential equation
dy
o = fty), 0<t<T, y(0)= g 1)

In assumption that solution in point t,, y, = y(t,) is already known, we
integrate equation (1) over interval [t,,&], t, < & < tn41, and obtain:

y(&) =y + ]t “ f(t,y(t)) dt. (2)



88 A.O. Savchenko

Substitute unknown values y(t) in integrand function in the points £;, j = -
1,...,m+ 1 on some values 7; and construct the quadrature formula with
weights f§;; in nodes £;, where

T=tng1 —tn, &=ta+ N7, A=0, Ayu=1 A < .

Then we obtain the system of nonlinear algebraic equations for determina-
tion of sought function values on the next time step:

nizyn+TZﬁijf(£jlﬂj)l i=1,...,m+ 1, Ynt1 = Pmt1- . (3)
7=1

In monograph [3] is shown that a consistent and complete system of
linear algebraic equations for determination of quadrature weights 3;;, may
be obtained by the use of sampling functions method, combined with weak
approximation principle. Also, the order of approximation will be defined
by a number of stages m in (3).

The implicit RK method possesses properties, which create a p0551b111ty
of its application not only for the solution of differential equations.

3. On a basis of above mentioned discussion, we construct at first the im-
plicit one-step RK scheme for the solution of the uniform nonlinear Volterra
integral equation of the second kind:

i
y(it) = | K(ts,y(s))de, to<t<T. (4)
to
It is known that the explicit RK method is used for the solution of equa-
tion (4). It was obtained by adoption of the idea of maximum closeness for
the solution to the Taylor approximation without calculation of derivatives
from initial function [4]. The same approach reduces to obtaining the com-
putational algorithms until 4-th order approximation inclusively, being an
immediate analogues of explicit RK methods for the solution of differential
equations.
To find the implicit RK scheme for solving (4), we consider it in the node
&, where tp < & < t:

y(€) = j‘i K (€5, y(s)) ds. (5)

Despite of the obvipus similarity of formulas (2) and (5), they have the
essential distinction: that is the presence of an additional variable in kernel
of integral operator, equal to high integration bound &;.

Next we substitute unknown function values in nodes £; on variables 7;,
and construct a quadrature formula for solution of (5) on these nodes. Then
we obtain the following system to solve (4):
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.om
m=15 BK(E &), i=1..om+1, Y =nm,  (6)
i=1

where 7 =1 — 10, §G = A7, Ao =0, Apg1 = 1, A5 < Ajyr.

Here and further the upper function index will denote the integration
step for which a function is defined.

To find the quadrature coefficients 3;; in (6), we choose a polynomial
function as kernel of integral operator, and use the above mentioned method
of sampling functions and weak approximation principle. Thus, at least
for the Gauss scheme (i.e., for non-singular matricies B = {f;;} and A =
diag{}A;}), we obtain a system of equations for defining the weight coeffi-
cients of quadrature and integration nodes, coinciding with analogous sys-
tems for solving differential equations, and, hence, we obtain the same values
of weight coefficients and nodes.

We suppose that the solution y! of system (6) approximates the solution
of initial equation (4) in point ¢ with order M, if for €, where ¢ = |y(t) — y'|,
is realized ¢ = 7™ R,,,. A small value for ¢ may be obtained because of a
smallness as time step 7, as approximation coefficient R,,. Smallness of the
- second one in solution of integral equations with big steps of integration,
may be sufficient for obtaining a numerical solution close to the seeking one.

In assumption of existence of bounded derivatives until 2m-th order in-
clusively for integral kernel, we obtain

1
= r2m+l =— K@) E
where £ € [to, t], and the value for functional E,,, which may be found from
relations between quadrature coefficients and node values, will be as follows
[3]: )
)
E, = (-1 2”*(”;_
D am)p

4. The multistep implicit RK method. Calculation of y2,y3,...,y" values.

To obtain the solution of the values, following after y' with constant step
T =t} — tx—1, one can use the method of shift for integral origin [6], and by
virtue of this, equation {4) may be written in the form

y(t) = V") +§(t), t€ [ta-r,ta], (7)

where ,
v (t) = f " K (8,5, y(s)) ds, (8)

0

and g(t) is the solution of the equation
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-

00 = [ Ks5(6)+ ¥ (o) ds 0

The system of algebraic equations for determination the solution of equa-
tion (9) one may obtain by the use the one-step implicit RK method, stated
in the previous paragraph, if the function values ¥" (€7) are known in nodes
of chosen quadrature &7 or if their suitable approximation ¥%, which will be
discussed below, exists. In this case the system of equations for solving (9)
will be the following:

nP=TY BEKEE N+, i=1...,m+1, gt =nly,, (10)
i=1

The values ¥%, where j = 1,...,m + 1 may be determined by choosing
a suitable quadrature formula for calculation of integral (8).

We use the circumstance that the Gauss scheme will be used to solve
equations (9) on every time step [tx_1,¢x], where k = 1,...,n, that means
the choice of A; coinciding with Gauss quadrature nodes on interval [0, 1].
Moreover, the values of sought function y¥ inside every such step, where

k=1,...,n—1, have been calculated yet in the corresponding points.
Write (8) in the form: '

n—1 .
=3 f; K (2,5, y(s)) ds, (11)
k=1 k=1

then every integral under sum sign may be calculated, using the Gauss
quadrature formula.

So, in assumption that the coefficients Bi; and A; are calculated earlier,
before the first time step beginning, the algorithm for calculation y® value,
approximating y(t,), will be the following:

(a) calculate, using the Gauss quadrature formula with the nodes
Ef‘ =1(M+k-1); k=1,...,n-1; i=1,...,m,
and taking into account (11), the values ¥? in nodes £ =1(Aj+n-1),
where j=1,...,m+1;

(b) calculate the values n?,i=1,...,m+1 and §* by solving the system
of equations (10);

(c) determine the values y* = 5 + ¥?, which will be used in next time
step;

(d) the sought value y™ will be obtained by the formula

Yt = ‘I’:;-H + 7"
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It is known that on every interval [t;_,, t) for the Gauss scheme the Butcher
condition C(m) is valid, i.e., the values y* approximate y(€F) in nodes with
order m [1]. In assumption of a boundedness of derivatives BQ;K (tiy 80,2} -
in points #; and s;, corresponding to node values, and, taking into account
that the approximation order of quadrature formulas for (11) and system of
equations, analogues to (10) with substitution ¥? on ¥™ (€7), will be 2m -1
and 2m + 1 accordingly, one may conclude that the common approximation -
order of algorithm stated above will be not less than m. :

5. In order to approbate the stated method, we concider the foliovﬁng in-
tegral equation, for which a solution had been sought using the explicit RK
4-th order approximation method with double-sided correction [5, 6):

y(t) = jot (te*(t=29) 4 e_z"z)(y(s)_+ 1- s)zds, : | (12)

in points ¢ = 0.025 and ¢ = 0.05.
" The exact solution of this equation is:

y(t) = e’ -1+t , o (13)

The first purpose of numerical experiments was the solving of equation (12)
by the implicit one-step RK method in the points indicated. o

The sought values were computed by 5-th stages (m.= 5) Gauss scheme,
that is according to 10-th order approximation, using the computer packet -
RUNKUT for computation the weight quzdrature coefficients and nodes of
integration [7]. Therefore, it was naturally to wait more precise solution
than early obtained one is. '

Indeed, the obtained results coincided with exact values of function (13)
at points indicated in 5 significant digits, and improved the values, comput-
ing by explicit RK method, more than on two orders by their absolute error
values. : '

Comparing the solutions, computed by these two methods, it is neces-
sary to note that the approximation order in the explicit RK scheme was
restricted, because of the necessity to seek a consistent system of equations
to determine the scheme coefficients. On the other hand, the approximation
order in the implicit RK method is obtained automatically by choosing the

- necessary amount of stages.

Further, the values in points, exceeding the initial ones on order, (i.e.,
t=0.25 and ¢=0.5 ), have been computed. The coincidence with precise
values in these points was in 5 significant digits also. For example, in point
t=0.5 was computed y' = 0.7840245, while the precise value is y(0.5) =
0.7840254.

Pass to a search of solution to equation (12) for a greater value of variable
t. In this case the use of one-step RK method may not lead to a solution of
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the system of equations (6) at all, and it is necessary to use the multistep
algorithm, stated in previous paragraph, with the smaller value of time
step T.

The mentioned algorithm was applied for the solution of equation in
point ¢t = 2. with step 7 = 0.5, (r = 4). In this case the approximation
order is equal to m, that allowed to obtain a result similar to precise one.
So, in this case y* = 55.59805 for y(2.) = 55.59815.

6. Thus, the stated above results allow to hope that the implicit RK method
will be one of the main base algorithms for the solution of Volterra integral
equations of the second kind.
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