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Supercomputer-aided comparison of the efficiency
of using different mathematical statements of

the 3D geophysical problem∗

A.F. Sapetina

Abstract. In order to create systems of vibroseismic monitoring for earthquake-
prone areas it is needed to carry out the simulation of seismic wave propagation
in the media typical of volcanic structures. To this end it is required to develop
supercomputer technologies for decreasing the computation time and simulation
of “big” 3D elastic media. Analysis of the efficiency of two parallel implementa-
tions of algorithms for solving the 3D elastodynamic problem written in different
terms is carried out with the co-design. The software has been developed for both
approaches and optimized for the architecture of a supercomputer equipped with
GPU. A comparative analysis of the computation time, the size of the memory used
and the software scalability is made.

Keywords: elastic waves, 3D simulation, co-design, finite difference schemes, hy-
brid cluster, GPU.

1. Introduction

The development of a highly-efficient program tool for a modern supercom-
puter system is a specific complex scientific problem. Its solution increas-
ingly depends on the architecture of a supercomputer. Also, it subordi-
nates not only the choice of algorithms for a concrete application problem
to a computing architecture, but requires the co-design of algorithms at all
stages of solving a problem: from its a statement to the selection of devel-
opment tools. The concept of the co-design in the context of mathematical
modeling of physical processes is understood as constructing physical and
mathematical models of a certain phenomenon, numerical method, paral-
lel algorithm and its software implementation, with the effective use of the
supercomputer architecture. The co-design is successfully applied to the de-
velopment of software when modeling diverse physical processes on super-
computers. For example, it is used in solving problems of plasma physics [1],
astrophysics [1, 2] and many others. In the approach proposed, compari-
son of the efficiency of using various physical and mathematical statements
becomes relevant when developing an appropriate software.

In this study, the efficiency of the parallel implementation of the two
3D algorithms for a hybrid supercomputer equipped with graphics cards is
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compared. The investigated algorithms perform the numerical simulation of
seismic wave fields in 3D elastic media typical of volcanic structures, based
on different statements of the dynamic elasticity. The first algorithm solves
the problem set in terms of the velocities of displacements and stress, and the
second one solves the same problem, but written in terms of displacements.

The simulation of seismic wave fields in 3D elastic media can be relevant
to create systems of vibroseismic monitoring for volcanic structures. The
creation of such systems requires preliminary and attendant complex studies
of concrete volcanoes. Usually, the relief of an object under investigation
is sufficiently complicated. Thus, this does not allow one to maintain an
observational system for solving the inverse geophysical problem. Therefore
it is necessary to solve a set of direct problems by varying the geometry
and selecting the parameters of a simulated medium so that the results of
numerical and physical experiments were close.

The complexity and scale of a simulated area necessitate the creation of
a high-performance software that would allow solving rapidly enough the
direct geophysical problem for the “big” 3D elastic media. Let us note that
the performance is especially important for the attendant simulation in the
process of monitoring and eruption forecasting of a real volcano. Thus, we
need a software tool that would use a supercomputer and allow carrying
out rapidly enough the selection of assumed data of a volcanic structure for
interpreting a real experiment.

The two dynamic elasticity problem statements are considered and de-
scribed in the next section to study the efficiency of the algorithms in terms
of the memory used and implementation speed with supercomputer systems
with graphic cards. On this basis, the software optimized for the GPU ar-
chitecture and hybrid cluster has been developed, and the time spent on the
realizations obtained is compared.

2. The description of mathematical statements of
the elastodynamic problem

To simulate seismic waves in complicated elastic inhomogeneous media, we
can solve the complete system of elasticity equations with appropriate initial
and boundary conditions written down in terms of the displacement velocity
vector ~u and the stress tensor ~σ:

~u = (u, v, w)T , ~σ = (σxx, σyy, σzz, σxy, σxz, σyz)
T .

As the domain of simulation we take an isotropic 3D-inhomogeneous
elastic medium of complex subsurface geometry which is a parallelepiped,
one of whose sides is a free surface (the plane z = 0). Let us consider
a rectangular Cartesian coordinate system where the axis Oz is directed
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vertically downwards and the axes Ox, Oy are along the free surface. The
constitutive equations can be expressed in the vector form as

ρ
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∂t
= A~σ + ~F (t, x, y, z),
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where t is the time, ρ(x, y, z) is the density, λ(x, y, z), µ(x, y, z) are the Lame
coefficients.

It is expected that the elastic medium parameters are dependent on the
three spatial variables x, y, and z.

The initial conditions are the following:

~σ|t=0 = 0, ~u|t=0 = 0 (2)

and the boundary conditions at the free surface are:

σxz|z=0 = σyz|z=0 = σzz|z=0 = 0. (3)

In the numerical simulation based on the solution of equations (1)–(3)
it is needed to store, at least, 12 three-dimensional arrays containing infor-
mation about the unknown values ~u, ~σ and the medium parameters ρ, λ, µ
in the computer memory at each time step. A large amount of memory is
required for the simulation of the “big” 3D media.

This amount can be decreased by turning to the formulation of the elasto-
dynamic problem in terms of the displacement vector ~U = (U, V,W )T and
thereby reducing the number of unknowns. In this case, the constitutive
equations for the same simulated area are the following:

ρ
∂2~U

∂t2
= C~U + ~F (t, x, y, z),

C =
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C2
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 ,
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In both statements it is assumed that the right-hand side (the mass force)

is the following: ~F (t, x, y, z) = Fx
~i + Fy

~j + Fz
~k, where ~i,~j,~k are the unit

direction vectors of the coordinate axes.

3. The method of solving the problem

The most “flexible” and widespread technique is a finite difference method
in the case of a three-dimensional elastodynamic problem. In this study,
in order to numerically solve equations (1)–(3) we apply the well-known
Verrier finite difference scheme on a staggered grid [3–5]. The calculation
of its difference coefficients uses integral conservation laws. The method is
of second order of approximation with respect to time and space [3]. We
consider only uniform grids. As an example, let us present a few finite
difference equations of the scheme used:
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To solve the problem in terms of displacements, we use a similar finite
difference scheme on staggered grids. The finite difference equation for the
component U is as follows:
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Let us note that the number of operations for the calculation of unknown
values at one time step for this finite difference scheme is greater than the
previous one. It should affect the calculation speed.

4. Parallel implementation and optimizations

Modern supercomputers are increasingly equipped with accelerators. This
trend is also supported by the leaders of the TOP500 list. The development
of a program code for such hybrid systems requires additional knowledge and
time, but allows one to gain a significant increase in performance. Graphic
accelerators are well suited for solving finite difference equations, because of
their massively parallel architecture and easy access to the device memory.
Thus, we have developed the programs with allowance for specific features of
the architecture of the hybrid cluster equipped with GPU NKS-30T+GPU
(the Siberian Supercomputer Center: http://www2.sscc.ru). It consists of
40 computer nodes HP SL390s G7, each one equipped with two six-core
CPU Xeon X5670 and three NVIDIA Tesla M2090 graphics cards on the
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Fermi architecture. Each card contains 1 GPU with 512 cores and 6 Gb of
RAM GDDR5. Totally, NKS-30T+GPU contains 80 CPU (480 cores) and
120 GPU (61440 cores). Its peak performance is 85 TFLOPS.

The programs written in the programming language C++ with CUDA
(Compute Unified Device Architecture) and MPI (Message Passing Inter-
face), which make possible to use simultaneously a large number of parallel
processes and ultimately to attain a maximum efficiency.

The efficient use of a hybrid architecture requires parallelization and op-
timizing the simulation algorithms that are based on the knowledge of the
architecture of a cluster, its components, and appropriate program facilities.
Since the methods of solving the compared statements of the elastodynamic
problem are similar in their nature, the comparison of the correctness, adap-
tation and optimization of these methods is carried out in a similar way.

For the parallelization we decompose the computational domain in layers
along one of the coordinate axes (Figure 1). Each layer is calculated at a
separate node, where, in turn, it is sub-divided into sub-layers along the

Figure 1. Decomposition of the computa-
tional domain

other coordinate axis (to at-
tain a better scaling) accord-
ing to the number of graphics
accelerators at a node. In such
implementation, each graphics
card calculates its own grid
domain inside the sub-layer
at each time step independent

of other cards, except for the points at the interface between two adjacent
domains. These points are common to each of domains, and, to continue the
calculation, it is necessary to exchange information about the required values
among the “neighbors”. Let us note that the data for the exchange have the
equal size in both approaches. For an exchange between computing nodes
we use non-blocking asynchronous data transfer with MPI. The exchange
between the graphics cards is carried out by means of CUDA.

The effective use of graphics cards requires the memory optimization.
To reduce the time for the global memory access we made the same optimal
arrangement of all three-dimensional arrays used and appropriate distribu-
tion of load among threads. All the basic constants used at each time step
are specially selected and stored in the constant memory of the graphics
card. Although the problem to be solved operates with three-dimensional
arrays, we can try to use a faster shared memory of a graphics card [6] for
reducing the amount of readings from the GPU global memory. Such opti-
mization will be performed in the future and presumably will bring greater
acceleration when computing the displacement, as it uses a lesser amount
of data and requires, respectively, a smaller number of copies in the shared
memory.
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For the computation with GPU we must set the dimension and size
of a thread block. The dependence of software performance on the above
parameters was studied for calculating the velocities of displacement and
stress and for calculating the displacement. Thus, the calculation domain
at each GPU is split to a three-dimensional grid of blocks, their size for
component x must be a multiple of the length of the warp (the number
of physically simultaneously executed threads per GPU). A specific size
of each block is empirically selected for each algorithm. Some results of
measurements are presented in the table. Here Bx×By×Bz is thread block
size; T1 is the calculation time of velocities of the displacement and stress
for a spatial grid of 500× 500× 600 size and 1000 time steps; and T2 is the
calculation time of displacements for a spatial grid of 600 × 600 × 600 size
and 1000 time steps.

The dependence of the software speed on the thread block sizes

Bx ×By ×Bz T1, s T2, s Bx ×By ×Bz T1, s T2, s

4× 4× 4 789.4 32× 4× 4 290.9 287.5
8× 8× 8 506.3 422.8 64× 2× 2 272.9 260.1
2× 16× 2 1429.2 64× 4× 2 273.8
16× 2× 2 352.7 128× 2× 2 264.0 258.4
16× 4× 4 358.5 317.3 128× 1× 1 277.2 258.1
4× 32× 4 629.2 256× 1× 1 269.9 257.7
32× 2× 2 290.1 512× 1× 1 300.1 256.9

Such optimization (uncomplicated in the context of the code change)
allows accelerating the programs run by several times with the effective use
of the graphics accelerator global memory. We expect our conclusions to be
generalized to the implementation of all finite difference methods.

Also, let us note that in both above-discussed implementations the source
grid coefficients λi,j,k, µi,j,k and ρi,j,k are not stored in the GPU memory,
but their modifications used in the calculation scheme at each time step are
stored for eliminating re-calculation. Thus, the implementation of calculat-
ing the displacement and stress velocities requires the allocation of memory
to store 26 three-dimensional arrays, and the implementation of calculating
the displacement requires only 14 arrays. This reduces the amount of mem-
ory used almost at a twofold rate, which is very important for calculations
on computer systems that contain a small number of nodes.

5. Comparing the efficiency of the parallel implementations

In order to analyze the efficiency of the parallel implementations of two 3D
statements of elastodynamic problems, we have studied their scalabilities
and have compared the computing times of the media with equal sizes and
parameters.
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Figure 2. A weak scalability graph for
the algorithm of displacement calcula-
tion

Figure 3. A weak scalability graph for
the algorithm of velocities of displace-
ment and stress calculation

By the weak scalability we understand the preservation of the calculation
time of one step of the same volume of the problem when the number of
graphics cards increases. The results are shown in Figures 2 and 3. In this
case the efficiency means the ratio of the calculation time at n nodes of
a problem that is n times greater to the calculation time at a single node of
the initial problem. As in the case of displacements as well as in the case of
the velocities of displacement and stress the efficiency drops to the 87 % level
and slightly varies around this value with increasing the number of graphics
cards up to 45 (15 nods of NKS-30T+GPU cluster). A similar behavior of
the computing time for both algorithms is explained by the same number of
data transferred among computing nodes (3N2 for N3 problem).

For the comparison of the running speed of both approaches we have
carried out calculations for the same media with a spatial grid of 1500 ×
700×2100 size and 1000 time steps. This grid is close to the maximum grid
placed in the memory of 45 graphics cards (15 nodes of NKS-30T+GPU
cluster) in the calculation of velocities of displacement and stress. In the
calculation of displacements on the same spatial grid one uses almost half
as much memory size and can carry out at least 8 nodes instead of 15. The
measurements results are as follows:

• the velocities of displacement and stress calculation–– 183.1 s,

• the displacement calculation with 15 nodes–– 174.8 s,

• the displacement calculation with 8 nodes–– 247.4 s.

Calculations of the displacements and the velocities of displacement and
stress with an equal number of nodes take roughly the same amount of time
(the calculation of displacement runs a little faster). In the case of calcu-
lating the displacements, we can reduce the number of nodes approximately
by the factor of 2 with preservation of the computational grid size. In this
case, the calculation time increases approximately by 1.4 times.

The conducted numerical experiments show that the approach based on
the calculation of displacements is faster and thus allows one to carry out
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Figure 4. Results of numerical simulation for the rough model of the Elbrus
volcano. In the snapshots of the wave field, the component u of the velocities
displacement vector is presented in the plane Oxz at different time points

calculations for very large grids, requesting a fewer number of free nodes.
This allows a quick access in conditions of a queue on the cluster, while
providing a reasonable calculation time (several hours for a full-scale actual
problem).

Let us note that for decreasing the number of required graphics acceler-
ators to calculate the velocities of displacement and stress it is possible to
create a program implementation of the storage of intermediate calculations
in the node memory. This would require the implementation of multiple cop-
ing the sub-arrays with the desired unknowns and parameters of the medium
from the host memory to the memory device and back at each time step.
This would result in a significantly greater increase in the calculation time
than when using the mathematical statement in terms of displacements.

To illustrate the efficiency of the software developed we have carried out
the numerical simulation of the elastic wave propagation for a rough model
of the Elbrus volcano (Figure 4). One can learn more about the geophysical
model of the volcano and the results of numerical experiments, in [7, 8].

6. Conclusion

As part of the co-design methodology we have compared of the developed
efficient parallel implementations of solutions to the elastodynamic problem
written in terms of the velocity of displacement and stress and in terms of
displacements for the hybrid supercomputer, equipped with graphics cards.
We have studied the characteristic time needed for running the created par-
allel programs and their scalability.

Based on the results obtained we can give recommendations about the
preference of using the approach proposed to calculating the displacements.
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Although this approach gives a small gain in time as compared with the ap-
proach based on the calculation of the velocities of displacement and stress,
it allows one to solve large 3D dynamic problems of the elastodynamic theory
by a significantly smaller number of graphics accelerators within a reason-
able time.
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