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On optimal choice
of spline-smoothing parameter

AL Roi};enko*

In this paper we consider an abstract spline smoothing problem in-Hilbert space .
and express Newton’s iteration formula for an optimal choice of the smoothing
parameter « in terms of the residual operator Roz = z — Aog.

We also obtain expansions of Ae, and z—Aey /8 by series based on the operators
Ryand Qs =I - R, /8 respectlvely, and derive the estimates Ho‘a — ooll = O(e)
and ||oq — Fol| = O(a™!) as an easy consequences of these expansions.

1. Introduction

We use the following notations. Throughout the paper X, Y, Z are some
Hilbert spaces The norm and the scalar product in X will be denoted by
Il - llx and (-;-)x respectively, with omitting the subscript in the case where
no amblgmty arises. The null element of the space X will be denoted by
the symbol 0. L(X,Y) will stand for the Banach space of linear bounded

- operators acting from X into Y. The notations N(A) and R(A) will denote B

the kernel and the image of an operator A € L(X,Y).
Let operators T' € L(X,Y) and A € L(X, Z) form a spline-pair, i.e.,

(a) R(T) and R(A) are closed in Y and Z respectively;
(b} N(T)+ N(A) is closed in X; '
(c) N(T)ON(4)={0}.

It is well-known [1-3] that the spline-pair (T'; A) defines an equivalent
norm

: 1/2 .
llzll. = (IT] + || Az|I?) (1)
in X, and a unique solvability of a spline smoothing problem -
0o =argmina|Tal + |4z 2|2 - . ()

takes place at any z € Z, a > 0.
A residual criterion

o(@) L |40, - 2| =¢ (3)
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is usually used: to choose the smoothing parameter . Here ¢ > 0 is a
residual level required. A

The function () monotonically increases [2] from emin = ¢(0) =
mingex ||Az — z|| up to emax = w(00) mingen(T) || A2 — 2||.

We will assume that £min # Emax- In this case the function ¢(c) is strictly
monotone, and problem (3) has a unique solution for any € € [€min) Emax]-
Usually, the equivalent problem :

@ Eetam=et )

is proposed instead of '(3),' and the Newton method
o By -
ﬂk'{‘l = [ ; ’W(ﬁk) (5)

is applied for the optimal choice of the smoothing parameter. (¥(f) is
strictly monotonically increasing upper convex function [2].) ‘
2. Step of Newton’s iteration

Let us denote a = 1/f. Then

R M)
F(1/B) ~ ¢Ha)

Using the notation r, = z — Ag,, we obtain
¢'(a) = [(rara)?) = 07! (@) - (ran 7).

Introduce the residual operator Ry : Z — Z by the rule Ryz = 2 - Aa,.
Then '

Y(B) = [¢71(1/8)] (6)

¢'(@) = ¢71(a) - (Raz, RL2). | (7)

To obtain R!,, we use the representation of the spline o, via the operator’s
equation [4] .
(aT*T + A*A)o, = A%z : - (8)

We have
Ry =1— A(@T*T + A*A)~' A" - (9)

and -
Ao, =(I — Ry)z. . (10)
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To find.r), = - Aay, let us diffirentiate (8) by a:

: 1
(oaI"T + A*A)o, = ~T"Too = ——(aT"T + A"A - A"A)o,

3 ‘ .
-—(A%z - A*Ag,) = —iA"'rc,. .
o _ o
Therefore, | :
o = —zl;(aT‘T +ATA) AT,
Multiplying this equality to A and using .(9)‘, we obtain -

, 1 :

Aol = —éA(aT“T + A"A)"IA"ra = —(I — Ry)ra-
. o .

Hence, .

R’a = (I - ch)}?a- o 7 (11)

Substituting this formula to (7), we derive
o) = 2@  (Raz (I = Ra)Ra2)
¥ (CU) - o ”92 (0’)
_ ¢(@) (Raz Raz) — (Raz, R22)

—— .

o (Raz, Raz)

R+

e

2D 1 e, | 2)

where -
- (Raz, R%2)

(Rcrz: R,z2) '

w(a) = (13)

Applying (12) into (6), we have
¢ () a
P'(B) = = 1 -w(a)). 14
)= i = s —w(e) (14)
Finally, Newton’s iteration formula (5) looks as follows:

1~ w(o)
ai)/e — wlak)

Remark 1. Since g, is a solution to problem (2), it is easy to obtain that
IRall < 1. | |

@ =« 15) .
kL= Ok (15)

Remark 2. Applying the conditions %'(3) > 0 and %"(8) < 0, one can
find the following inequalities : '

@(@)/emax < w(a) < 1. - oue)

Remark 3. Let us denote 5 = ro/||ra||. Then w(a) = (7o, Rafa). -
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3. How to start iterations? -

The Newton iterations (5) converge if the inequality ¥(8g) < e~ ! is valid. It
is the best choice to start iterations from Gy = 0, but a calculation of 4’(0)
is not easy, because it requires the solving of a special linear system [2]. At
the same time the calculation of (0} is a simple least squares problem

Erax = ¥72(0) = Jmin | Az — z||2.

To avoid difficulties arising when %'(0) is computed, we suggest the fol-
lowing method:

0. Let us start iterations from an arbitrary Bp = ag I'so.

1. If p(ax) > €, the Newton iteration (15) is applied. In this case all
consequent iterations will be also Newton’s, and the sequence a; will
be monotonically decreasing.

2. If p(ax) < €, we construct a ratio function 7(8) = (a + b3)/(1 + ¢fB)
to satisfy the following conditions

n(0) = $(0) = cphe  M(BK) = ¥(Br), 7 (Br) = ¥(By),

and give ﬂk+1 as a solution to the equation n(8) = £~1. (It is easy to
prove that the solution is unique.) ‘

The iteration formula for the ratio’s approximation is the following:

(1 - Qo(ak)/‘smax) - (1 - ‘P(ak)/e} i 6(0-'1:)
¢(ak)/e — p(ak)/Emax

Uy = O ’ (17)

where

6(0!) - ‘p(a)/smﬂx - w(a) .

1 -w(a)
4. Taylor expansions of Ao, and z— Ao,/
It is easy to obtain from (11) the following differential rule
L k! ' '
DkR,"' = (ul)kﬂg}z{;u - R.), k>1.

Using this formula, we derive a formal Taylor expansion of the operator R,
at the neighbourhood of a point a9 > 0: .

a— o s a— o
Ro=Regt Y, —-—ﬂLD"Ra., = Rog- 3o (-2t 1 R,,),
k— k=1 0

and applying (10), we obtain the formal identity
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Aoy = (I = Ra)z= (I = Ray+ 3 (-1
k=1 0

(“;f")—kﬂ';o(f ~ Ra))z

_ (= (ao—a)* I (o — @)k
= [‘g T RE] (I = Rop)z = [kg - Rt | Aca,. (18)

Since ||Rq|| < 1, the series

is absolutely convergent when |a — ap| < ag. An interval of it’s convergence
could be enlarged due to the fact, that this series acts at the vector Ao,
belonging to R(A).

Denote the restriction of the operator R, at the subspace R(A) by R,.

Theorem 1. ||R,| = po < 1 for any a € (0,00), and p, = O(a) as a — 0.

As it was remarked in Section 1, the scalar product

d
(T1,22)« 4 (Tzy, Tza)y + (Azy, Aza)z

induces an equivalent norm in X. Therefore, we can regard below the oper-
ators A* and T* be adjoined to A and T with respect to the scalar product
(y*)«. Note that the operators A*A and T*T become commutative (due to
the identity A*A + T*T = I).

Proof. Since R(A) is closed, the operator A* has a closed image R(A*)
coinciding with N(A); (the orthogonal complement to N(A) with respect
to (+;-)«). Denote by B, the restriction of the operator aT*T + A*A at
N(A)L. To prove the theorem we will use the following facts: the operator
B, carries out one-to-one correspondence of N (A)+ onto itself; the operators
B, and A*A are commutative.

Since the operator R, is self-adjoined, its norm coincides with the spec-
tral radius p(Ra) = sup A(R,). We will estimate it with the help of a scalar
product {A*z1, A*23)., which induces an equivalent norm in R(A). We have

; ; o (A1 - Ra)z,A%2), . (A"AB;'A7z A"z).
I - = f x — [+ ¥
inf A1 ~ Rq) zelg(n) (A7, A2). ZEIII%(A) (A2 A 2).
* A Q-1 «ap-1/2  p-1/2
= inf (A ABQ z, 3): - inf (A ABa T, Ba .’L')*
zeN(A)+ (.’B, Z).. T€N(A)E (:E, 17),,
* 2
= inf (iéx’_x)‘" = inf l|Az|| (19)

seN(A)¢ (Baz,2).  zeN(a): of|Tz|? + || Az|?
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Taking into account an equivalence of norms (o|Tz(|2+ || Az|[2)"/? and Az ]|
on N(A)#, we conclude that a real number Ca < 00 exists, such that

alITz|? + [|Az|® < calfAz]? Vo € N(A)L.
Let this estimate be exact. Then, substituting it into (19), we obtain
inf A(I - Ry) =c3' > 0.
Hence
IRall = supA(Ra) = 1—inf AT - Ra) =1-¢;' L po < 1. (20)

Finally, to prove the estimate p, = O(a), let us substitute (19) into (20):

A || Tz|}? |Tz||2
R = sup S a- sup .
WRell = s ST+ 2T < 308, TA=?

The expression ||T'z||?/||Az||% is bounded on N(A)+ due to the boundedness
of the operator T' and an equivalence of the norm ||Az|| to the original one
on the subspace N(A)L. o

Corollary 1. Let ag > 0. Then
o0
Qg — o\ k
Ao, = LZ(—QO—) Rf,o]Aa,,o (21)
=0

Jor any a € [0, 2ap), and the series in (21) is absolutely convergent.

Corollary 2. The smoothing spline o, converges to the pseudo-interpolat-
ing spline o (the limiting smoothing spline at a = 0) with a linear rate, i.e.,
lloa — oollx = O(a).

Consider now a behaviour of the spline o, near & = co. Denote
Ls=oyp  Qs=1T-Ryp
It is easy to verify that

k!

D'Qs = (-1 5

Q51 -Qp), k21

Hence
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z'—Azﬁ=z~Qaz=z—Qﬁuz—§3(—’ﬁC.—ﬂ'”kD’°Qﬁoz
k=1 :
= (- Qa)e+ (-1 ﬁf’“) Qb (I - Qay)2
& k=1
_ o~/ Bo — Bk i
= [X(®r5) ah - 4z, (22)
k=0

It is clear that the series in (22) is absolutely convergent when |8 — Bo| < Bo.
The convergence interval could be enlarged if we will take into account the
special structure of the vector z — AXg, .

Let us express the vector z in the form z, + z.., where 2, € R(A),
Zew € R(A)L. It is known [2] that the pseudo-interpolating spline o = £y
satisfies an interpolating condition AX, = z,. Therefore,

A AE.BO = Zex + A(Eoo - 2}30)‘

and only the component A(X, — Zj,) influence on the convergence of the
series in (22) (z.. is annihilated by the operator Qg,). One can obtain from
(8) that the vector X, — X5, is orthogonal to the subspace A/ In (T)+N(A)
with respect to (-,-)., i.e., it belongs to A/L.

Denote the restriction of the operator Qg at the subspace AN} by @,

and introduce an operator Cp as the restriction of the operator T*T + SA*A
at' V5. We have

Qs = A(B™'T"T + A"A) ' A" = BAC;' A",
It is clear that the operator C’g carries out one-to-one correspondence of N}

onto itself, and A*AN}! = N2t. Using these facts and applying the scalar
product (A*z;, A*z;)., we obtain

) (A*AC5' A%z, A%z). (4"AC5' 2, 2).
I T 7 e R R P N
2 2
O | 1L U ] (23)

zena 1T2ll} + BllAzll} — ¥+ BllAz||Z

Taking into account an equivalence of norms ”TCL || and || Az|| on the subspace
N, we obtain from (23) the following

Theorem 2. ||Qg|| = g5 < 1 for any 8 € (0, 00), and gz = O(fB) as B — 0.
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Corollary 1. Let g > 0. Then

z-Azﬂ_[E% p Q"](z—AZ‘po) (24)

k=0
for any B € [0,20), and the series in (24) is absolutely convergent.

Corollary 2. The smoothing spline o, converges to o, with a rate 1/a,
ie., |00 — 0xllx = O(a_l)'

Using expansions (21) and (24) we can construct an algorithm of the
optimal choice of a smoothing parameter aops based on “freezing” ideas:
give any ag and calculate ¢(ao); if ¢(ao) > €, then aop may be found from

the equation (21) with required precision; otherwise a;plt may be found from
(24).
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