On optimal choice of spline-smoothing parameter

A.I. Rozhenko*

In this paper we consider an abstract spline smoothing problem in Hilbert space and express Newton's iteration formula for an optimal choice of the smoothing parameter α in terms of the residual operator $R_{\alpha}z = z - A\sigma_{\alpha}$.

We also obtain expansions of $A\sigma_{\alpha}$ and $z-A\sigma_{1/\beta}$ by series based on the operators R_{α} and $Q_{\beta} = I - R_{1/\beta}$ respectively, and derive the estimates $\|\sigma_{\alpha} - \sigma_{0}\| = O(\alpha)$ and $\|\sigma_{\alpha} - \sigma_{\infty}\| = O(\alpha^{-1})$ as an easy consequences of these expansions.

1. Introduction

We use the following notations. Throughout the paper X, Y, Z are some Hilbert spaces. The norm and the scalar product in X will be denoted by $\|\cdot\|_X$ and $(\cdot,\cdot)_X$ respectively, with omitting the subscript in the case where no ambiguity arises. The null element of the space X will be denoted by the symbol 0. L(X,Y) will stand for the Banach space of linear bounded operators acting from X into Y. The notations N(A) and R(A) will denote the kernel and the image of an operator $A \in L(X,Y)$.

Let operators $T \in L(X,Y)$ and $A \in L(X,Z)$ form a spline-pair, i.e.,

- (a) R(T) and R(A) are closed in Y and Z respectively;
- (b) N(T) + N(A) is closed in X;
- (c) $N(T) \cap N(A) = \{0\}.$

It is well-known [1-3] that the spline-pair (T,A) defines an equivalent norm

$$||x||_* = \left(||Tx||^2 + ||Ax||^2\right)^{1/2} \tag{1}$$

in X, and a unique solvability of a spline smoothing problem

$$\sigma_{\alpha} = \arg\min_{x \in X} \alpha ||Tx||^2 + ||Ax - z||^2$$
 (2)

takes place at any $z \in \mathbb{Z}$, $\alpha > 0$.

A residual criterion

$$\varphi(\alpha) \stackrel{df}{=} ||A\sigma_{\alpha} - z|| = \varepsilon \tag{3}$$

^{*}Supported by the Russian Foundation of Basic Research under Grant 95-01-000949.

is usually used to choose the smoothing parameter α . Here $\varepsilon > 0$ is a residual level required.

The function $\varphi(\alpha)$ monotonically increases [2] from $\varepsilon_{\min} = \varphi(0) = \min_{x \in X} ||Ax - z||$ up to $\varepsilon_{\max} = \varphi(\infty) \min_{x \in N(T)} ||Ax - z||$.

We will assume that $\varepsilon_{\min} \neq \varepsilon_{\max}$. In this case the function $\varphi(\alpha)$ is strictly monotone, and problem (3) has a unique solution for any $\varepsilon \in [\varepsilon_{\min}, \varepsilon_{\max}]$. Usually, the equivalent problem

$$\psi(\beta) \stackrel{df}{=} \varphi^{-1}(1/\beta) = \varepsilon^{-1} \tag{4}$$

is proposed instead of (3), and the Newton method

$$\beta_{k+1} = \beta_k - \frac{\psi(\beta_k) - \varepsilon^{-1}}{\psi'(\beta_k)} \tag{5}$$

is applied for the optimal choice of the smoothing parameter. ($\psi(\beta)$ is strictly monotonically increasing upper convex function [2].)

2. Step of Newton's iteration

Let us denote $\alpha = 1/\beta$. Then

$$\psi'(\beta) = \left[\varphi^{-1}(1/\beta)\right]' = \frac{\varphi'(1/\beta)}{\beta^2 \varphi^2(1/\beta)} = \frac{\alpha^2 \varphi'(\alpha)}{\varphi^2(\alpha)}.$$
 (6)

Using the notation $r_{\alpha} = z - A\sigma_{\alpha}$, we obtain

$$\varphi'(\alpha) = [(r_{\alpha}, r_{\alpha})^{1/2}]' = \varphi^{-1}(\alpha) \cdot (r_{\alpha}, r_{\alpha}').$$

Introduce the *residual operator* $R_{\alpha}:Z\to Z$ by the rule $R_{\alpha}z=z-A\sigma_{\alpha}.$ Then

$$\varphi'(\alpha) = \varphi^{-1}(\alpha) \cdot (R_{\alpha}z, R'_{\alpha}z). \tag{7}$$

To obtain R'_{α} , we use the representation of the spline σ_{α} via the operator's equation [4]

$$(\alpha T^*T + A^*A)\sigma_\alpha = A^*z. \tag{8}$$

We have

$$R_{\alpha} = I - A(\alpha T^*T + A^*A)^{-1}A^* \tag{9}$$

and

$$A\sigma_{\alpha} = (I - R_{\alpha})z. \tag{10}$$

To find $r'_{\alpha} = -A\sigma'_{\alpha}$, let us differentiate (8) by α :

$$(\alpha T^*T + A^*A)\sigma'_{\alpha} = -T^*T\sigma_{\alpha} = -\frac{1}{\alpha}(\alpha T^*T + A^*A - A^*A)\sigma_{\alpha}$$
$$= -\frac{1}{\alpha}(A^*z - A^*A\sigma_{\alpha}) = -\frac{1}{\alpha}A^*r_{\alpha}.$$

Therefore,

$$\sigma'_{\alpha} = -\frac{1}{\alpha}(\alpha T^*T + A^*A)^{-1}A^*r_{\alpha}.$$

Multiplying this equality to A and using (9), we obtain

$$A\sigma'_{\alpha} = -\frac{1}{\alpha}A(\alpha T^*T + A^*A)^{-1}A^*r_{\alpha} = \frac{1}{\alpha}(I - R_{\alpha})r_{\alpha}.$$

Hence,

$$R'_{\alpha} = \frac{1}{\alpha} (I - R_{\alpha}) R_{\alpha}. \tag{11}$$

Substituting this formula to (7), we derive

$$\varphi'(\alpha) = \frac{\varphi(\alpha)}{\alpha} \cdot \frac{(R_{\alpha}z, (I - R_{\alpha})R_{\alpha}z)}{\varphi^{2}(\alpha)}$$

$$= \frac{\varphi(\alpha)}{\alpha} \cdot \frac{(R_{\alpha}z, R_{\alpha}z) - (R_{\alpha}z, R_{\alpha}^{2}z)}{(R_{\alpha}z, R_{\alpha}z)}$$

$$= \frac{\varphi(\alpha)}{\alpha} (1 - \omega(\alpha)), \tag{12}$$

where

$$\omega(\alpha) = \frac{(R_{\alpha}z, R_{\alpha}^2 z)}{(R_{\alpha}z, R_{\alpha}z)}.$$
 (13)

Applying (12) into (6), we have

$$\psi'(\beta) = \frac{\alpha^2 \varphi'(\alpha)}{\varphi^2(\alpha)} = \frac{\alpha}{\varphi(\alpha)} (1 - \omega(\alpha)). \tag{14}$$

Finally, Newton's iteration formula (5) looks as follows:

$$\alpha_{k+1} = \alpha_k \frac{1 - \omega(\alpha_k)}{\varphi(\alpha_k)/\varepsilon - \omega(\alpha_k)}.$$
 (15)

Remark 1. Since σ_{α} is a solution to problem (2), it is easy to obtain that $||R_{\alpha}|| \leq 1$.

Remark 2. Applying the conditions $\psi'(\beta) > 0$ and $\psi''(\beta) \leq 0$, one can find the following inequalities

$$\varphi(\alpha)/\varepsilon_{\text{max}} \le \omega(\alpha) < 1.$$
 (16)

Remark 3. Let us denote $\bar{r}_{\alpha} = r_{\alpha}/\|r_{\alpha}\|$. Then $\omega(\alpha) = (\bar{r}_{\alpha}, R_{\alpha}\bar{r}_{\alpha})$.

3. How to start iterations?

The Newton iterations (5) converge if the inequality $\psi(\beta_0) \leq \varepsilon^{-1}$ is valid. It is the best choice to start iterations from $\beta_0 = 0$, but a calculation of $\psi'(0)$ is not easy, because it requires the solving of a special linear system [2]. At the same time the calculation of $\psi(0)$ is a simple least squares problem

$$\varepsilon_{\max}^2 = \psi^{-2}(0) = \min_{x \in N(T)} ||Ax - z||^2.$$

To avoid difficulties arising when $\psi'(0)$ is computed, we suggest the following method:

- 0. Let us start iterations from an arbitrary $\beta_0 = \alpha_0^{-1} > 0$.
- 1. If $\varphi(\alpha_k) \geq \varepsilon$, the Newton iteration (15) is applied. In this case all consequent iterations will be also Newton's, and the sequence α_k will be monotonically decreasing.
- 2. If $\varphi(\alpha_k) < \varepsilon$, we construct a ratio function $\eta(\beta) = (a + b\beta)/(1 + c\beta)$ to satisfy the following conditions

$$\eta(0) = \psi(0) = \varepsilon_{\text{max}}^{-1}, \quad \eta(\beta_k) = \psi(\beta_k), \quad \eta'(\beta_k) = \psi'(\beta_k),$$

and give β_{k+1} as a solution to the equation $\eta(\beta) = \varepsilon^{-1}$. (It is easy to prove that the solution is unique.)

The iteration formula for the ratio's approximation is the following:

$$\alpha_{k+1} = \alpha_k \frac{(1 - \varphi(\alpha_k)/\varepsilon_{\max}) - (1 - \varphi(\alpha_k)/\varepsilon) \cdot \delta(\alpha_k)}{\varphi(\alpha_k)/\varepsilon - \varphi(\alpha_k)/\varepsilon_{\max}},$$
(17)

where

$$\delta(\alpha) = \frac{\varphi(\alpha)/\varepsilon_{\max} - \omega(\alpha)}{1 - \omega(\alpha)}.$$

4. Taylor expansions of $A\sigma_{\alpha}$ and $z-A\sigma_{1/\beta}$

It is easy to obtain from (11) the following differential rule

$$D^k R_{\alpha} = (-1)^{k+1} \frac{k!}{\alpha^k} R_{\alpha}^k (I - R_{\alpha}), \quad k \ge 1.$$

Using this formula, we derive a formal Taylor expansion of the operator R_{α} at the neighbourhood of a point $\alpha_0 > 0$:

$$R_{\alpha} = R_{\alpha_0} + \sum_{k=1}^{\infty} \frac{(\alpha - \alpha_0)^k}{k!} D^k R_{\alpha_0} = R_{\alpha_0} - \sum_{k=1}^{\infty} (-1)^k \frac{(\alpha - \alpha_0)^k}{\alpha_0^k} R_{\alpha_0}^k (I - R_{\alpha_0}),$$

and applying (10), we obtain the formal identity

$$A\sigma_{\alpha} = (I - R_{\alpha})z = \left(I - R_{\alpha_0} + \sum_{k=1}^{\infty} (-1)^k \frac{(\alpha - \alpha_0)^k}{\alpha_0^k} R_{\alpha_0}^k (I - R_{\alpha_0})\right)z$$
$$= \left[\sum_{k=0}^{\infty} \frac{(\alpha_0 - \alpha)^k}{\alpha_0^k} R_{\alpha_0}^k\right] \cdot (I - R_{\alpha_0})z = \left[\sum_{k=0}^{\infty} \frac{(\alpha_0 - \alpha)^k}{\alpha_0^k} R_{\alpha_0}^k\right] A \sigma_{\alpha_0}. \quad (18)$$

Since $||R_{\alpha}|| \leq 1$, the series

$$\sum_{k=0}^{\infty} \frac{(\alpha_0 - \alpha)^k}{\alpha_0^k} R_{\alpha_0}^k$$

is absolutely convergent when $|\alpha - \alpha_0| < \alpha_0$. An interval of it's convergence could be enlarged due to the fact, that this series acts at the vector $A\sigma_{\alpha}$ belonging to R(A).

Denote the restriction of the operator R_{α} at the subspace R(A) by \tilde{R}_{α} .

Theorem 1. $\|\tilde{R}_{\alpha}\| = \rho_{\alpha} < 1$ for any $\alpha \in (0, \infty)$, and $\rho_{\alpha} = O(\alpha)$ as $\alpha \to 0$.

As it was remarked in Section 1, the scalar product

$$(x_1, x_2)_* \stackrel{df}{=} (Tx_1, Tx_2)_Y + (Ax_1, Ax_2)_Z$$

induces an equivalent norm in X. Therefore, we can regard below the operators A^* and T^* be adjoined to A and T with respect to the scalar product $(\cdot,\cdot)_*$. Note that the operators A^*A and T^*T become commutative (due to the identity $A^*A + T^*T = I$).

Proof. Since R(A) is closed, the operator A^* has a closed image $R(A^*)$ coinciding with $N(A)^{\perp}_*$ (the orthogonal complement to N(A) with respect to $(\cdot,\cdot)_*$). Denote by \tilde{B}_{α} the restriction of the operator $\alpha T^*T + A^*A$ at $N(A)^{\perp}_*$. To prove the theorem we will use the following facts: the operator \tilde{B}_{α} carries out one-to-one correspondence of $N(A)^{\perp}_*$ onto itself; the operators \tilde{B}_{α} and A^*A are commutative.

Since the operator \tilde{R}_{α} is self-adjoined, its norm coincides with the spectral radius $\rho(\tilde{R}_{\alpha}) = \sup \lambda(\tilde{R}_{\alpha})$. We will estimate it with the help of a scalar product $(A^*z_1, A^*z_2)_*$, which induces an equivalent norm in R(A). We have

$$\inf \lambda(I - \tilde{R}_{\alpha}) = \inf_{z \in R(A)} \frac{\left(A^{*}(I - R_{\alpha})z, A^{*}z\right)_{*}}{\left(A^{*}z, A^{*}z\right)_{*}} = \inf_{z \in R(A)} \frac{\left(A^{*}A\tilde{B}_{\alpha}^{-1}A^{*}z, A^{*}z\right)_{*}}{\left(A^{*}z, A^{*}z\right)_{*}}$$

$$= \inf_{x \in N(A)^{\frac{1}{*}}} \frac{\left(A^{*}A\tilde{B}_{\alpha}^{-1}x, x\right)_{*}}{(x, x)_{*}} = \inf_{x \in N(A)^{\frac{1}{*}}} \frac{\left(A^{*}A\tilde{B}_{\alpha}^{-1/2}x, \tilde{B}_{\alpha}^{-1/2}x\right)_{*}}{(x, x)_{*}}$$

$$= \inf_{x \in N(A)^{\frac{1}{*}}} \frac{\left(A^{*}Ax, x\right)_{*}}{(\tilde{B}_{\alpha}x, x)_{*}} = \inf_{x \in N(A)^{\frac{1}{*}}} \frac{\|Ax\|^{2}}{\alpha \|Tx\|^{2} + \|Ax\|^{2}}.$$
(19)

Taking into account an equivalence of norms $(\alpha ||Tx||^2 + ||Ax||^2)^{1/2}$ and ||Ax|| on $N(A)_*^{\perp}$, we conclude that a real number $c_{\alpha} < \infty$ exists, such that

$$\alpha ||Tx||^2 + ||Ax||^2 \le c_\alpha ||Ax||^2 \qquad \forall x \in N(A)^{\perp}_*.$$

Let this estimate be exact. Then, substituting it into (19), we obtain

$$\inf \lambda(I-\tilde{R}_{\alpha})=c_{\alpha}^{-1}>0.$$

Hence

$$\|\tilde{R}_{\alpha}\| = \sup \lambda(\tilde{R}_{\alpha}) = 1 - \inf \lambda(I - \tilde{R}_{\alpha}) = 1 - c_{\alpha}^{-1} \stackrel{df}{=} \rho_{\alpha} < 1.$$
 (20)

Finally, to prove the estimate $\rho_{\alpha} = O(\alpha)$, let us substitute (19) into (20):

$$\|\tilde{R}_{\alpha}\| = \sup_{x \in N(A)^{\frac{1}{\epsilon}}} \frac{\alpha \|Tx\|^2}{\alpha \|Tx\|^2 + \|Ax\|^2} \le \alpha \cdot \sup_{x \in N(A)^{\frac{1}{\epsilon}}} \frac{\|Tx\|^2}{\|Ax\|^2}.$$

The expression $||Tx||^2/||Ax||^2$ is bounded on $N(A)^{\perp}_*$ due to the boundedness of the operator T and an equivalence of the norm ||Ax|| to the original one on the subspace $N(A)^{\perp}_*$.

Corollary 1. Let $\alpha_0 > 0$. Then

$$A\sigma_{\alpha} = \left[\sum_{k=0}^{\infty} \left(\frac{\alpha_0 - \alpha}{\alpha_0}\right)^k R_{\alpha_0}^k\right] A\sigma_{\alpha_0}$$
 (21)

for any $\alpha \in [0, 2\alpha_0]$, and the series in (21) is absolutely convergent.

Corollary 2. The smoothing spline σ_{α} converges to the pseudo-interpolating spline σ_0 (the limiting smoothing spline at $\alpha = 0$) with a linear rate, i.e., $\|\sigma_{\alpha} - \sigma_0\|_X = O(\alpha)$.

Consider now a behaviour of the spline σ_{α} near $\alpha = \infty$. Denote

$$\Sigma_{\beta} = \sigma_{1/\beta}, \qquad Q_{\beta} = I - R_{1/\beta}.$$

It is easy to verify that

$$D^{k}Q_{\beta} = (-1)^{k+1} \frac{k!}{\beta^{k}} Q_{\beta}^{k} (I - Q_{\beta}), \quad k \ge 1.$$

Hence

$$z - A\Sigma_{\beta} = z - Q_{\beta}z = z - Q_{\beta_{0}}z - \sum_{k=1}^{\infty} \frac{(\beta - \beta_{0})^{k}}{k!} D^{k}Q_{\beta_{0}}z$$

$$= (I - Q_{\beta_{0}})z + \sum_{k=1}^{\infty} (-1)^{k} \frac{(\beta - \beta_{0})^{k}}{\beta_{0}^{k}} Q_{\beta_{0}}^{k} (I - Q_{\beta_{0}})z$$

$$= \left[\sum_{k=0}^{\infty} \left(\frac{\beta_{0} - \beta}{\beta_{0}}\right)^{k} Q_{\beta_{0}}^{k}\right] (z - A\Sigma_{\beta_{0}}). \tag{22}$$

It is clear that the series in (22) is absolutely convergent when $|\beta - \beta_0| < \beta_0$. The convergence interval could be enlarged if we will take into account the special structure of the vector $z - A\Sigma_{\beta_0}$.

Let us express the vector z in the form $z_* + z_{**}$, where $z_* \in R(A)$, $z_{**} \in R(A)^{\perp}$. It is known [2] that the pseudo-interpolating spline $\sigma_0 \equiv \Sigma_{\infty}$ satisfies an interpolating condition $A\Sigma_{\infty} = z_*$. Therefore,

$$z - A\Sigma_{\beta_0} = z_{**} + A(\Sigma_{\infty} - \Sigma_{\beta_0}),$$

and only the component $A(\Sigma_{\infty} - \Sigma_{\beta_0})$ influence on the convergence of the series in (22) $(z_{**}$ is annihilated by the operator Q_{β_0}). One can obtain from (8) that the vector $\Sigma_{\infty} - \Sigma_{\beta_0}$ is orthogonal to the subspace $\mathcal{N} \stackrel{df}{=} N(T) + N(A)$ with respect to $(\cdot, \cdot)_*$, i.e., it belongs to \mathcal{N}_*^{\perp} .

Denote the restriction of the operator Q_{β} at the subspace $A\mathcal{N}_{*}^{\perp}$ by \tilde{Q}_{β} , and introduce an operator \tilde{C}_{β} as the restriction of the operator $T^{*}T + \beta A^{*}A$ at \mathcal{N}_{*}^{\perp} . We have

$$\tilde{Q}_{\beta} = A(\beta^{-1}T^*T + A^*A)^{-1}A^* = \beta A\tilde{C}_{\beta}^{-1}A^*.$$

It is clear that the operator \tilde{C}_{β} carries out one-to-one correspondence of \mathcal{N}_{*}^{\perp} onto itself, and $A^{*}A\mathcal{N}_{*}^{\perp} = \mathcal{N}_{*}^{\perp}$. Using these facts and applying the scalar product $(A^{*}z_{1}, A^{*}z_{2})_{*}$, we obtain

$$\|\tilde{Q}_{\beta}\| = \sup_{z \in A\mathcal{N}_{\bullet}^{\perp}} \beta \frac{(A^* A \tilde{C}_{\beta}^{-1} A^* z, A^* z)_*}{(A^* z, A^* z)_*} = \sup_{x \in \mathcal{N}_{\bullet}^{\perp}} \beta \frac{(A^* A \tilde{C}_{\beta}^{-1} x, x)_*}{(x, x)_*}$$

$$= \sup_{x \in \mathcal{N}^{\perp}} \frac{\beta \|Ax\|_Z^2}{\|Tx\|_Y^2 + \beta \|Ax\|_Z^2} = 1 - \inf_{x \in \mathcal{N}_{\bullet}^{\perp}} \frac{\|Tx\|_Y^2}{\|Tx\|_Y^2 + \beta \|Ax\|_Z^2}. \tag{23}$$

Taking into account an equivalence of norms ||Tx|| and ||Ax|| on the subspace \mathcal{N}_{*}^{\perp} , we obtain from (23) the following

Theorem 2. $\|\tilde{Q}_{\beta}\| = q_{\beta} < 1$ for any $\beta \in (0, \infty)$, and $q_{\beta} = O(\beta)$ as $\beta \to 0$.

Corollary 1. Let $\beta_0 > 0$. Then

$$z - A\Sigma_{\beta} = \left[\sum_{k=0}^{\infty} \left(\frac{\beta_0 - \beta}{\beta_0}\right)^k Q_{\beta_0}^k\right] (z - A\Sigma_{\beta_0})$$
 (24)

for any $\beta \in [0, 2\beta_0]$, and the series in (24) is absolutely convergent.

Corollary 2. The smoothing spline σ_{α} converges to σ_{∞} with a rate $1/\alpha$, i.e., $\|\sigma_{\alpha} - \sigma_{\infty}\|_{X} = O(\alpha^{-1})$.

Using expansions (21) and (24) we can construct an algorithm of the optimal choice of a smoothing parameter $\alpha_{\rm opt}$ based on "freezing" ideas: give any α_0 and calculate $\varphi(\alpha_0)$; if $\varphi(\alpha_0) > \varepsilon$, then $\alpha_{\rm opt}$ may be found from the equation (21) with required precision; otherwise $\alpha_{\rm opt}^{-1}$ may be found from (24).

References

- [1] P.-J. Laurent, Approximation et Optimization, Paris, 1972.
- [2] A.Yu. Bezhaev, V.A. Vasilenko, Variational Spline Theory, Bulletin of the Novosibirsk Computing Center, Series: Num. Anal., Special issue 3, NCC Publisher, Novosibirsk, 1993.
- [3] A.I. Rozhenko, Mixed spline approximation, Bulletin of the Novosibirsk Computing Center, Series: Num. Anal., Issue 5, NCC Publisher, Novosibirsk, 1994, 67–86.
- [4] V.A. Vasilenko, Spline Functions: Theory, Algorithms, Programs, New York, 1986.