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Convergence of variational splines I

A.lL. Rozhenko*

Strong convergence of interpolating splines on the imbedded meshes is established
without the assumption that the system of operators corresponding to the added inter-
polation conditions is correct. It is also shown that correctness of the system of operators
is equivalent to the zero intersection of their kernels.

The necessary and sufficient conditions of convergence of the mixed splines on the
subspaces to the mixed spline on the whole space are obtained, and simple sufficient
conditions of their convergence are found.

1. Introduction

We use the term the sequence of the interpolating splines on the imbedded
meshes when the sequence of the coresponding measurement operators A;
satisfies the condition N(A4;4;) C N(A4;), i € N. In [1, 2] it was proved
that convergence of such splines to the interpolating function takes place if
and only if the system of operators corresponding to the added mesh nodes
is correct. In [3] the other convergence condition was obtained:

[ NV (4:) = {0}.
i=1

We show the equivalence of these two criteria and, moreover, we improve
these results by finding the limit element of the spline sequence if the
system of operators is not correct.

The convergence of interpolating and smoothing splines on subspaces
was studied by Vasilenko [4, 5]. We extend the proof of convergence to the
mixed splines on subspaces and improve the known results.

Let us give a brief summary of the paper. The rest part of this section
presents notations which will be used. Section 2 is devoted to the conver-
gence of the best approximations on the convex sets. Its results are used
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further in the proof of the convergence of interpolating splines on imbedded
meshes (Section 3) and for mixed splines on subspaces (Section 4).

1.1. Let X be the real Hilbert space. The norm and the scalar product in
it will be denoted by || - ||x and (,-)x, respectively. If it is clear from the
context what norm or scalar product is meant, then the subscript will be
omitted. The zero element of the space X will be denoted by the symbol
0. L(X,Y) will stand for the Banach space of linear bounded operators
acting from X into the Hilbert space Y.

1.2. Let A € L(X,Y) be some linear operator. N(A) and R(A) denote the
kernel and image of operator A:

N(A)={z e X: Az =0}, R(A) = AX.
The preimage of the point y € Y will be denoted by
ANy ={reX: Az =y).
The functionals
df df
lzlla = [[Azlly,  (u,v)a = (Au, Av)y

give the semi-norm and the scalar semi-product on X, respectively. If
N(A) = {0}, then || -||4 will be a norm, and (-,-)4 will be a scalar product
on X.

1.3. We use the notation
XoY={zy: z€X, yeY}

for the direct sum of the Hilbert spaces X and Y with the operations of
summation and multiplication by scalar

1B +T20y2 = (21 +22) B (1 + ¥2),
MzDy) = Az Ay

and the norm 1/2
lz & yllxey = (zll% + llvll3) ™"

Let A € L(X,Y), B € L(X,Z) be some operators. A& B stands for
the direct sum of the operators A and B given by the rule

A® Bz = Az & Ba.
The norm generated from this operator is determined in the following way:

1/2
lzllaes = (|Az|]? + ||Bz||?)"/%,
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2. Convergence of best approximations on
convex sets

Let X be Hilbert space, M C X be the non-empty closed convex set, and
f € X. It is well-known that the problem

h = arg mig ||z — fllx (2.1)

has the unique solution. Let us construct the operator Py : X — X
mapping each element f € X to h € X by the formula (2.1).

2.1, Lemma [6]. The following statements are equivalent:
(a) h = Puf;
(b) he M andVzeM (h— f,h—z)x <0.

If M is affine subspace in X (M = z. + K), then (b) can be replaced by
(b'y he M and Vu € K (h— f,u)x =0.

The inequality in the condition (b) can also be written in the form:
llz - hlf* < lle = £I* - lIb = fif. (2.2)
Actually,
e = Rl = llz - fI* - 2z - fyh = f) + Ik = fIf?
= lle - fI* - 2(h— f—h+2z,h= f)+]h - f|?
= e~ fI* - lh = fI* + 2(h — 2,k = f) < llz = fII* = I = fII*.
2.2. Lemma.
ViigeX  ||Puf - Pugll <|If -yl (2.3)
Proof. We conclude from Lemma 2.1 that
(Pmf—f,Puf—Pug) <0
(Pmg —9,Pmg — Puf) < 0.
Subtracting the first inequality from the second one, we obtain
0> (Pmg—9,Pmg—Pmf)—(Puf—f,Pmf— Pug)

= (Pmg—Puf+f—9,Pug— Puf)
= (\Pmg - PufI® - (9 - f. Pmg — Puf).

Hence,
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1 Prg — Pufl|* < (9— f,Pmg— Puf) < llg = fIl - 1Pug — Puf|l. (24)

After the reduction of the factor ||Parg — Pasf|| in the left-hand and right-
hand sides of (2.4), we obtain (2.3). m]

2.3. Theorem. Let M; C X be non-empty closed convez sets, and f; € X
be some elements, i € IN. Assume that f; — f as i — o0 and the sets M;
satisfy one of the following conditions:

(a) Miy1 C M; and [\ M; = M;

1EN
(b) M; C M and there erists the sequence x; € M; converging to
df
h=Pugf.

Then the sequence h; ¥ Py, fi converges to h as i — oo.

Proof. It is sufficient to prove the statement of the theorem for f; = f.
Really, taking into account Lemma 2.2, we have

ki = Al < lIhi = Pae £l + W1 Paif = R < |1 fi = Sl + (1 Par, f = Rf| = 0

if Pup,f — h. Therefore, we shall consider further that f; = f.

(a). Let us denote a; = [|hi — f||*>. As Mi;; C M;, the sequence a;
monotonically increases and is, evidently, bounded above by the number
a = ||k — f||>. Consequently, the sequence a; converges. After applying
(2.2) for the set M; and substituting the element h; (j > i) instead of =,
we obtain the inequality

1hi — Bl < @; - ai,
from which it follows that the sequence h; converges.
Let h, = lim;_,o h;. Fix ¢ and take an arbitrary j > i. Since M; C M;,

we have hj € M;. Hence, h, € M; and, consequently, h, € NM; =M. At
the same time,

17w = £II? = lim [lh; = fI| = lim o <o =|lh - f|*.
So, h, = h.
(b). Denote d = || — f|| and &; = |lz; — Al|. Then
ki = £II < llwi = fI < llzi = Al + Ik = fll = d + &

After applying (2.2) for the set M and substituting the element h; instead
of z, we obtain

llhi = RlI® < [l = fI? = lIh = fII* < (d+€0)* - d* = ei(2d + &),

Under condition of the theorem, &; — 0 as i — co. Consequently, h; — h.
O
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3. Convergence of lnterpolatmg splines on
1mbedded meshes

Let X, Y, Z; be the Hilbert spaces, and T € L(X,Y), A; € L(X, Z;) be
some operators, : € IN. Assume that R(T) is closed and the following
spline interpolation problems

o;=arg min |Tz|? ieN, (3.1)
z€A7 (=)

are uniquely solvable for any 2; € R(A;). This means, in accordance with
[6], that the sets N(T) 4+ N(A;) are closed and N(T)N N(4;) = {0}. In-
troduce the operators of spline interpolation S(A;,T; X) which maps every
element f € X to the interpolating splines o; for z; = A;f.

3.1. Definition. Let U, V be the Banach spaces. The sequence of operators
B; € L(U,V) is called strongly converging to B € L(U,V), if

VzeU B;x — Bx as i — oo.

3.2. Theorem. Let R(T') be closed and the problems (3.1) be uniquely solv-
able for any acceptable initial data. If N(Aiy1) C N(A4;), ¢ € N, and
A, € L(X, Z,) is some operator with the kernel

(] N(4), (32)

€N

N(A.)

then the sequence of operators S; s (A;, T, X) strongly converges to the
operator S, ¥ S(A.,T, X).

Proof. Let z, € X be some element. By definition, we have

Siz. =arg min ||Tz|> (3.3)
z€AT (Aiza)

Under conditions of the theorem, N(T) + N(4,) is closed and N(T)n
N(A1) = {0}. Consequently [7], such operator A € L(X,Z) will be found
that N(A;) C N(A) and the norm |- l7q.4 is equivalent to the norm || -||x.
Taking into account the evident identity

A7Y(Aiz.) = 2o + N(A))

and the inclusions N(A;) C N(A;) C N(A), we rewrite the problem (3.3)
in the equivalent form
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Site = i 2 .,
iTs = aIg :cEIP—}—%(Ai) “I"T@A

- Hence, by Theorem 2.3, the sequence S;z. strongly converges to the solu-
tion of the problem

0, = ar -
* B eer .+ﬂN(A)” “T@A

- However, from (3.2) we have 0. = SuZx, i.€., §iTs = Suzs a8 1 —00. O

Corollary. Let R(T) be closed, the problems (3.1) be uniguely solvable for -
any acceptable initial data, and N(Ai41) C N(A;), i € lN Then the follow— '
ing statements are equivalent: »

(a) the sequence of operators S; strongly converges to the identical opera-:
tor I, ie,Vz € X Siz—zx;

(b) N N(A4)={0}.
t€N

In [4, 5] this theorem is formulated in terms of correct system of oper-
ators. |

3.3. Definition. Let A = {4; € L(X,Z;), 1 € N} bea family of operators
acting into some Hilbert spaces Z;. We shall consider that the sequence

{z, € X} converges to z.€ X by the system of operators A (zn 4 :r:) if
VA- €A lim, HA-(:::n - :c\ll = 0.

3.4. Definition. The system .A is sa.1d to be correct i *he convergence

Tn A implies weak convergence of z, to.z on some set f, whlch is dense
in X. Symbolically,

[tn32] = [BKcX: K=X & VkeK (kyz,) = (k,2)].
3.5. Theorem. The following statements are equivalent: | '

(a) the system A is correct;
(b) .-QNN(A") = {0}. |
Proof. (a) = (b). Let u € (Y N(4), ie,
CVieN  ueN(A). (34

Consider the sequence {z, 4 u} and take any number a € R. Then, from
(3.4), we obtain
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Ai(zn — ou)l| = |1 - af - || Aiul| = 0.
Hence, z, 2 au. Since the system A is correct, we have
Vke K (k,zn) — (k,0u) = a(k,u).

Due to the arbitrary choice of a we conclude that (k,u) =0, i.e., u€ K*.
However, as K is dense in X, we have K+ = {0} and v = 0.
(b) = (a). Assume that

K = | J R(A})
i€lN
and prove that K is the required set, i.e., that K = X and

[enB2] = [VkeK (kzn)— (k). (3.5)

It is evident that K is a subspace in X. Consequently, K = (K1)*,
i.e.,
K=X <+ K'={0}

Using the identity R(A?)* = N(A;), we obtain
1
k= (U RD) = () ¥4 = {00,
i€N €N
i.e., K is dense in X.

Now, let z,, A z, i.e., for any 7 € IN, the sequence {A;z,}new strongly
converges to A;z. So, A;z, = A;z, ie.,

Vze Z; (2, Azy) — (2, Aiz)

or
Vze Z; (A’fz,::n) — (AFZ,I:).

Hence, if the vector z “passes through” the whole space Z;, then the vector
P A?z passes through the whole R(AY). So, (3.5) is proved. a

3.6. Let us consider the operators
B;=A1®...0A;.

Assume that R(T') is closed and the problems of spline interpolation
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o,-_a,rg min |ITz||?, i€eN,
€B ()

are uniquely solvable for any z; € R(B;). Then the theorem of convergence
in terms of correct system of operators is formulated in the following way:

Theorem. In order for the sequence of operators of the spline interpolation
S(B;, T, X) to converge strongly to I, it is necessary and sufficient that the
system A be correct.

The proof of this theorem can be easily obtained from Theorem 3.5,
the corollary of Theorem 3.2 and the obvious identity

() N(B) =[] N(4)).

ieN i€lN
4. Convergence of splines on subspaces

4.1. Let X, Y, Z, V be the Hilbert spaces, and T € L(X,Y), A € L(X, Z),
B e L(X, ‘V) be some operators. We consider the mixed problem of spline
approximation [5, 7)

& = arg ;‘Emln ITz|? + || Bz - v||? (4.1)

with the smoothing parameter equal to 1 (for simplicity).

Let us assume that R(T) is closed and, on the subspace N(A), the
norms || - ||x and || - ||7gp are equivalent. In accordance with [7], these
conditions provide the unique solvability of the problem (4.1) for any z €
R(A) and ve V.

4.2. Let {E;},;50 be a family of subspaces in X. The spline

Or=arg  min ITz|? +||Bz - || (4.2)
is called the mized spline on the subspace E,. Here it is assumed that
A~Y(2)NE, # 0, i.e., the interpolation conditions Az = z are not contra-
dictory on E,. :

The unique solvability of the problem (4.2) takes place at the same
conditions as for the problem (4.1).

4.3. Let us take the operator A € L(X, Z) acting into some Hilbert space
Z and satisfying the following conditions: N (A) D N(A), R(A) is closed,
and N(A)N N(T & B) = {0}. Then, by [7, Theorem 4.7, the norm
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df
-1l =1l ig7en

is equivalent to the morm || - [|x on X. Doing as in [7, Lemma 3.1], we
replace the problem (4.1) by the equivalent problem

- _ 2
6=arg min Nl = Al (4.3)

where f = B*v, and B* is the operator adjoint to B with respect to the
scalar product (-,-). corresponding to the norm || - ||..
Similarly, the problem (4.2) is replaced by the equivalent problem

5, = — P 4
br=arg_ min |- fI2 (44)

4.4. Theorem. The following statements are equivalent:
(a) 6, - asT—>0;
(b) the sets A=1(z) 0\ E, are asymptoticly dense at the point & (such ele-
ments z, € A™Y(2) N E, will be found, that z, — & as 7 — 0).

The proof of this theorem easily follows from Theorem 2.3 applied to
the problems (4.3) and (4.4).

Remark. If the subspaces E, are asymptoticly dense in X (E, — X), then
this condition provides convergence of the smoothing splines (4 = 0) on
the subspaces. In the interpolating (B = 0) and mixed cases this condition
does not guarantee that the sets A'l(z) N E, will be asymptoticly dense
at the point 4.

Further we shall find out when the condition E; — X implies the
convergence &, to 6.

Let P, be the orthoprojector onto E, in the norm || - |l., i.e., P2 = P,,
[[Pr||l« =1 and R(P;) = E.

4.5. Lemma. The problem (4.4) is equivalent to the problem

- — . — 2
0, = arg ::E(Arfl'}:?"(z) llz = Py £z (4.5)

Proof. Let f = fi + f3, where fy = P,f € E,, fa=(I - P;)f € E}. Then
Vo€ B lz = fI2 = llz = Al + 1 f2lI2-

Consequently, the solution _wi]l not change if f in (4.4) will be replaced by
f1. Further,
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by =arg  min |- A} > arg min o~ Al La..
rEA-1(2)NE, - APrz==z

If it will be shown that o, € E,, then it will follow that &, = o..

Assume the opposite. Let 0. =01+ 02,01 € E;, 02 € E.ﬂ' and o, # 0.
It is evident that P,o, = P,o.. Hence, AP,0y = AP,0. = z. However, it
follows from the inequality

llow = £ill2 = llox = Aull2 + llozlf2 > Jlow = fll2,
that o, cannot be the solution to the problem (4.5). 0

4.6. It can be considered without the loss of generality that R(A) = Z
(since the norm of the space Z is not used in the definition of the mixed
spline, we can always change it so that R(A) will be the Hilbert space). It
is known [5], that the solution to the problem (4.3) can be found from the
system of operator equations

G+AA=f, A=z (4.6)

where A* is the operator adjoint to A with respect to (-,).. After obtaining
& from the first equation of (4.6) and substituting it into the second one,
we have

Af — AA*) = 2. (4.7)

As R(A) = Z, the operator AA* is invertible. Obtaining A from (4.7) and
substituting it into the first equation of (4.6), we get

6= A"(AA") Tz 4 [T - AT(AAT)7Yf.
If R(AP;) = R(A), then, by Lemma 4.5, we also obtain
by = P A" (AP, A") "'z + [[ - P,A"(AP,A") "1 P, .
4.7. As z € R(A), such z, € X will be found that Az. = z. Then, denoting
S = A"(AA*) A4, S, = P,A*(AP,A*)7'A,

we get
6=8z.+I-5)f & =S8z.+I-S5.)P.f. (4.8)

Note that the operator S is the orthoprojector in the norm || - ||, with
the kernel N(A). It is the operator of spline interpolation for the problem
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Sz, = a.rgA:'I:Iljjlz | Tz]|% + || Bz||?.

It is clear that the operator S, is a projector, but it is not an orthoprojector
in this norm.

4.8. Lemma. Let E, — X as 7 — 0, and there ezists 1o > 0 such that for
any T < 7o the norm of the operator

M, L A" (AP,A%) A
is bounded by a constant independent of . Then 6, — 6 as7 — 0.

Proof. 1. Since 3, € A~!(2) and A~1(2) is the affine subspace, we conclude
from (4.3) and Lemma 2.1, that

(6 - f,6—08:)s=0.
Hence,
o — 5'1'“3 = (6r = f,6r — 6)a.
Taking into account that &, € E, and decomposing f and & into the sums
of orthogonal components from E, and E;, we get

& — 8|12 = (65 — Py f,6- — Pr&)s + (Prf — f, Pr6 = 6). (4.9)

As I — P, is an orthoprojector, the second term in the right- hand side of
(4.9) is transformed into ((I — P:)f,&). and it tends to zero as 7 — 0.

2. It is the only problem now to estimate the first term in (4.9). Denote
z, = ¢« — P f and use (4.8), then we obtain

G, =P f = S:2u+ Prf =S¢ Prf — P f = Sraq,
G, — Pro = S;zu+ Prf — S; P f — PrSzy — P.f+P.Sf
S‘Tm'l' —P-rSI- +P1-Sf= Sfrz‘r_ PTSIT + PTS(I" P‘l’).f'

Hence,

(&T - P’l’f'l&‘r - P‘r&):
= “S‘rw'rllz —(Srzr, PrSTr ) + (Srzr, PrS(I - P)f).
= |1S-2-12 = ISz |I2 + (Szs, (I = Pr)f)u. (4.10)

Here we use the following properties of the operators S, S; and Pr:
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§=8"=95"=8S, PS.=S., P =P

3. Since ||z;||« < ||z«||« + || f]|«, the last term in {4.10) tends to zero as

7 — 0. By using the simple transformations, the difference of the first two
components in (4.10) reduces to

S22 = [|Sz-{|2 = (Mr = §)zr,27)..
It it easy to see that
M, -8 =M/(I- P)S. (4.11)
So,

(M, = S)zr,20)e = (M,(I = P)Sz,,2,),
<Ml 1T = PYS2o e - llorllee (412)

The last multiple in the estimate (4.12) is, evidently, bounded. The first
one is bounded under the lemma condition.

4. Let us estimate the middle multiple in (4.12). Denote # = z, — f.
Then z, = & + (I — P;)f. Hence,

(I = Pr)Szslls <|I(£ = Pr)Se|l + I(1 = Pr)S(L = Pr)f]..

The first term in this estimate tends to zero, because SZ is independent of
7. Finally, the last term is estimated in the following way:

I = Pr)SUI = Pr)flle < 1 = Prlla- ISl - I = Pr) fl

= 1-1-(I = P)fll. ~ 0
as 7 — 0. O

4.9. It remains to find out under what conditions the norm of the operator
M, is bounded by a constant independent of 7.

If dim R(A) < oo, then the boundedness of the norm of the operator
M, is proved in the same way as in [5, Theorem 4.1]. Namely, first we
prove the element-wise convergence of the matrix AP, A* to AA*. Hence,
we conclude that the elements of the matrix (AP, A*)~! converges to the
elements of (AA*)~. And this implies the boundedness of || M,||..

Let us consider the case dim R(A4) = oc.
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4.10. Lemma. If ||(I - P.)S|| £ ¢, < 1, then
M,=8(I-N;y'=(I-N,;)"'§=8(I-N,)"'S, (4.13)
where N, = S(I — P,)S. In this case
1Ml < (1-CH™. (4.14)
Proof. It follows from (4.11) that
M, =S+ M,(I - P,)S.

Hence, with the help of the recurrent substitution and taking into account
the identity § = $2, we formally obtain that

M,=5-) N;. (4.15)

As § and P, are ortoprojectors, the operator N, is self-adjoint and
(N:z,2). = |I(I = Py)Sz|2 < (2 = Pr)SI? - |lell? < CRl=ll2,

ie.,

INAl < CF < 1. (4.16)

Consequently, the series in (4.15) is absolutely convergent.
Taking into account that

ZN:-: =(I- NT)_lv
k=0

we obtain the first equality in (4.13). The other equalities follow from the
permutability of the operators S and N, and from the formula $? = §.
The estimate (4.14) easily follows from (4.13) and (4.16). 0

Combining results given above we obtain

4.11. Theorem. Let E; — X as 7 — 0, R(AP;) = R(A) and one of the
following conditions is fulfilled:

(2) dim R(A) < ooy
(b) there exists such 79 > 0, that ||(I — P;)S|l« < C <1 for T < 7.

Then 6, — & as T — 0.
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