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Complex amplitude method.
Applications to vibroseismic
signal analysis*

R.S. Salavatov

The main aspects of the complex amplitude method were developed for ana-
lyzing the modulated oscillations in radio engineering systems. Such signals rep-
resenting the oscillations of the carrier frequency wp modulated by a relatively
low-frequency signal Q. are characterized by the relationship Qpax <€ wo. Most
generally vibroseismic signals do not meet this requirement though with some stip-
ulations the complex amplitude method applied in many cases yields correct results
and makes it possible to use the tools developed for radio engineering. It is shown
that the method is promising, and application results of some algorithms are pre-
sented by an example of real vibroseismic signal processing.

1. Terms and definitions

In order to prevent variant reading and useless terminological discussion, we
specify definitions and terms of this paper applied to vibroseismic signals.
It should be mentioned that there are some other equivalent descriptions,
for example, an analytical signal representation. The complex amplitude
method is attractive due to its obviousness and decent inheritance. A pop-
ular method in electrical engineering is that of writing the fixed-frequency
signals in the form

U = Upe’™!, (1)

where Up is an amplitude of the signal with the frequency wp. If we as-
sume that Up is a slowly varying function of time and write it as ﬁ'o(t) =
A(t)+jB(t), then (1) can be generalized to a new class of signals for which,
together with the complex representation formalism, all computational ap-
proaches known for the functions of complex variables are valid:

U = Up(t)e!e. (2)

Despite the similarity of (1) and (2), they have a substantial difference.
In (2), Up(t) is called a complex amplitude, and s(t) defined by the expression
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s(t) = A(t) coswt — B(t) sin wt. (3)
is called a narrow-band signal. It is obvious that
s(t) = Re(Upe’™0"). (4)

The quantity |U] related to A(t) and B(t) by the expression

0ol = \/A%(t) + B2(1). (5)

is usually interpreted as an envelope of the signal s(t), the expression

B(t)
Alt)

o(t) = arctan( ) + wot, (6)

will be a phase of the signal (3). The signal phase consists of a slow en-
velope describing the phase, a component, and a fast addend generated by
the “carrier frequency” wg. As applied to vibroseismic signals, wy may be
chosen inside the working frequency interval. For a sweep signal, wq is ap-
proximately equal to an average frequency of the sweep range. These are
the necessary properties of the envelope:

1. The envelope is greater or equal to zero everywhere.

2. The envelope never crosses the signal.

3. Derivatives of the signal and the envelope are equal at the points of
contact.

4. The upper frequency o in the envelope spectrum is substantially lower
than the frequency wq of the quick signal component.

The last-mentioned condition should be replaced by not so rigorous one.
4°, The envelope spectrum is limited in the frequency bandwidth.

We will demonstrate that the envelope defined in (5) coincides with
Hilbert’s envelope definition. Write the Hilbert-conjugate signal:

dr
t—rT1

dr

5(t) = % / A(7) cos(wor) —— — % f B(r) sin(wor)- )

To calculate (7), apply expansion of the functions A(t) and B(t) into
series. Taking into account that A(t) and B(t) are slowly varying time
functions, in other words, the values of derivatives at the point 7 = ¢t are
small, in the expansion of integrands into Taylor’s series about the point
T =t we may neglect all terms except the first ones. Consequently,
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§(t) = A(t) sinwt + B(t) coswt. (8)

It can be easily seen that

M(t) = \[s2(t) + 8(t) = \/A2(t) + B2 (), (9)
which coincides with the envelope defined in (5). An expression for the

phase:
S(t Bt

e(t) = arctan(%) = arctan(-AE—t;) + wot (10)
also coincides with (6). Application of the Hilbert transform for defining
the envelope and the narrow-bandwidth signal yields the same results as the
complex amplitude method does. As for the assumption on the negligibly
small derivatives, we should note that the perfect Hilbert transformer is not
feasible, all the transformations are possible in a sufficiently narrow signal
bandwidth, and this fact meets the above assumption.

2. Results of experimental data processing
obtained in the field experiment of 1997

In our experiments we used centrifugal vibrators CV-100, CV-40, and a hy-
droresonant vibrator HRV-50 with a ground effort of 100, 40, and 50 tons
as the sources of vibroseismic waves. Several multichannel systems recorded
data on three components. Further we discuss data processing results ob-
tained with a VIRS system (ICM and MG). A satellite GPS system deter-
mined the geographical coordinates and performed the time reference. The
record system was placed near the settlement Savvushki, at 375 kilometers
from the source. For the processing we used data recorded at night between
the 10th and 11th of August, 1997. The data are characterized by a higher
noise level.

The system VIRS makes it possible to store data in 15 channels divided
in three groups with respect to different components X, Y, and Z of the
vibroseismic field. We should note that the data are represented by inte-
gers with a limited accuracy over a rather narrow range but the processing
must be carried out over a wider dynamic range. It is convenient to per-
form the convolution of a sweep signal and a reference signal via spectral
transformations on the basis of the known statement on the correspondence
between the time sequence convolution and the Fourier transform of their
multiplied spectral densities. Figure 1 represents a spectral density of the
recorded data belonging to Z component. The data were obtained under
generation of a sweep signal by the CV-100 vibrator in the range 5.5 to
8.5 Hz. The same figure shows a spectral density of a mathematical model
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1 Mathematical model of sweep signal
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of the sweep signal. After inverse transformation of the spectrum of the
mathematical sweep signal model multiplied by the conjugate spectrum of
the signal Z-component we obtain the vibration seismogram (Figure 2). All
the transformations are performed on an array of about 2.6 - 10° samples,
where about 1.3 - 10° elements represent the initial data corresponding to
about 2600 s of recording. To prevent the circular convolution effect, the
array is padded with zeros.

A bold line in the figure shows the envelope obtained from (5). We can
calculate A(T') and B(t) in view that

glwot 1 g—Jjwol elwot _ o—juwot
e e B(t) —————
2 ' 237

= %[(A(t) + jB(t))e’ " + (A(t) - jB(t))c‘JWO‘], (11)

s(t) = A(t)
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and, correspondingly, the spectral density
1 . .
S(w) = 5 [G(u — wo)e W) 4 G (—wg — w)e_J(W+w°)] y (12)

where G(w — wo) is the spectral density for the envelope of the signal s(t),
and the complex amplitude U(t) = A(t) + jB(t) is easily calculated as the
inverse Fourier transform of the doubled G(w — wp). We merely equate to
zero the complex-conjugate sequence and perform the inverse transform.
The phase factor can be easily eliminated at will by applying a complex
modulation to the time sequence, or it is quicker and more efficient to use
the shift rule.

Figure 3 illustrates application of a signal spectrum component shift by
7.4 Hz. As a result the slow phase component in (6) has acquired the form
convenient for interpretation after eliminating the term wgt. An average
frequency of 5‘—5'2L8—‘§ = 7 Hz differs from that of the signal spectrum shift.
This fact can be explained partly by the asymmetric form of spectral density
of the vibrator radiation power. Figure 4 shows that in the low-frequency
bandwidth the vibration efficiency is low. The contribution of a medium
of seismic waves traveling is also evident. It is interesting to determine
the weighted-mean frequency in the spectrum of a signal recorded at the

vibrator:
o _lleernird
mean flG(g?Tf)ldf

The weighted-mean frequency is much closer to the shift frequency correcting
the quick phase component than the average frequency.

It is interesting to integrate data from the multichannel record systems
in the same plot. Figure 5 shows an attempt to represent the data as a 2D
plot of densities, where the intensity marks envelopes of different sensors
and components.

A bright strip in the figure traces at the 53 second a wave of the first
incursion. This manner of data presentation allows visual evaluation of data
correlation in different channels.

3. Conclusion

Application of the complex amplitude method to vibroseismic data can
sometimes make easier the interpretation of results. A real signal is usu-
ally noisy and the filling frequency wo being absolutely noninformative pre-
vents good visual perception of processing results. This property of the
filling frequency is a result of the evident statement: if the signal spectrum
is bounded below, then we may transfer the signal spectrum without loss
in order to reduce the upper frequency. The signal will preserve the same
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envelope shape and slow phase component rather than the shape and full
phase of the signal. Therefore, the complex amplitude described completely
by the envelope and the slow phase component (5) and (6), respectively, is
an invariant.

Reducing the upper frequency we can also decrease the digitization fre-
quency. Upon shifting the spectrum by 5.5 Hz, we can digitize a real sweep
signal with a bandwidth of 5.5 to 8.5 Hz by a 6 Hz frequency without loss
of information and reduce the amount of data 8 times and more, complete
restoration of the initial signal is always possible. Modern data storages of
several Gbytes practically avoide the necessity for data compression algo-
rithm, whereas the data transfer via limited-capacity communication lines
is more effective with the use of algorithms reducing the amount of data
without loss of information content.
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