Joint NCC & IIS Bull., Comp.Science, 5(1996), 43-53
© 1996 NCC Publisher

Simple semantic analysis problems for
functional programs*

V.K. Sabelfeld, A. Sabelfeld

In the paper two problems of semantic property analysis of recursion schemes
are stated and a marking technique for solving these problems is described.

Keywords: program flow analysis, abstract interpretation, approzima-
tion, recursion scheme, strictness analysis, parameter dependence.

1. Introduction

To check applicability conditions of equivalent program transformations, to
detect semantic errors in programs and to verify programs, one have to learn
how to determine some semantic properties of programs. Many authors ex-
plored program analysis problems on program models. The most significant
results were obtained in flow analysis [3] and abstract interpretation [1, 2]
approaches. We consider functional, or recursive, programs and investigate
the problem of semantic property analysis for a model of functional programs
called recursion schemes.

We describe two simple classes of semantic property analysis problems
(forward and backward property analysis problems) for recursion schemes
and use a marking technique for their solution. Qur approach is very close
to Patrick and Radhia Cousot’s abstract interpretation approach [1, 2]. We
consider the fixpoint semantics of recursive programs. Namely, we associate
a term sequence called approrimation sequence with a recursion scheme.
Given the properties of terms from the approximation sequence we define
the program property as the limit of the constructed sequence of properties.

Both forward and backward property analysis problems formulated are
proved to be undecidable in the general case. We give sufficient conditions
for solving these problems and present marking algorithms that compute
program properties under the conditions required. In Sections 5.1 and 5.2
we give examples of forward (Essentiality of term occurrences) and backward
property analysis problems (Hopelessness of term occurrences).

*Partially supported by the Russian Foundation of Fundamental Research under Grants
93-012-576 and by Russian Committee on Higher Education under Grants “Formal meth-
ods for program analysis and transformation”.

44 V.K. Sabelfeld, A. Sabelfeld

Some state property analysis of recursive programs well described in the
flow analysis or abstract interpretation approaches cannot be formulated in
a natural way as either forward or backward analysis problems. As an in-
stance, in Section 5.3 we describe the formal parameter dependence analysis
of recursion schemes as a flow analysis problem.

2. Recursion scheme definition

Let X = {z,y,2,...} be a set of variables, F, = {w, f,g,h,...} be a set of
basic symbols, F4 = {F, F, F,,...} be a set of defined symbols, F = F,|J Fa,
and r denote the rank function. Every symbol s € F of rank r(s) = n is
said to have arity n, r(w) = 0.

For a set X of variables, X C X, let 7(X) be the set of all terms under
variables from X and basic and defined symbols from F.

A recursion scheme is a pair § = (e; DEF), where e is a term called
the scheme entry and DEF is a finite set of definitions of symbols in F,.
A definition of a symbol F € F; has the form F(z,,...,z,) < t, where
n = r(F),zy,...,z, € X are different formal parameters of F and t €
T(zy,...,Z,) is the body of the symbol F. We assume each formal parameter
being disjoint from all variables appearing in the entry.

A term F(t,,...,t,), where n = r(F) and F € Fy, is said to be a call to
the symbol F' and its subterms t,,...,t, are actual parameters of this call.
We assume each symbol called in a scheme being defined in it. Here is an
example of a scheme:

Fl('r,y) <« if(p:t:,Fg(f:c,fy),:r)
Sy = <F1(h,h) i Fa(z,y) < if(py, Fi(fy, fz),y) >
Fs(z) <« if(pz, Fz(fz),z)

Any occurrence of a subterm in a term or in a scheme can be uniquely
identified by its address which symbolizes the path from the root of the
tree representing the term (or from the scheme entry) to the place of the
subterm occurrence. The address of the tree root (or scheme entry) is the
empty word A (if the tree is unique in the context under consideration), or
the entry number in square brackets. The address of the body of a symbol
F'is the word [F]. If an occurrence of a term f(t;,...,%,) has an address
a, then its subterm occurrences ¢,,...,¢, have the addresses al,...,an
respectively. Two addresses are independent iff neither is a prefix of the
other.

A substitution is an arbitrary map o : X — 7(X) satisfying the condition
oz # z for only finite number of variables z from X. The substitution
o replacing a variable z; with a term ¢; for i = 1,...,n is denoted by
[t1/Z1,...,t./z,]. The notion of a substitution can be extended in a natural

Simple semantic analysis problems for functional programs 45

way to arbitrary terms: of(t,...,t,) = f(aty,...,0t,) for f € F and
-n = 1(f). We denote by t[a « 7] the term obtained from the term ¢ by
replacing the term occurrence at the address a in ¢ by the term =. If N is a
set of mutually independent addresses of subterm occurrences of a term t,
then {[N « 7] denotes the term obtained from the term ¢ by the replacement
of all subterm occurrences at addresses from N by the term .

Each scheme § defines a map 7 : 7(X) — 7(X) which corresponds to
the “parallel outermost computation rule”:

z, ift ==z, where z € X,
f(mty,...,7ty), ift=f(t1,...,t,), where n = r(f) and f € F, _
=4 or, ift=F(t,,...,1,), where F € Fy,

o =[ti/zy,... ta/z,),
and F(z,,...,z,) < 7 is the definition of F in S.

3. Interpretation and equivalence

A domain is a triple (D, <, 1), where D is an arbitrary set, L € D (the
“undefined value”) and < is a partial order on ™ satisfying the following
two conditions:

eVdeD 1<d.

o Completeness condition: for every chain (' 'n D the least upper bound
lub(C') belongs to D, i.e. d < (ub(C) for ! d in C, and lub(C) < u
for all u in D such that d < u for all d in C.

The universal term domain U = (Ty;,C,w) is constructed in the following
way. Consider the set T of all terms under the signature (X', F,) with the
partial order C introduced by setting ¢, T ¢, iff there exists a set N of
mutually independent addresses in t,, such that t1 = 1[N — w]. Let Ty
be the completion of the set T by the least upper bounds of all infinite
increasing chains of elements from 7. The elements from Ti: can be thought
as (infinite) terms (trees). One can prove that I/ is a domain with the partial
order C: #; C 1, iff there is an (infinite) set N of mutually independent
addresses in ¢, such that {; = t,[N — w], and bottom w.

A function ¢ : D — D' between two domains is monotone, ff ¥V d,d' €
D.d<pd = od <p pd'. A monotone function is continuous if it preserves
the least upper bounds of non-empty linearly ordered subsets of D, i.e.
Flub(C) = lub(@(C)).

An interpretation I fixes a domain I and assigns

—a member /(x) € D to cach variable z € .Y’

~a continuous function I(f): D"U) — D 1o cach symbol f € F,.

Using the structural induction we can extend the notion of interpretation
I on arbitrary finite terms:

46 V.K. Sabelfeld, A. Sabelfeld

I(z), if t =z, where z € &;
I(t) = { I(f)(I(ty),...,I(t,)), ift= J(t1,...,t,), where f € Fy:
L otherwise.

An important example of an interpretation is the universal interpretation J
with the domain U, and J(z) = z for variables z € X; for f € Fy,n =r(f)
and t,...,t, € Ty we set

_ | flt,.. 1), if feF,
Tty ostn) = { w otherwise.
Let {z1,...,2,} be the variable set of a term ¢ and let ...,y be pairwise

distinct variables not appearing in the scheme §. We define the approzima-
‘tion sequence of a term t as

App(S,t) = {J(z1/y1s -z /yeln™ [) 24, yUe/Zit)|n > 0},

where 7°7 = 7 and 7" = 7"~!7 for n > 0. The determinant det(t) of a
term ¢ is the least upper bound of the approximation sequence App(S,t) =
App(S,1)[0]App(S,t)[1]..., and the determinant det(S) of a scheme S is the
determinant of the entry of the scheme §. For example, the first elements
of the approximation sequence of the entry of a scheme (F(u); F(z) «

f(z,F(gz))) are
wC f(u,w) C f(u, f(gu,)) C f(u, f(gu, f(ggu,))) C ..., etc.

Two schemes S, and 5, are equivalent (in short: §; ~ 8a) iff I(ty) = I(t)
for the entries t,,¢, of these schemes and for all interpretations 7.

Let us denote by S/a the term at address a in a scheme or a term § , and
we denote by S[a « t] the scheme obtained from § by replacing the term
at address a by a term {.

4. Two problems of semantic analysis

Let £ = (L,U, L) be an upper semilattice where 1 is the bottom element
and U is a binary operation called union satisfying Vz,y,2 €e Lz Uy =
y\l.;r:c,(:cl_ly)Ug =zU(yUz),zUz =z,2U L = z. A partial order on [,
is defined bya:;ydéﬂa:l_ly= ya,ndmCydg(xEy)& (z # y). We will
consider only semilattices satisfying the increasing chain condition.

The image set Image(a) of address a of a scheme S is defined as such a
minimal subset of addresses of subterms occurring in det(S) which satisfies
the following conditions:

~ [A] € Image([A]).

- If b € Image(a),S/a = f(t1,...,t,) and f € F,, then b.i € Image(a.i)
foralli=1,...,n.

Simple semantic analysis problems Jor functional programs 47

- 1If b € Image(a).and S/a = F(ty,...,t,) for a symbol F defined in S,
then b € Image([F)).

~ If Image(a) # 0,S/a = F(t,,... ytn) for a symbol F defined in S,cis
the address of the occurrence of the i-th formal parameter in the body of
F, and b € Image(c), then b € Image(a.1).

We have an instance of a forward semantic analysis problem for a recur-
sion scheme S, if the following is given:

= A property semilattice £ satisfying the chain condition.

— An initial property k, € L. '

— A semantic heritage function Sem' assigning a monotone property
transformer Sem!(f, i): L - L to each symbol f € ¥}, and natural i 1<
i < r(f)) which defines the property of the i-th subterm of a term f(...)
with given property s € L as Sem!(f, t)(s). -

The property h!(a) of an address a in det(S) is defined by

ho, ifa=A,
ht(a) = { szml(f,)(htP), ffeF &Iia=bikit/p= Fionita):

The forward semantic analysis problem for a scheme S consists in finding

the property
Hi(a)= || &)
) b€Image(a)
for addresses a in S.

We have an instance of a backward semantic analysis problem for a re-
cursion scheme §, if the following is given:

— A property semilattice £ satisfying the chain’ condition.

- A deductive semantic function Sem' assigning a monotone property
transformer Sem'(f) : L" — L,n = r(f) to each symbol f € F, which
defines the property of a term f(t1,...,t,) using the properties s;,...,3, of
its subterms t,,...,t, € L as SemT(f)(sl,...,s,.).

For an address @ in a scheme S, Var(a) denotes the formal parameter
set of a symbol F, if a is the address of a subterm of the body of F, or
the set of all variables occurring in the scheme entry, if @ is the address of
a subterm of the entry. We denote by Pr; the projection function Pr; €

(* — L), Pry(sy,...,8,) = s;. The deductive semantic function can be
extended on arbitrary terms ¢ without calls by setting
Sem*(t) = Pr;, ift =z,

~ L Sem(f)(Sem*(ty), ..., Sem* (t,)), iffe€F &t=f(t1,...,tn).

For an address a in a scheme S we define d(a,n) = Sem"(App(S, S/a),)
as an element of the semilattice LIVor(a)l _, [

The backward semantic analysis problem for the scheme § consists in
finding the property

48 V.K. Sabelfeld, A. Sabelfeld

D(a) = | | d(a,n)
n=0
for addresses a of the scheme §.

Theorem 1. Both semantic analysis problems described are undecidable in
the general case.

Theorem 2. If all property transformers are distributive, the forward anal-
ysis problem can be solved using the following marking algorithm.

An h-marking of a scheme S is an arbitrary map u assigning a property
(called h-mark) pa £ L to each address a in §. The initial h-marking
Mo assigns the h-mark kg to the entry address and the h-mark L to all the
other addresses in §. The initial h-marking and all h-markings which can be
obtained from it by application of h-marking rule are called reachable. The
application of the h-marking rule to an address a consists in the following:

1. If S/a = f(ty,...,t,) where f € F,, then for all i (1 £7< n) the h-
mark pa.i of the address a.i is replaced by the h-mark pa.iU Sem*(f,4)(pa).

2. If §/a = F(ty,...,t,), where F € F;, then the h-mark u[F] of the
address [F] is replaced by the h-mark u[F]U pa.

3. If a is an address of some occurrence of the i-th formal parameter of
F', then for each address b of a call to F satisfying ub # 1, the h-mark pub.i
of the address b.i is replaced by the h-mark bl pa.

A stationary h-marking is a reachable h-marking not changed by any
application of the h-marking rule. This stationary marking gives the precise
solution of the forward analysis problem.

Theorem 3. If the semilattice I is finite and all property transformers are
distributive in all arguments, the backward analysis problem can be solved
using the following marking algorithm.

A d-marking of a scheme § is an arbitrary map p assigning a map (d-
mark) pa € (L™ — L), n = [Var(a)| to each address a in S. The initjal
d-marking p, assigns the d-mark Pr; to all the addresses of occurences of
variable z; and the d-mark 1 (L(zy,...,2,) = 1) to all the other addresses
in §. The initial d-marking and all d-markings which can be obtained from
it by application of d-marking rule are called reachable. The application of
the d-marking rule to an address a consists in the following:

Let S/a = f(t,...,t,) where f € Fon=r(f) > 0. We replace the
d-mark pa of the address @ by the d-mark pa U Q, where the map () is
defined by

0= SemT(f)(ya.l,... spa.n), if f € F,
ulf)(pa.1,... pa.n), if feF,

Simple semantic analysis problems for functional programs 49

A stationary d-marking is a reachable d-marking not changed by any ap-
plication of the d-marking rule. This stationary marking gives the precise
solution of the backward analysis problem.

5. Examples of forward and backward énalysis
problems

5.1. Unesseniial addresses

Let us call an address a in a scheme S unessential iff Image(a) = 0. For an
unessential address a, § ~ S[a « t] holds for arbitrary terms t € T(V ar(a)).
We can formulate forward analysis problem for finding all unessential ad-
dresses of a scheme S.

The property semilattice: L = {0,1},0 for “unessential” and 1 for
“essential”, pNp' =l p=1 & p = 1.
Initial property: 1.
The semantic heritage function Sem! assigns the distributive property trans-
former Scml(f,i) = idy to each basic symbol f € F, and natural i (1<i<
r(f)). Then

i, (a)= || hYb) =1« Image(a) = 0.

belmage(a)

5.2. Extended strictness analysis: detection of hopeless
~ addresses

This analysis generalizes the Mycroft’s strictness analysis [4, 5]. Let us
suppose that some subset Strict(f) of the set 2{1--"U} is associated with
each basic symbol f; we call Strict(f) the set of strict parameter collections
of the symbol f. An interpretation I strict, if the condition

(VA € Strict(f) e Ad; = 1) = I(f)dy,....d,)= 1

holds for cach basic symbol f ¢ Fs. For example, the natural way to
bound the interpretations of a ternary symbol if is to settle Strict(if) =
{{1.2},{1.3}}. This means that we restrict all possible interpretations of
the symbol if to functions cond for which the condition

Vd.d €D (cond(L.d,d)= 1) & (cond(d.L,1)= 1)

holds. Another example is the vote function I} with the set Strict(I'}) =
{{1,2},{1,3},{2,3}} of strict parameter collection. so that

Vde D I(I5) (L, L,d)= 1 & I(I?)(Ld. 1) =1 & I d. L 1) =1

50 V.K. Sabelfeld, A. Sabelfeld

for all strict interpretations I. An address a of a scheme S is called hope-
less, iff I(S/a) = L for all strict interpretations I. Now we formulate the
backward analysis problem for finding all hopeless addresses of a scheme.
The property semilattices: £, = (2(1-m} U, 0) for n > 0, the set of all
subsets of the set {1,... ,n} with the set union U and the empty set as the
bottom element.
The deductive semantic function Sem},m assigns a monotone property

transformer
Sem] L (f)(S1y...,80) = U H 8;
AgStrict(f)i€A

to each symbol f € F,. Then the address a of a scheme § is hopeless iff
Dhope(a) = 0.

According to the above-described main algorithm for the solution of the
backward analysis problem, we obtain the following procedure.

The initial marking: poa = Pr; for addresses @ of the occurrences of a
variable z;, and pya = AL for all the other addresses a in S.

The marking rule: if §/a = f(t,...,t,), where f € F,n = r(f) >0,
then the mark pa of an address a is replaced by the mark u'a:

U Il iffer,

A€ Strict(f)i€A

H pa.i, if fe F,.

Aeu[f]iea

wa:=pau

5.3. Formal parameter dependence

Let us describe and solve the analysis problem for formal parameter de-
pendence as a flow analysis problem. As mentioned in Introduction, this
problem can be formulated as neither forward nor backward analysis prob-
lem since any term in the approximation sequence does not contain formal
parameters and, therefore, no formal parameter properties can be taken into
account.

We formulate a data flow analysis problem for a graph Graph(S) ob-
tained from a scheme § in the following way. The nodes of this graph will
be the entry address and the addresses of the bodies of the defined symbols
of the scheme §. The arcs will be the call addresses. We draw an arc a from
an address b to an address [F], if a is an address of a call to F occurring in
the term at the address b.

Let X be a finite set of variables, X C X. We use below the semilattice
L(X) of context free grammars G describing finite languages L(G) of term
equalities. These grammars have the terminal set

E:.Fi,UXU{E;(a)H}

and rules of the following three forms

Simple semantic analysis problems for functional programs 51

1. § — z = A with nonterminals S, A; S is the initial nonterminal of the
grammar; ¢ € X;

2. A — z with nonterminal 4; z € X;

3. A— f(Ay,...,An) with nonterminals A4, A,,..., A, and terminal fE€
Fs.

Such a grammar G can be reduced in linear time to a reduced grammar
Red(G) = (N, X, §, P) satisfying the following conditions:

¢ L(G) = L(Red(G)) is a finite language,
o VA,B € N L(A)NL(B) =0,

e YA € N L(A) #0,
e YA€ N 3a,e{NUZ} § 5 adp.

The meet operation M on reduced grammars corresponds to the language

intersection and can be defined in the following way. Let G; = (N;, x, 5, F)

for i = 1,2 be two reduced grammars. We define G = (N, X, 8, P), where

N = Nl X Nz, § = (51,52), P = {S - = (A].?AZ)I(SI' - .'E_ = A,) E R,

1= 1’2} u {<AI$A2> - f((BlltBﬂva(B}nt))l(At - f(Biv"-’B:\)) €

Pii = 1,2} U {{4),A2) — z|(Ai — z) € P,,i = 1,2,z € X}. Finally, we
def

define Gy NG, = Red(G).
Lemma 1. L(G,NG,) = L(G,)N L(G,).

We denote by £(X) the set of all reduced grammars augmented by a
new distinguished element 1 satisfying 157G = GN1 = G. The partial
order C on £(X) is introduced by the definition G, C G, %! G,NG, = G;.
The grammar {§ —» z = A;,A; - ¢ | z € X} will be denoted by O,
L(O)={z=2|z€ X},YG € L(X)OC G. We say that a nonterminal
A of a grammar knows a term ¢, if A = ¢t holds. For a grammar G and a
term ¢, the grammar Add(G,t) which has a nonterminal A knowing ¢ can
be built in the following way.

If the grammar G already has a nonterminal knowing t, or G = 1, then

Add(G,t) “a. Otherwise, if ¢ is a variable z, then add a new nonterminal
A and a rule A — z to the grammar G; if t = f(t1,...,1,), build the
grammar G' = Add(Add(... Add(G,t,),...),t,) and add a new nonterminal
A and arule A — f(A,,...,A,) to the grammar G’, where fori = 1,...,n
A; is the nonterminal in G’ which knows the term ¢;.

For an address a of a call F(¢,,...,t,) in a scheme we define the grammar
transformer

[cali(a)] : £(Var(a) U Var(A)) — L(Var([F]) U Var(A)).

52 V.K. Sabelfeld, A. Sabelfeld

If G = 1, then [eall(a)]G = G.

Otherwise, let G’ = Add(... Add(G,t,)...1,), let A; be the nonterminal
of G’ knowing the term t;, and let B; be the nonterminal 6f G’ knowing the
i-th formal garameter z; of the symbol F(i = 1,...,n). Foralli=1,...,n,
if A; # B{; then delete the rules § — z; = B; and B; — z; from the
grammar G’ and add the new rules § — z; = A; and A; — z;. Finally,

define [eall(a)]G “ Red(G").

Lemma 2. For all addresses a of a scheme, [call(a)] is a dastrtbutwe gram-
mar transformer, i.e.,

[call(e))(G1 N G>) = [eall(a)]G: N [call(a)]G..
Now we formulate a data flow analysis problem for Graph(S) by stating

e an initial marking u, associating the grammar @ with the entry node
A and the grammar 1 with all other nodes of Graph(S5),

e a semantic function which associates a distributive grammar trans-
former [call(a)] with any arc a of Graph(S).

Let w be a path in Graph(S), i.e., a sequence of adjacent arcs, and let

®,(G) = { G, if w does not contain any arc,
7| [eall(a)]®y:(G), if w= w'e, where a is an address of a call.

Our data flow analysis problem consists in finding the ‘meet over all path
solution’

mop([F]) =] @.(0)
wew
for all nodes [F] in Graph(S), where W is the set of all paths in Graph(S)
from the entry node to the node [F].

It is well known [3] that a stationary marking p of Graph(S) can be
effectively constructed such that p[F] = mop([F]) for all nodes [F], and
hence, if the condition (z = t) € L(u[F]) is true for a node [F] and for a
formal parameter x of F, then G ~ Gla — t] holds for all addresses a of the
occurrences of z in the body of the symbol F.

Example: for the stationary marking u of the scheme

< F(h,h) >
F(éf:?/) < if(pz, F(fz, fy), g9z)

(z = y) € L(pu[F]) holds; it means that the actual parameter values coincide
in all calls to F.

Simple semantic analysis problems for functional programs 53

References

(1]

2]

(3]

[4]

P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints, Conference
Records of the 4'* Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Los Angeles, California, 1977, 238-252.

P. Cousot, R. Cousot, Abstract interpretation frameworks, Rapport de
Recherche, Ecole Polytechnique, Laboratoire d’Informatique, 1992.

J.B. Kam, J.D. Ullman, Monotone data flow analysis frameworks, Acta Infor-
matica, 7, No. 3, 1977, 305-318.

A. Mycroft, The theory and practice of transforming call-by-need into call-by-
name, Proceedings of the Fourth International Symposium on Programming,
Paris, 22-24 April 1980, Lecture Notes of Computer Science, 83, 1980, 270~
281.

A. Mycroft, Abstract Interpretation and Optimizing Transformations for Ap-
plicative Programs, Ph.D. Dissertation, CST-15-81, Department of Computer
Science, University of Edinburgh, December 1981.

