Simple semantic analysis problems for functional programs*

V.K. Sabelfeld, A. Sabelfeld

In the paper two problems of semantic property analysis of recursion schemes are stated and a marking technique for solving these problems is described.

Keywords: program flow analysis, abstract interpretation, approximation, recursion scheme, strictness analysis, parameter dependence.

1. Introduction

To check applicability conditions of equivalent program transformations, to detect semantic errors in programs and to verify programs, one have to learn how to determine some semantic properties of programs. Many authors explored program analysis problems on program models. The most significant results were obtained in flow analysis [3] and abstract interpretation [1, 2] approaches. We consider functional, or recursive, programs and investigate the problem of semantic property analysis for a model of functional programs called recursion schemes.

We describe two simple classes of semantic property analysis problems (forward and backward property analysis problems) for recursion schemes and use a marking technique for their solution. Our approach is very close to Patrick and Radhia Cousot’s abstract interpretation approach [1, 2]. We consider the fixpoint semantics of recursive programs. Namely, we associate a term sequence called approximation sequence with a recursion scheme. Given the properties of terms from the approximation sequence we define the program property as the limit of the constructed sequence of properties.

Both forward and backward property analysis problems formulated are proved to be undecidable in the general case. We give sufficient conditions for solving these problems and present marking algorithms that compute program properties under the conditions required. In Sections 5.1 and 5.2 we give examples of forward (Essentiality of term occurrence) and backward property analysis problems (Hopelessness of term occurrences).

*Partially supported by the Russian Foundation of Fundamental Research under Grants 93-012-576 and by Russian Committee on Higher Education under Grants "Formal methods for program analysis and transformation".
Some state property analysis of recursive programs well described in the flow analysis or abstract interpretation approaches cannot be formulated in a natural way as either forward or backward analysis problems. As an instance, in Section 3.3 we describe the formal parameter dependence analysis of recursion schemes as a flow analysis problem.

2. Recursion scheme definition

Let $\mathcal{X} = \{x, y, z, \ldots\}$ be a set of variables, $\mathcal{B} = \{\omega, f, g, h, \ldots\}$ be a set of basic symbols, $\mathcal{D} = \{F, F_1, F_2, \ldots\}$ be a set of defined symbols, $\mathcal{F} = \mathcal{B} \cup \mathcal{D}$, and τ denote the rank function. Every symbol $s \in \mathcal{F}$ of rank $\tau(s) = n$ is said to have arity n, $\tau(\omega) = 0$.

For a set \mathcal{X} of variables, $\mathcal{X} \subset \mathcal{X}$, let $\mathcal{T}(\mathcal{X})$ be the set of all terms under variables from \mathcal{X} and basic and defined symbols from \mathcal{F}.

A recursion scheme is a pair $S = (e; DEF)$, where e is a term called the scheme entry and DEF is a finite set of definitions of symbols in \mathcal{F}_d. A definition of a symbol $F \in \mathcal{F}_d$ has the form $F(x_1, \ldots, x_n) \leftarrow t$, where $n = \tau(F), x_1, \ldots, x_n \in \mathcal{X}$ are different formal parameters of F and $t \in \mathcal{T}(x_1, \ldots, x_n)$ is the body of the symbol F. We assume each formal parameter being disjoint from all variables appearing in the entry.

A term $F(t_1, \ldots, t_n)$, where $n = \tau(F)$ and $F \in \mathcal{F}_d$, is said to be a call to the symbol F and its subterms t_1, \ldots, t_n are actual parameters of this call. We assume each symbol called in a scheme being defined in it. Here is an example of a scheme:

$$S_0 = \begin{cases} F_1(h, h) \\ F_2(x, y) \leftarrow \text{if}(px, F_3(fx, fy), y) \\ F_3(x) \leftarrow \text{if}(px, F_3(fx), x) \end{cases}$$

Any occurrence of a subterm in a term or in a scheme can be uniquely identified by its address which symbolizes the path from the root of the tree representing the term (or from the scheme entry) to the place of the subterm occurrence. The address of the tree root (or scheme entry) is the empty word Λ (if the tree is unique in the context under consideration), or the entry number in square brackets. The address of the body of a symbol F is the word $[F]$. If an occurrence of a term $f(t_1, \ldots, t_n)$ has an address a, then its subterm occurrences t_1, \ldots, t_n have the addresses $a.1, \ldots, a.n$ respectively. Two addresses are independent iff neither is a prefix of the other.

A substitution is an arbitrary map $\sigma : \mathcal{X} \rightarrow \mathcal{T}(\mathcal{X})$ satisfying the condition $\sigma x \neq x$ for only finite number of variables x from \mathcal{X}. The substitution σ replacing a variable x_i with a term t_i for $i = 1, \ldots, n$ is denoted by $[t_1/x_1, \ldots, t_n/x_n]$. The notion of a substitution can be extended in a natural
way to arbitrary terms: \(\sigma f(t_1, \ldots, t_n) = f(\sigma t_1, \ldots, \sigma t_n) \) for \(f \in \mathcal{F} \) and \(n = \tau(f) \). We denote by \(t[a \leftarrow \tau] \) the term obtained from the term \(t \) by replacing the term occurrence at the address \(a \) in \(t \) by the term \(\tau \). If \(N \) is a set of mutually independent addresses of subterm occurrences of a term \(t \), then \(t[N \leftarrow \tau] \) denotes the term obtained from the term \(t \) by the replacement of all subterm occurrences at addresses from \(N \) by the term \(\tau \).

Each scheme \(S \) defines a map \(\pi : \mathcal{T}(\mathcal{X}) \rightarrow \mathcal{T}(\mathcal{X}) \) which corresponds to the "parallel outermost computation rule":

\[
\pi t = \begin{cases}
x, & \text{if } t = x, \text{ where } x \in \mathcal{X},
f(\pi t_1, \ldots, \pi t_n), & \text{if } t = f(t_1, \ldots, t_n), \text{ where } n = \tau(f) \text{ and } f \in \mathcal{F}_0,
\sigma \tau, & \text{if } t = F(t_1, \ldots, t_n), \text{ where } F \in \mathcal{F}_d,
\sigma \tau, & \text{if } t = F(t_1, \ldots, t_n), \text{ where } F \in \mathcal{F}_d,
\sigma = [t_1/z_1, \ldots, t_n/z_n],
\text{ and } F(x_1, \ldots, x_n) \leftarrow \tau \text{ is the definition of } F \text{ in } S.
\end{cases}
\]

3. Interpretation and equivalence

A domain is a triple \((D, \leq, \bot) \), where \(D \) is an arbitrary set, \(\bot \in D \) (the "undefined value") and \(\leq \) is a partial order on \(D \), satisfying the following two conditions:

- \(\forall d \in D \; \bot \leq d. \)
- Completeness condition: for every chain \(C \in D \) the least upper bound lub\((C) \) belongs to \(D \), i.e. \(d \leq \text{lub}(C) \) for all \(d \in C \), and \(\text{lub}(C) \leq u \) for all \(u \in D \) such that \(d \leq u \) for all \(d \in C \).

The universal term domain \(\mathcal{U} = (T_U, \subseteq, \omega) \) is constructed in the following way. Consider the set \(T \) of all terms under the signature \(\langle \mathcal{X}, \mathcal{F} \rangle \) with the partial order \(\subseteq \) introduced by setting \(t_1 \subseteq t_2 \) iff there exists a set \(N \) of mutually independent addresses in \(t_2 \), such that \(t_1 = t_2[N \leftarrow \omega] \). Let \(T_U \) be the completion of the set \(T \) by the least upper bounds of all infinite increasing chains of elements from \(T \). The elements from \(T_U \) can be thought of as (infinite) terms (trees). One can prove that \(\mathcal{U} \) is a domain with the partial order \(\subseteq \); \(t_1 \subseteq t_2 \) iff there is an (infinite) set \(N \) of mutually independent addresses in \(t_2 \) such that \(t_1 = t_2[N \leftarrow \omega] \), and bottom \(\omega \).

A function \(\varphi : D \rightarrow D' \) between two domains is monotone, if \(\forall d, d' \in D, d \leq d' \Rightarrow \varphi d \leq \varphi d' \). A monotone function is continuous if it preserves the least upper bounds of non-empty linearly ordered subsets of \(D \), i.e. \(\varphi(\text{lub}(C)) = \text{lub}(\varphi(C)) \).

An interpretation \(I \) fixes a domain \(D \) and assigns

- a member \(I(x) \in D \) to each variable \(x \in \mathcal{X} \),
- a continuous function \(I(f) : D^{\text{arity}(f)} \rightarrow D \) to each symbol \(f \in \mathcal{F}_0 \).

Using the structural induction we can extend the notion of interpretation \(I \) on arbitrary finite terms:
\(I(t) = \begin{cases}
I(x), & \text{if } t = x, \text{ where } x \in X; \\
I(f)(I(t_1), \ldots, I(t_n)), & \text{if } t = f(t_1, \ldots, t_n), \text{ where } f \in \mathcal{F}_i; \\
\bot & \text{otherwise.}
\end{cases} \)

An important example of an interpretation is the universal interpretation \(J \) with the domain \(U \), and \(J(z) = z \) for variables \(z \in X \); for \(f \in \mathcal{F}_n, n = \tau(f) \) and \(t_1, \ldots, t_n \in T_U \) we set

\[
J(f)(t_1, \ldots, t_n) = \begin{cases}
T(t_1, \ldots, t_n), & \text{if } f \in \mathcal{F}_b; \\
\omega & \text{otherwise.}
\end{cases}
\]

Let \(\{x_1, \ldots, x_k\} \) be the variable set of a term \(t \) and let \(y_1, \ldots, y_k \) be pairwise distinct variables not appearing in the scheme \(S \). We define the approximation sequence of a term \(t \) as

\[
\text{App}(S, t) = \{J([x_1/y_1, \ldots, x_k/y_k]\pi^n[y_1/x_1, \ldots, y_k/x_k]t)|n \geq 0\},
\]

where \(\pi^0 = \tau \) and \(\pi^n = \pi^{n-1}\tau \) for \(n > 0 \). The determinant \(\text{det}(t) \) of a term \(t \) is the least upper bound of the approximation sequence \(\text{App}(S, t) \) where \(S = \text{App}(S, t)[0] \text{App}(S, t)[1] \ldots \) and the determinant \(\text{det}(S) \) of a scheme \(S \) is the determinant of the entry of the scheme \(S \). For example, the first elements of the approximation sequence of the entry of a scheme \(\langle F(u); F(x) \leftarrow f(x, F(gx)) \rangle \)

\[\omega \subseteq f(u, \omega) \subseteq f(u, f(gu, \omega)) \subseteq f(u, f(gu, f(ggu, \omega))) \subseteq \ldots \), etc.

Two schemes \(S_1 \) and \(S_2 \) are equivalent (in short: \(S_1 \sim S_2 \)) iff \(I(t_1) = I(t_2) \) for the entries \(t_1, t_2 \) of these schemes and for all interpretations \(I \).

Let us denote by \(S/a \) the term at address \(a \) in a scheme or a term \(S \), and we denote by \(S[a \leftarrow t] \) the scheme obtained from \(S \) by replacing the term at address \(a \) by a term \(t \).

4. Two problems of semantic analysis

Let \(\mathcal{L} = \langle L, \cup, \bot \rangle \) be an upper semilattice where \(\bot \) is the bottom element and \(\cup \) is a binary operation called union satisfying \(\forall x, y, z \in X \) \(x \cup y = y \cup x \), \((x \cup y) \cup z = x \cup (y \cup z) \), \(x \cup x = x \), \(x \cup \bot = x \). A partial order on \(L \) is defined by \(x \subseteq y \equiv x \cup y = y \) and \(x \subseteq y \equiv (x \subseteq y) \land (x \neq y) \). We will consider only semilattices satisfying the increasing chain condition.

The image set \(\text{Image}(a) \) of address \(a \) of a scheme \(S \) is defined as such a minimal subset of addresses of subterms occurring in \(\text{det}(S) \) which satisfies the following conditions:

- \([A] \in \text{Image}([A]) \).
- If \(b \in \text{Image}(a), S/a = f(t_1, \ldots, t_n) \) and \(f \in \mathcal{F}_i \), then \(b.i \in \text{Image}(a.i) \) for all \(i = 1, \ldots, n \).
Simple semantic analysis problems for functional programs

- If \(b \in \text{Image}(a) \) and \(S/a = F(t_1, \ldots, t_n) \) for a symbol \(F \) defined in \(S \), then \(b \in \text{Image}([F]) \).
- If \(\text{Image}(a) \neq \emptyset, S/a = F(t_1, \ldots, t_n) \) for a symbol \(F \) defined in \(S \), \(c \) is the address of the occurrence of the \(i \)-th formal parameter in the body of \(F \), and \(b \in \text{Image}(c) \), then \(b \in \text{Image}(a.i) \).

We have an instance of a forward semantic analysis problem for a recursion scheme \(S \), if the following is given:
- A property semilattice \(L \) satisfying the chain condition.
- An initial property \(h_0 \in L \).
- A semantic heritage function \(\text{Sem}^1 \) assigning a monotone property transformer \(\text{Sem}^1(f, i) : L \rightarrow L \) to each symbol \(f \in F \), and natural \(i \) (\(1 \leq i \leq r(f) \)) which defines the property of the \(i \)-th subterm of a term \(f(\ldots) \) with given property \(s \in L \) as \(\text{Sem}^1(f, i)(s) \).

The property \(h^1(a) \) of an address \(a \) in \(\text{det}(S) \) is defined by

\[
h^1(a) = \begin{cases}
h_0, & \text{if } a = \Lambda, \\
\text{Sem}^1(f, i)(h^1(b)), & \text{if } f \in F_i \land \exists i = b.i \land t/b = f(t_1, \ldots, t_n).
\end{cases}
\]

The forward semantic analysis problem for a scheme \(S \) consists in finding the property

\[
H^1(a) = \bigcup_{b \in \text{Image}(a)} h^1(b)
\]

for addresses \(a \) in \(S \).

We have an instance of a backward semantic analysis problem for a recursion scheme \(S \), if the following is given:
- A property semilattice \(L \) satisfying the chain condition.
- A deductive semantic function \(\text{Sem}^1 \) assigning a monotone property transformer \(\text{Sem}^1(f) : L^n \rightarrow L, n = r(f) \) to each symbol \(f \in F \), which defines the property of a term \(f(t_1, \ldots, t_n) \) using the properties \(s_1, \ldots, s_n \) of its subterms \(t_1, \ldots, t_n \in L \) as \(\text{Sem}^1(f)(s_1, \ldots, s_n) \).

For an address \(a \) in a scheme \(S \), \(\text{Var}(a) \) denotes the formal parameter set of a symbol \(F \), if \(a \) is the address of a subterm of the body of \(F \), or the set of all variables occurring in the scheme entry, if \(a \) is the address of a subterm of the entry. We denote by \(\text{Pr}_i \) the projection function \(\text{Pr}_i \in (L^n \rightarrow L), \text{Pr}_i(s_1, \ldots, s_n) = s_i \). The deductive semantic function can be extended on arbitrary terms \(t \) without calls by setting

\[
\text{Sem}^*(t) = \begin{cases}
\text{Pr}_i, & \text{if } t = x_i; \\
\text{Sem}^1(f)(\text{Sem}^*(t_1), \ldots, \text{Sem}^*(t_n)), & \text{if } f \in F_i \land t = f(t_1, \ldots, t_n).
\end{cases}
\]

For an address \(a \) in a scheme \(S \) we define \(d(a, n) = \text{Sem}^*(\text{App}(S, S/a)n) \) as an element of the semilattice \(L^{\text{Var}(a)} \rightarrow L \).

The backward semantic analysis problem for the scheme \(S \) consists in finding the property
\[D(a) = \bigcup_{n=0}^{\infty} d(a, n) \]

for addresses \(a \) of the scheme \(S \).

Theorem 1. Both semantic analysis problems described are undecidable in the general case.

Theorem 2. If all property transformers are distributive, the forward analysis problem can be solved using the following marking algorithm.

An h-marking of a scheme \(S \) is an arbitrary map \(\mu \) assigning a property (called h-mark) \(\mu a \in L \) to each address \(a \) in \(S \). The initial h-marking \(\mu_0 \) assigns the h-mark \(h_0 \) to the entry address and the h-mark \(\bot \) to all the other addresses in \(S \). The initial h-marking and all h-markings which can be obtained from it by application of h-marking rule are called reachable. The application of the h-marking rule to an address \(a \) consists in the following:

1. If \(S/a = f(t_1, \ldots, t_n) \) where \(f \in \mathcal{F}_h \), then for all \(i \ (1 \leq i \leq n) \) the h-mark \(\mu a.i \) of the address \(a.i \) is replaced by the h-mark \(\mu a.i \cup \text{Sem}^1(f, i)(\mu a) \).
2. If \(S/a = F(t_1, \ldots, t_n) \), where \(F \in \mathcal{F}_d \), then the h-mark \(\mu[F] \) of the address \([F]\) is replaced by the h-mark \(\mu[F] \cup \mu a \).
3. If \(a \) is an address of some occurrence of the \(i \)-th formal parameter of \(F \), then for each address \(b \) of a call to \(F \) satisfying \(\mu b \neq \bot \), the h-mark \(\mu b.i \) of the address \(b.i \) is replaced by the h-mark \(\mu b.i \cup \mu a \).

A stationary h-marking is a reachable h-marking not changed by any application of the h-marking rule. This stationary marking gives the precise solution of the forward analysis problem.

Theorem 3. If the semilattice \(L \) is finite and all property transformers are distributive in all arguments, the backward analysis problem can be solved using the following marking algorithm.

A d-marking of a scheme \(S \) is an arbitrary map \(\mu \) assigning a map (d-mark) \(\mu a \in (L^n \rightarrow L), n = |\text{Var}(a)| \) to each address \(a \) in \(S \). The initial d-marking \(\mu_0 \) assigns the d-mark \(Pr_i \) to all the addresses of occurrences of variable \(x_i \) and the d-mark \(\bot (\bot(x_1, \ldots, x_n) = \bot) \) to all the other addresses in \(S \). The initial d-marking and all d-markings which can be obtained from it by application of d-marking rule are called reachable. The application of the d-marking rule to an address \(a \) consists in the following:

Let \(S/a = f(t_1, \ldots, t_n) \) where \(f \in \mathcal{F}, n = r(f) \geq 0 \). We replace the d-mark \(\mu a \) of the address \(a \) by the d-mark \(\mu a \cup Q \), where the map \(Q \) is defined by

\[
Q = \begin{cases}
\text{Sem}^1(f)(\mu a.1, \ldots, \mu a.n), & \text{if } f \in \mathcal{F}_i, \\
\mu[f](\mu a.1, \ldots, \mu a.n), & \text{if } f \in \mathcal{F}_d.
\end{cases}
\]
A stationary d-marking is a reachable d-marking not changed by any application of the d-marking rule. This stationary marking gives the precise solution of the backward analysis problem.

5. Examples of forward and backward analysis problems

5.1. Unessential addresses

Let us call an address \(a \) in a scheme \(S \) unessential iff \(\text{Image}(a) = \emptyset \). For an unessential address \(a \), \(S \sim S[a \rightarrow t] \) holds for arbitrary terms \(t \in T(\text{Var}(a)) \).

We can formulate forward analysis problem for finding all unessential addresses of a scheme \(S \).

The property semilattice: \(L = \{0, 1\}, 0 \) for "unessential" and \(1 \) for "essential", \(p \cap p' = 1 \iff p = 1 \land p' = 1 \).

Initial property: \(1 \).

The semantic heritage function \(\text{Schem}^1 \) assigns the distributive property transformer \(\text{Schem}^1(f, i) = \text{id}_L \) to each basic symbol \(f \in F_i \) and natural \(i (1 \leq i \leq r(f)) \). Then

\[
H^1_{\text{ess}}(a) = \bigcup_{b \in \text{Image}(a)} h^1(b) = 1 \iff \text{Image}(a) = \emptyset.
\]

5.2. Extended strictness analysis: detection of hopeless addresses

This analysis generalizes the Mycroft’s strictness analysis [4, 5]. Let us suppose that some subset \(\text{Strict}(f) \) of the set \(2^{\{1, \ldots, r(f)\}} \) is associated with each basic symbol \(f \); we call \(\text{Strict}(f) \) the set of strict parameter collections of the symbol \(f \). An interpretation \(I \) strict, if the condition

\[
(\forall \Delta \in \text{Strict}(f) \exists i \in \Delta d_i = \bot \Rightarrow I(f)(d_1, \ldots, d_n) = \bot
\]

holds for each basic symbol \(f \in F_b \). For example, the natural way to bound the interpretations of a ternary symbol if is to settle \(\text{Strict}(\text{if}) = \{\{1, 2\}, \{1, 3\}\} \). This means that we restrict all possible interpretations of the symbol if to functions \(\text{cond} \) for which the condition

\[
\forall d, d' \in D (\text{cond}(\bot, d, d') = \bot) \land (\text{cond}(d, \bot, \bot) = \bot)
\]

holds. Another example is the vote function \(\text{Vot}^3 \) with the set \(\text{Strict}(\text{Vot}^3) = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\} \) of strict parameter collection, so that

\[
\forall d \in D I(\text{Vot}^3)(\bot, \bot, d) = \bot \land I(\text{Vot}^3)(\bot, d, \bot) = \bot \land I(\text{Vot}^3)(d, \bot, \bot) = \bot
\]
for all strict interpretations I. An address a of a scheme S is called hopeless, iff I(S/a) = ⊥ for all strict interpretations I. Now we formulate the backward analysis problem for finding all hopeless addresses of a scheme.

The property semilattices: \(\mathcal{L}_n = \langle 2^{\{1, \ldots, n\}}, \cup, \emptyset \rangle \) for \(n \geq 0 \), the set of all subsets of the set \(\{1, \ldots, n\} \) with the set union \(\cup \) and the empty set \(\emptyset \) as the bottom element.

The deductive semantic function \(\text{Sem}_{\text{hope}}^1 \) assigns a monotone property transformer

\[
\text{Sem}_{\text{hope}}^1(f)(s_1, \ldots, s_n) = \bigcup_{\Delta \in \text{Strict}(f)} \prod_{i \in \Delta} s_i
\]

to each symbol \(f \in \mathcal{F}_i \). Then the address \(a \) of a scheme S is hopeless iff \(D_{\text{hope}}(a) = \emptyset \).

According to the above-described main algorithm for the solution of the backward analysis problem, we obtain the following procedure.

The initial marking: \(\mu_0 a = Pr_i \) for addresses \(a \) of the occurrences of a variable \(x_i \), and \(\mu_0 a = \perp \) for all the other addresses \(a \) in \(S \).

The marking rule: if \(S/a = f(t_1, \ldots, t_n) \), where \(f \in \mathcal{F}, n = r(f) \geq 0 \), then the mark \(\mu a \) of an address \(a \) is replaced by the mark \(\mu' a \):

\[
\mu' a := \mu a \cup \begin{cases}
\bigcup_{\Delta \in \text{Strict}(f)} \prod_{i \in \Delta} \mu a_i, & \text{if } f \in \mathcal{F}_s, \\
\bigcup_{\Delta \in \text{End}(f)} \prod_{i \in \Delta} \mu a_i, & \text{if } f \in \mathcal{F}_d.
\end{cases}
\]

5.3. Formal parameter dependence

Let us describe and solve the analysis problem for formal parameter dependence as a flow analysis problem. As mentioned in Introduction, this problem can be formulated as neither forward nor backward analysis problem since any term in the approximation sequence does not contain formal parameters and, therefore, no formal parameter properties can be taken into account.

We formulate a data flow analysis problem for a graph \(\text{Graph}(S) \) obtained from a scheme \(S \) in the following way. The nodes of this graph will be the entry address and the addresses of the bodies of the defined symbols of the scheme \(S \). The arcs will be the call addresses. We draw an arc \(a \) from an address \(b \) to an address \([F], \) if \(a \) is an address of a call to \(F \) occurring in the term at the address \(b \).

Let \(X \) be a finite set of variables, \(X \subset X \). We use below the semilattice \(\mathcal{L}(X) \) of context free grammars \(G \) describing finite languages \(L(G) \) of term equalities. These grammars have the terminal set

\[
\Sigma = \mathcal{F} \cup X \cup \{\equiv, (,),\}
\]

and rules of the following three forms
1. \(S \rightarrow x \equiv A \) with nonterminals \(S, A; S \) is the initial nonterminal of the grammar, \(x \in X \);
2. \(A \rightarrow x \) with nonterminal \(A; x \in X \);
3. \(A \rightarrow f(A_1, \ldots, A_n) \) with nonterminals \(A, A_1, \ldots, A_n \) and terminal \(f \in \mathcal{F} \).

Such a grammar \(G \) can be reduced in linear time to a reduced grammar \(\text{Red}(G) = (N, \Sigma, S, P) \) satisfying the following conditions:

- \(L(G) = L(\text{Red}(G)) \) is a finite language,
- \(\forall A, B \in N \, L(A) \cap L(B) = \emptyset, \)
- \(\forall A \in N \, L(A) \neq \emptyset, \)
- \(\forall A \in N \, \exists \alpha, \beta \in \{ N \cup \Sigma \}^* \, S \rightarrow \alpha A \beta. \)

The \textit{meet} operation \(\cap \) on reduced grammars corresponds to the language intersection and can be defined in the following way. Let \(G_i = (N_i, \Sigma, S_i, P_i) \) for \(i = 1, 2 \) be two reduced grammars. We define \(G = (N, \Sigma, S, P) \), where \(N = N_1 \times N_2, S = (S_1, S_2), P = \{ S \rightarrow x \equiv (A_1, A_2) | (S_1 \rightarrow x \equiv A_1) \in P_1, i = 1, 2 \} \cup \{ (A_1, A_2) \rightarrow f(B_1, B_2) | (A_1 \rightarrow f(B_1^i, \ldots, B_n^i)) \in P_i, i = 1, 2 \} \cup \{ (A_1, A_2) \rightarrow x | (A_i \rightarrow x) \in P_i, i = 1, 2, x \in X \} \). Finally, we define \(G_1 \cap G_2 \overset{df}{=} \text{Red}(G) \).

Lemma 1. \(L(G_1 \cap G_2) = L(G_1) \cap L(G_2) \).

We denote by \(L(X) \) the set of all reduced grammars augmented by a new distinguished element \(1 \) satisfying \(1 \cap G = G \cap 1 = G \). The partial order \(\subseteq \) on \(L(X) \) is introduced by the definition \(G_1 \subseteq G_2 \overset{df}{=} G_1 \cap G_2 = G_1 \). The grammar \(\{ S \rightarrow x \equiv A_1, A_2 \rightarrow x \mid x \in X \} \) will be denoted by \(\mathbf{O} \), \(L(\mathbf{O}) = \{ x \equiv x \mid x \in X \} \), \(\forall G \in L(X) \, \mathbf{O} \subseteq G \). We say that a nonterminal \(A \) of a grammar \(G \) knows a term \(t \), if \(A \rightarrow t \) holds. For a grammar \(G \) and a term \(t \), the grammar \(\text{Add}(G, t) \) which has a nonterminal \(A \) knowing \(t \) can be built in the following way.

If the grammar \(G \) already has a nonterminal knowing \(t \), or \(G = \mathbf{1} \), then \(\text{Add}(G, t) \overset{df}{=} G \). Otherwise, if \(t \) is a variable \(x \), then add a new nonterminal \(A \) and a rule \(A \rightarrow x \) to the grammar \(G \); if \(t = f(t_1, \ldots, t_n) \), build the grammar \(G' = \text{Add}(\text{Add}(\ldots \text{Add}(G(t_1), \ldots), t_n) \ldots, t_n) \) and add a new nonterminal \(A \) and a rule \(A \rightarrow f(A_1, \ldots, A_n) \) to the grammar \(G' \), where for \(i = 1, \ldots, n \), \(A_i \) is the nonterminal in \(G' \) which knows the term \(t_i \).

For an address \(a \) of a call \(F(t_1, \ldots, t_n) \) in a scheme we define the grammar transformer

\[
\llbracket \text{call}(a) \rrbracket : \mathcal{L}(\text{Var}(a) \cup \text{Var}(A)) \rightarrow \mathcal{L}(\text{Var}([F]) \cup \text{Var}(A)).
\]
If $G = 1$, then $\llbracket \mathtt{call(a)} \rrbracket G = G$.

Otherwise, let $G' = \mathtt{Add(\ldots \mathtt{Add}(G,t_1) \ldots t_n)}$, let A_i be the nonterminal of G' knowing the term t_i, and let B_i be the nonterminal of G' knowing the i-th formal parameter x_i of the symbol $F(i = 1, \ldots, n)$. For all $i = 1, \ldots, n$, if $A_i \neq B_i$, then delete the rules $S \rightarrow x_i \equiv B_i$ and $B_i \rightarrow x_i$ from the grammar G' and add the new rules $S \rightarrow x_i \equiv A_i$ and $A_i \rightarrow x_i$. Finally, define $\llbracket \mathtt{call(a)} \rrbracket G \triangleq \text{Red}(G')$.

Lemma 2. For all addresses a of a scheme, $\llbracket \mathtt{call(a)} \rrbracket$ is a distributive grammar transformer, i.e.,

$$\llbracket \mathtt{call(a)} \rrbracket (G_1 \cap G_2) = \llbracket \mathtt{call(a)} \rrbracket G_1 \cap \llbracket \mathtt{call(a)} \rrbracket G_2.$$

Now we formulate a data flow analysis problem for $\text{Graph}(S)$ by stating

- an initial marking μ_0 associating the grammar \mathbf{O} with the entry node Λ and the grammar 1 with all other nodes of $\text{Graph}(S)$,
- a semantic function which associates a distributive grammar transformer $\llbracket \mathtt{call(a)} \rrbracket$ with any address a of $\text{Graph}(S)$.

Let w be a path in $\text{Graph}(S)$, i.e., a sequence of adjacent arcs, and let

$$\Phi_w(G) = \begin{cases} G, & \text{if } w \text{ does not contain any arc,} \\ \llbracket \mathtt{call(a)} \rrbracket \Phi_w(G), & \text{if } w = w^m a, \text{ where } a \text{ is an address of a call.} \end{cases}$$

Our data flow analysis problem consists in finding the 'meet over all path solution'

$$\text{mop}(\llbracket F \rrbracket) = \prod_{w \in W} \Phi_w(\mathbf{O})$$

for all nodes $\llbracket F \rrbracket$ in $\text{Graph}(S)$, where W is the set of all paths in $\text{Graph}(S)$ from the entry node to the node $\llbracket F \rrbracket$.

It is well known [3] that a stationary marking μ of $\text{Graph}(S)$ can be effectively constructed such that $\mu(\llbracket F \rrbracket) = \text{mop}(\llbracket F \rrbracket)$ for all nodes $\llbracket F \rrbracket$, and hence, if the condition $(x \equiv t) \in L(\mu(\llbracket F \rrbracket))$ is true for a node $\llbracket F \rrbracket$ and for a formal parameter x of F, then $G \sim G[a \leftarrow t]$ holds for all addresses a of the occurrences of x in the body of the symbol F.

Example: for the stationary marking μ of the scheme

$$\begin{align*}
F(h,h); \\
F(x,y) \Leftarrow \text{if}(px, F(fx,fy), gx)
\end{align*}$$

$(x \equiv y) \in L(\mu(\llbracket F \rrbracket))$ holds; it means that the actual parameter values coincide in all calls to F.
References

