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A probabilistic representation for
systems of elliptic equations

K.K. Sabelfeld

New probabilistic representations for systems of elliptic equations are constructed in the
form of expectations over the Markov chains. It is shown that this approach gives the
effective Monte Carlo algorithms even in the cases, where the classical probabilistic rep-
resentation based on the Wiener and diffusion processes fails. As an important example,
we consider the system of Lame equations. Construction of the method is based on
the direct and inverse mean value theorems which we prove, in particular, for the Lame
equation. We derive accurate estimations for the exponential moments for the case of
e-spherical process (the “walk on spheres” process).

1. Introduction

It is well-known [1] that for the Dirichlet problem for elliptic and parabolic
second order equations it is possible to construct two kinds of probabilistic
representations: in the first one, the solution is represented as an expecta-
tion over the diffusion processes generated by the corresponding differential
operator (e.g., in the case of the Laplace equation, the Wiener process is
used). In the second approach, the Markov chains whose transition densi-
ties are related to the equation under study, are used.

It should be noted that the representations based on the Markov chains
are known only for problems and equations for which the classical proba-
bilistic representations based on the diffusion processes exist.

In this paper we present a probabilistic representation using the Markov
chains for systems of elliptic equations with constant coefficients — it is well-
known (see, e.g., [2]) that the classical probabilistic representations in these
cases do not work.

To be more specific, we give simple illustration. .

Let G C R® be a bounded domain with a boundary G such that the
Dirichlet problem

Au=0, z €G,

1.1
u(y) = oy), y€ IG, (D)
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has a unique solution u(z) € C*(G) N C(G). Let w, be a Wiener process
starting at z, then the following classical probabilistic representation holds:

u(z) = Ezp(wy(T)), (1.2)

where 7 is the first passage time (i.e., wy(7) is the point of the boundary
first reached by w(t)).
Now we define a Markov chain called the “walk on spheres” process [1]

To=1&, Tp41 =2n+d(T)w,, n=01,...,

where d(z,) is the distance from z, to the boundary, {wn}2%, is a set of
independent unit isotropic vectors in R>. It is known [1] that z, — y € 0G
as m — 00, and the solution to (1.1) can be represented as

u(z) = Exp(y)- (1.3)

Moreover, to compute the solution to within accuracy ¢, the cost is esti-

mated by T, ~ D—;‘Qﬂ (see, e.g., [1]).
We generalize now the representation of the form (3) on the systems of
elliptic equations.

2. A system of diffusion equations

Let us begin with the following system. We seek a regular solution to the
boundary value problem in a domain G C R? with a regular boundary 9G

oo

oz;

ulae =01, Ol = ¢ (22)

Au(z)+ 7 0, Af(z)=0, (2.1)

Let S(z,r) C G be an arbitrary sphere and let s be a unit vector in
R® with components s;, i = 1,2,3. We denote by Q the unit sphere
Q={s: |s|=1}.

Theorem 1. For each regular solution to (2.1) the following mean value
relation holds:

u(z) = N(u)+ % s:(z + r8)dQ(s),
; n/ (23)
6(z) = N(0),

where N is the averaging operator
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N(u) = / u(z + 75)dSs).
S(z,r)

Proof. Since A?u(z) =0 we get (see, e.g,. [1])

r? r? AL
— _ = —_ 24
wa) = Nw) - T du(e) = N+ T 22 (2.4)
For each harmonic function
% _ 3 ] 5:0(z + r5)dQY(s). (2.5)
3.7:,
Q
Indeed, since @, is harmonic, we get
3 a6
- 47 R3 82.‘,'
Integration by parts gives (2.5). From (2.4), (2.5) we get (2.3). o

Now we show that (2.3) is a characteristic property of (2.1).

The integral formulation of problem (2.1), (2.2)

Theorem 2. Suppose that (2.3) is uniquely solvable for each continuous ¢,
and @2, and assume that for each x € G continuous functions i(z) and 0(.1:)
from C(G U 8G), tlsg = e1, 8loc = @2 satisfy (2.3) for all = € G, for at
least one sphere S(z,r) C G. Then the functions i(z), 8(z) solve problem
(2.1), (2.2).

Proof. From the inverse mean value theorem for the harmonic equations
(see [4]) we get that #(z) is harmonic in G, thus coincides with 8(z) in
(2.1). Since (2.3) holds for u(z), (z), the substraction gives

(u—a)(z) = N(u-1i)+ g / si(0 — 6)dn(s),
Q
which implies that u — 4 is harmonic in G. But tlag = ilag = 1, thus
w=14in G.

Now we introduce the e-spherical process, — the “walk on spheres”
process

Xiv = {zo,..., 2N},

where z v is the last state (such that d(zy) < €). On this process we define
the random estimators
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N-1
£(z) = ulzn) + %e(m,\,) 3 d(zi)st, (2.6)
k=0
~ N-1
£(2) = @1(EN) + ea(En) Y dlan)s(”, (2.7)
k=0

where {sgk)}kN;(,l are the i-th components of the k-th unit isotropic vector,
which are mutual independent for £ =0,1,...,N —1. 0

Theorem 3. The estimator £(z) is unbiased

u(x) = Eé(x )1
while the cost.of the estimator £(x) has the asymptotics

¢(lne)?
T. = (6—2) (2.8)

ase — 0.

Proof. The unbiasedness follows from the recurrent application of (2.3).
The cost of the algorithm is

T. = VDg’ESQE!

where m, is the average number of steps of the € — spherical process, and
is given by m, ~ |lne| [1]. Using the scheme of the proof for m. from
[1], it is not difficult to show that ENZ ~ Cy|Ine|* + Ca|In¢|. From this,
keeping in mind in (2.6) that d(zx) < L (L is the diameter of the domain
G) we get (2.8).

Note that the kernel of (2.3) allows a different random estimator. In-

deed, let us define N new independent Markov chains on the trajectory
Xy

Ny . . .
Yo () = {wj,y{’(J),-~-,yI;+(,-}(J)}, j=0,1,...,N -1,
where
v () =z +stdz;), j=01,...,N-1,
st has the density

1 I
p+(8) = —83 = o_sin 2y, 0<yp<n/2

in the semisphere {s3 > 0}, and y;'(j),...,y}*\}“j)(j) are constructed as in
the standard isotropic ¢-spherical process
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Ny(G)=inf{n: d(y3(j)) <}, j=0,1,....N -1
Analogously,

Yivq'(.?) = {2:_,‘, y;(])’ . 'syﬁ_(j)(j)}? yl_(J) =Z; - 3+d(35)'

ji=0,1,...,N-1. m}
Theorem 4. Let
zN = {xV; Y)*6),. YY), i=0,1,...,N -1},

and let

N-1
fi(a) = w(zn) + 3 3 (=) [0, (1)) ~ OWR_ ;) ()],

(2.9)
N-1
&1(2) = pr(an) + 3 § d(z)) 02T, ;) () = e2(Tr_i;y (D]
Therlx )
u(z) = Esl(z)a

and estimations (5), (6) are true.

Note that the variances of estimators (2.9) are less than the variances
of (2.6), (2.7) if the absolute value of © € I'. is large and 42 is small.
Let us consider now the following boundary value problem:

2
A"(¢)+‘ra£ gx, =0, z€GCR?,
T 7

AO(z) = 0, (2.10)
"’lr = 1, elp = 2.

Theorem 5. Any regular solution to (2.10) satisfies the mean value relation

u(@) = N(u)+ o— [ |sisi = 5| O(s)dQ(s),
8 4 [ 3 ] (2.11)
O(z) = N(9),

where §;; is the Kronecker symbol.
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Integral formulation of problem (2.10)

Theorem 6. Assume that problem (2.10) has a unique solution for arbitrary
continuous functions @1, g, and suppose that for all * € G the functions
i, 0 from C(GUT), dlr = ¢1, (:)lr = 9 satisfy the mean valu; relation
(2.11) at least for one sphere S(z,r) C G. Then the functions @, © give the
unique solution to (2.10).

Now we define the random estimators on the ¢-spherical process

N-1

20 = Vo D oa (k) (k) _ bij
£(z) = u(frz\)+?9(w:v)g (969 - 22),

N
Y = on(En) 4 Don(s k) (k) _ i
6(3‘) - Vl(a'N) + ?ipz(.’lN)kz_l (Si 'Sj — __3__)

Theorem 7. The following relations hold:
u(z) = ME(),
ME(z) < (C1 + Cyllne])?,
u(z) — M&(z)| < Ae + Byellnegl,

as € — 0, where Cy, C3, A, B are constants, which do not depend on .

3. Lame equations

We consider now the first boundary value problem of the elasticity theory
d
Aui(z) + (A + p)s—(dive) =0, i=1,2,3, z€GC R
pOU(z) + (4 ) 7-(div ) o)
ul[‘ =¢= (991!‘192! ¥3),
or in short form
Ui g5 + Quj j; = 0, i,j =1,2,3, (3.2)

a = (A+pu)/p, A, p are constants. We define the integral matrix operator,
which takes the average on the sphere N!: R® — R3

1
Ny = 4—W/(a5ij F bsis;)uids), i=1,2,3, (3.3)
Q

a, b are arbitrary constants.

It is known (see, e.g., {1]) that the regular solutions to (3.1) satisfy the
mean value relation (for all spheres S(z,r) C G)
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u(z) = N'u, (3.4)
where
3(2 - a) 15a
a=—= = —.
23+ a) 2(3+ a)

Integral formulation of problem (3.1)

Theorem 8. Assume that problem (3.1) has a unique solution for arbitrary
continuous function @, and suppose that for all ¢ € G the function a(x)
from @ € C3(G UT), @|r = ¢ satisfies the mean value relation (3.4) at least
for one sphere S(z,7) C G. Then the function @ is the unique solution to
(3.1).

Let S; be a matrix with entries
(Sk)i = 358, i j=1,2,3.

On XY we define the random estimators

N
£(x) = TI®E + ¢So)u(zn), (3.5)
k;{l
£(z) = [T(E + aS)e(@n), (3.6)
k=1
where 3(2 5
p—a= 2= a

T 23+a) 1T 2@ Yay
Theorem 9. The random estimator £ is unbiased, i.e.,

ME(z) = u(z).

4. Exponential moments of
the “walk on spheres” process

In more general case, we need to estimate the exponential moment {e*N¢).

It is interesting to find the asymptotics of this expression as € — 0. For
the half-space RT we prove the following result:

Theorem 10. For A< Ao =In2 — 1 —Inln2 = 0.0596 the moment (eMVe)
is finite and :
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1 Ro\ &3t
ANey ¢ o) fio
(e )”62(1—0)(5) ’

where a < 1 is the solution of equation

In2 A
e = —e",
* )
Ry is the distance from the starting point z to 0G.
For the mean number of steps of the ¢-process the following estimate is

true:

' 1 In2 In &
NS s my Y s -m2p T oo

Proof. For arbitrary ¢ > 0, the exact representation of P(N, = k), the
probability that the number of steps is equal to k, k > 1 is

1 3 £
P(N5=k)3-§}:(l—m)mx
2R, 2R;_3 2Rg_a

2o 1 k29 €
dRI/dRz... ] dR_s f dRy._ —(1-——).
! J / "Re E R; 2R;

£

Since ¢ < 2R; for all j, we get

) € o= fexpA\'In {21Ro/¢)}
(expAN,) < exp(A)mg( 5 ) T

Ro\ "7
¢ =In (—) .
€

Direct calculations show that f(a) satisfies the equation

Of In2exp)
3“ - 2 f(a+1)’

where

whose solution has the form

f(@) = f(0) exp(aa),

where « is the unique on the interval (0,1) solution to the equation
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aexp(—a) = % exp A.

The value f(0) is

f(0) = exp (V)5 ):(I—“exp’\) i

1—0
B £ o= [In2exp A 1'1.,-}
= exp(A)2R0{1+§( 2 ) it
_ € a | _exp(A) €
- e"p(‘\)zfzo{H 1—a} “1-a 2Ry

Thus,

(exp ANe) < f(a) = 220 efp_(l\) xp {""h' (Ijg) lﬁ}

_ exp(A) (Ro mz 1

T 21-a)\ ¢ '
Note that f(0) < oo iff In2exp(A) < 2/e, ie., f(0) < 00 if A < Ag =
In2-1-Inln2 = 0.0596.

The solution to aexp(—a) =In2expA/2 on (0,1) can be found numer-
ically, e.g., for A = 0.05 we get a = 0.86, and

(exp (AN.)) < 3.754 (%) "

For the mean number of steps we get

vﬁ;i(m) i+ D) h(i+ 0.

=0

(Ne)

{/\

Indeed, let

P - 553 (52) Lo fiom (%))

1=

Now

But
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F®) = g (%)’_

where aexp (—a) = ﬂlzﬂ The derivative gives

oF _ 1 + In 2 4 lnB‘L
aBlp=1" 2(1-1n2)  2(1-1m2)® " 2(1 —1n2)2

a

Note that the estimation obtained is not crude even if ¢ is not very
small: for example, it gives a nonzero estimation when Ro = €.
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