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On one inverse source problem for
a poroelasticity system

A.M. Rakhimov

Abstract. The inverse problem of determining a distributed source from a poro-
dynamic system described by three elastic parameters in a reversible hydrodynamic
approximation is considered. A theorem on solvability in the class of twice contin-
uously differentiable in time and having Fourier transforms in the spatial variable
is proved.

Keywords: porous medium, Cauchy problem, direct problem, inverse problem,
slow wave, porosity.

1. Introduction

In applied problems of wave dynamics, there is often a need to take into
account the porosity, fluid saturation of the medium and the hydrodynamic
background. In particular, such questions arise in exploration geophysics
during exploration of oil layers and the choice of wave action on oil and gas
fields for the purpose of intensifying production. Similar questions also arise
in seismology during geophysical monitoring of the properties of the focal
zone for earthquake prediction [1–3].

In geophysics, the dynamic and kinematic characteristics of elastic waves
propagating in fragmented fluid-saturated rocks contain information about
the structure, composition and conditions of occurrence of rocks, they also
contain data on the lithology of rocks and the nature of their boundaries,
fracturing, porosity, the presence of various types of disturbances and local
inclusions, as well as the composition and phase state of fluids filling the
pore space of reservoirs. Mathematical models in wave theory provide a
tool for determining the numerical values of the propagation velocities and
absorption coefficients of elastic seismic waves depending on the material
composition of the fluid-filled reservoir, its structure and the influence of
the environment. The more realistic and adequate the mathematical model,
the more accurate the determined values of the propagation velocity and
absorption coefficient of elastic seismic waves.

The revealed features of seismic wave absorption in fractured-porous me-
dia with simultaneous manifestation of multiple electroseismic effects cannot
be reconciled with the simplest models of an ideally elastic isotropic medium
and a Biot medium. Real geological media are multiphase, electrically con-
ductive, fractured, porous, etc. [4–11].
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In [12], a nonlinear mathematical model of a porous elastically deformable
medium saturated with liquid is constructed. The model is based on three
main principles: the fulfillment of conservation laws, the Galilean principle
of relativity, and the consistency of the equations of motion of the saturating
liquid with the conditions of thermodynamic equilibrium:
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Here u1 is the velocity of the elastic porous medium; u2 is the velocity of the
saturating liquid, ρ = ρl + ρs, ρs, ρl are the continuum density, the partial
density of the porous body, and the partial density of the liquid, respectively;
gik is the metric tensor of elastic deformation; hik is the stress tensor; e, S
are the energy and entropy of a unit volume; µ̂ is the chemical potential;
T is the temperature; p is the pressure, j is the relative momentum. In
this case, the first law of thermodynamics is satisfied for the system under
consideration:

de0 = TdS + µ̂dρ+ (u1 − u2, dj) +
1

2
hikdgik.

2. Direct problem

Let us consider the problem of wave propagation on a straight line for a
porous medium in a reversible approximation, described by a one-dimensional
homogeneous system of equations for 0 ≤ t ≤ T [1–11]:
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ρs = ρfs (1 − d0) and ρl = ρfl d0 are partial densities, ρfs and ρfl are the
physical densities of the elastic porous body and liquid, respectively, d0 is
the porosity, F = (F1, F2) is the vector of mass forces, α3, λ and µ are the
elastic parameters of the porous medium.

Let us consider the Cauchy problem for the system of poroelasticity
equations (1) and (2) with the following Cauchy data [10]:

u1|t=0 = ϕ1(x),
∂u1
∂t

∣∣∣
t=0

= ψ1(x), −∞ < x <∞, (3)

u2|t=0 = ϕ2(x),
∂u2
∂t

∣∣∣
t=0

= ψ2(x), −∞ < x <∞. (4)

Here ϕ1(x), ϕ2(x), ψ1(x), ψ2(x), F1(t, x), and F2(t, x) are given functions.
The problem of determining u1(t, x), u2(t, x) from (1)–(4) is usually called
the direct problem for differential equations [13–15].

3. Inverse problem

In this paper, we study the issue of simultaneously determining the solution
u1(t, x), u2(t, x) from the system of equations (1), (2) and the function g1(t),
g2(t) (F1(t, x) = g1(t)f(x), F2(t, x) = g2(t)f(x)), if the constants α3, λ, µ,

ρfs , ρfl , d0 and the functions in conditions (3), (4) are given and

u1|x=0 = ν1(t), u2|x=0 = ν2(t), t > 0. (5)

In other words, the problem is to determine the function u1(t, x), u2(t, x)
and volume forces of the form F1(t, x) = g1(t)f(x), F2(t, x) = g2(t)f(x)
based on the information given above. Such problem is usually called an
inverse problem for differential equations [13, 14, 16].

In what follows we assume that all the functions and vector functions
under consideration are twice continuously differentiable with respect to the
variable t and have Fourier transforms with respect to x. In addition, we
consider the known function f(x) 6= 0 for −∞ < x < ∞. We also assume
that the data matching conditions are satisfied.

Let the functions u1(t, x), u2(t, x) be sufficiently smooth solutions to
problem (1)–(4). If we put (5) in (1) and (2), we obtain
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Suppose that there exists a Fourier transform of u1(t, x), u2(t, x) with
respect to x. Let

ũk(t, ξ) =
1

2π

∫ ∞
−∞

uk(t, x)e−ixξdx, uk(t, x) =

∫ ∞
−∞
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be respectively the direct and inverse Fourier transforms of function uk(t, x),
k = 1, 2, defined at GT = {(t, x) : t > 0, −∞ < x < ∞} with respect to
the variable x.

We apply the Fourier transform to (1), (2) and obtain a system of ODEs

ũ1tt + a11ξ
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is the Fourier transform of the variable function f(x). Using (8) for u1(t, x)
and u2(t, x), from (6) and (7) we obtain the following:
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)
/f(0). (12)

We have obtained representations (11) and (12) of the function g1 and
g2 assuming that the functions u1(t, x) and u2(t, x) take Fourier transforms
with respect to x (ũk = F (uk), k = 1, 2) and the image takes the inverse
Fourier transform (uk = F−1(ũk), k = 1, 2). Substituting (9), (10) into (1),
(2) we obtain a system of ordinary integro-differential equations
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d2ũ2
dt2

+ a21ξ
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with Cauchy data

ũk|t=0 = ϕ̃k(ξ),
dũk
dt

∣∣∣
t=0

= ψ̃k(ξ), −∞ < ξ <∞, k = 1, 2, (15)

where ϕ̃k = F (ϕk), ψ̃k = F (ψk).
Let us prove the unique solvability of the nonlocal direct problem (13)–

(15). Our proof will be based on the weak approximation method [17–22].
We weakly approximate problem (13)–(15) by the problem
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where n = 0, 1, . . . , N − 1; τN = T ; N is an integer.
Note that with fixed τ > 0 at each fractional step we solve standard

problems: at the first fractional step we solve the Cauchy problem for a
system of linear ordinary differential equations, at the second fractional
step we solve the Cauchy problem for a system of ordinary linear differential
equations of the second order, since the integrands on the right-hand side
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are taken from the previous fractional step and, therefore, the right-hand
side of this equation is a known function.

From [23–25] follows the existence and uniqueness of the solution of
problem (16)–(20) in the class of functions twice continuously differentiable
with respect to t. The unknown functions g1(t), g2(t) are found by formulas
(6), (7).
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