
Bull. Nov. Comp.Center, Comp. Science, 35 (2013), 101–119
c⃝ 2013 NCC Publisher

Back-end translator for Sisal 3.1 compiler

K.A. Pyzhov, R. I. Idrisov

Abstract. Sisal is a single-assignment language without side effects. Sisal supports
error values and a flow data type and allows recursion. It has a verbose syntax,
which reminds that of Pascal in some cases. Sisal is positioned as a language for
scientific computations, implicitly parallel and effective. It can significantly simplify
the parallel program development if the same program is intended both for a cluster
and for one executor, for big and small data effectively. Here we describe the key
features of our back-end translator.

Key words: functional programming, compilers, program optimization.

1. Introduction

Sisal is a pure functional language initially developed at the Lawrence Liver-
more National Laboratory [1]. In this paper, we describe a back-end trans-
lator for the updated language version 3.1 developed at our institute (IIS
SB RAS).

The main difference between imperative and functional paradigms is the
state of memory which is absent in pure functional languages. There are no
named “memory cells” (variables) and no state changes (side effects). Any
sub-program or operator (in terms of the imperative paradigm) must return
some value as a result. It makes the code implicitly parallel because there
are no concurrent variable sets or data-races.

Lack of side effects makes the dependence analysis and parallelization for
functional languages much easier than for imperative languages. There is no
need to build a separate dependence graph for analyzing the applicability
of certain optimizing transformations, parallelization and vectorization. All
data dependencies are represented explicitly in an intermediate representa-
tion for data-flow languages.

Of course, any imperative program can be converted to the Static Sin-
gle Assignment (SSA) form to exclude variable re-assignment (in this case
imperative variables or memory-cells can become “values” and some parts
of the analysis will be simplified) but the semantics of the whole program
remains imperative [2]. Such conversion is used in real compilers. For in-
stance, the SSA form ([3], [4]) significantly simplifies application of data-
flow optimizations for scalar variables in the intermediate representations of
imperative programs.

102 K.A. Pyzhov, R. I. Idrisov

Sisal is a single-assignment language without side effects [5]. Sisal sup-
ports error values and a flow data type and allows recursion. It has a verbose
syntax, which reminds that of Pascal in some cases. Sisal is positioned as
a language for scientific computations, implicitly parallel and effective. It
can significantly simplify the parallel program development if the program
is intended both for a cluster and for one executor, for big and small data
effectively. In this text we describe the key features of our back-end.

2. A brief history of Sisal language versions and
implementations

The initial point of Sisal is 1983, when several organizations (Livermore
National Lab, Colorado University, Manchester University and DEC corp.)
developed the language standard [1].

The first compiler was under development from 1985 to 1989. It was
called OSC (Optimizing Sisal Compiler) and supported Sisal 1.2 [6]. Later,
that compiler became a base for many improvements. Particularly, POSC
(Partitioning and Optimizing Sisal Compiler) was presented in 1990. Unlike
OSC, this compiler was able to divide a program into parallel tasks using
the dynamic profiling.

In 1991, a new language version Sisal 2.0 was published but not imple-
mented though. The next version, Sisal 90, has not been implemented as
well.

We started working on Sisal 3.0 at the A.P. Ershov Institute of Infor-
matics Systems in 2001 [7]. Currently, the Sisal language translator is used
mostly by its developers for scientific purposes: developing new optimization
and analysis algorithms, checking and improving the language standard.

3. Back-end translator

3.1. High-level scheme

The high-level scheme of the Sisal 3.1 compiler is presented in Figure 1. Its
front-end translates a source program to IR1 (IR stands for an intermediate
representation). IR1 and IR2 are the front-end and back-end high level
graph representations; IR3 is the three-address code representation.

When the IR1 graph is built, it is sent to the back-end. The back-end
translator includes the following phases:

• IR1 → IR2 translation,

• IR2 optimization,

• IR2 → IR3 translation,

• IR3 optimization,

Back-end translator for Sisal 3.1 compiler 103

Figure 1. The Sisal compiler and run-time support

• output source generation.

3.2. Intermediate representation IR2

3.2.1. General description

IR2 is the Sisal program intermediate representation based on directed
multi-graphs.

The IR2 graph for a Sisal function is a set (G,V AR, σv,≼e), where

• G =< N,P,E > is a multi-graph that consists of a set of nodes N , a
set of ports P and a set of edges E;

• V AR is a set of variables;

• σv is a mapping E → V AR which defines the correspondence between
variables and graph edges;

• ≼e is N ×N ordering which defines the execution priority.

The set of nodes N includes the nodes of two types: simple and com-
pound. The compound nodes may contain child nodes and represent the
compound statements of the Sisal language (function, conditional expres-
sion, and loop).

104 K.A. Pyzhov, R. I. Idrisov

Any node Ni ∈ N in the graph G corresponds to two subsets of ports
from P : “in” ports (P in

i ⊂ P) and “out” ports (P out
i ⊂ P). Any port belongs

to only one node; we call this node “parent” for this particular port.
Any edge represents a value transfer and connects two ports. If one

of these ports belongs to P in and the other to P out, we call parent nodes
“directly connected”. We call these nodes connected by output if both of
the corresponding ports belong to P out.

An edge is inner for a port if it connects a compound node with its
internal nodes. It includes the edges connecting the node with itself or with
its child nodes (Figure 2).

We call two nodes “connected” if they are directly connected or one of
them is directly connected to a node which is connected with the other.

We call a set of nodes Q “directly nested” for the node n if ∀q, where
q ⊂ Q, ∃q′ connected with q and connected by output with n.

Figure 2. Edges and InnerEdges

The mapping σv maps each edge Ei ∈ E to a variable Vj ∈ V AR.
The IR2 graph implicitly contains a hierarchy defined by the compound

node semantics and the “directly nested” property. The inner nodes are
usually visualized inside the parent nodes; the parent-child relation in this

Back-end translator for Sisal 3.1 compiler 105

case strictly corresponds to nesting in the source program. For example: “if
case”, “then branch” and “else branch” are the inner nodes for their “if”
node. Such a visualization makes the IR2 representation more clear for a
user because it corresponds to the code formatting style (when the number
of spaces before a function indicates its nesting level). It is planned to be
used for application debugging. Below we refer to the representation as
hierarchical.

All edges in the IR2 graph are partially ordered by the ≼e ordering which
is based on the data flow of a Sisal program: if there is a path from a node
N1 to a node N2, and N1 and N2 have the same nesting level (are directly
nested for the same compound node), then N1 ≺e N2.

If N1 ≺e N2, then N1 must be executed before N2. If N1 =e N2, then N1

and N2 can be executed in any order, and a parallel execution is possible.
The ordering binding algorithm is shown in Figure 4.

The IR2 representation is built for the whole module and includes IR2
graphs for all functions of the module. These graphs are not connected.

Example 1. Figure 4 shows the IR2 representation for the following frag-
ment of the Sisal program:

function sign(N: integer returns integer)

if N > 0 then 1

elseif N < 0 then -1

else 0

end if

end function

3.2.2. Representation reducibility

The main function of the back-end internal representation is to provide a
natural and usable structure for optimizations. In this part of the article,
we consider connections and possible IR2 conversions to another well known
computation model.

The block diagram transformations are widely used for imperative pro-
gram optimizations [8]. IR2 cannot be translated to this scheme without a
potential loss of its parallel properties because this diagram does not allow
partial order for the instructions inside one linear block.

The most general representation for a parallel algorithm is Karp-Miller
schemata [9], A scheme is defined as S = (M,A,C), where A is a set of pro-
gram operators, M is a memory cell set and C is an automat which drives
the operator start and finish. Such a scheme has two elements which are not
natural for a dataflow execution model: the automat for execution driving
and the memory cells. In the dataflow model, execution starts when all
operands of the function are ready (for a greedy model) or when the result

106 K.A. Pyzhov, R. I. Idrisov

exec_priority_for_node(node N) {

if (node N has subnodes) {

N.priority = 1;

exec_priority_for_subnodes(N);

}

}

exec_priprity_for_subnodes(node N)

{

for each subnode Q of node N {

Q.priority = 1;

}

for each subnode Q of node N {

exex_priority(Q);

}

for each subnode Q of node N {

exec_priority_for_subnodes(Q);

}

}

exec_priority(node N)

{

int n = N.priority;

for each "out" port P of node N {

for each edge E from set Edges of port P {

node Q = sink node of E;

if (Q is not parent of N) {

if (Q.priority <= n) {

Q.priority = n + 1;

}

exec_priority(Q)

}

}

}

}

Figure 3. The ≼e ordering algorithm

is required and the operands are ready (for a lazy model). So the trans-
formation to Karp-Miller schemata will increase complexity of the analysis
and optimization because it is not natural for the dataflow. The same is
for the A-scheme [10] and the counter-operator subclass of the Karp-Miller
schemata.

The dataflow parallel execution models are more natural for Sisal, but
usually such models contain a lot of elements which are not used by IR2 and
can describe only one set of the directly nested elements (do not support
hierarchy). We mention here the dataflow Karp-Miller schemata [11], Adams
[12] and Rodriguez [13] models.

Back-end translator for Sisal 3.1 compiler 107

Figure 4. The IR2 representation

The most suitable hierarchical representation is the structured Petri nets
[14] which can be used in investigation of some graphs without implicitly
structured nodes like a loop. In IR2, a loop contains a loop body and reduc-
tion subnodes; these nodes are not connected because the actual dataflow
structure of a loop depends on the input data.

3.2.3. Types and variables

For IR2 and IR3, we define the objects variable and type. A variable de-
scribes a Sisal object within the representations IR2 and IR3. In the IR2,
variables are associated with the graph edges; in the IR3, variables are the
operands of IR3 operations. Each variable has the following attributes: a
unique identifier, a unique name, a type and an additional boolean variable
which defines the “IsError” property.

The error property provides a more natural error handling for the par-
allel execution when compared to a popular try-catch model, when the ex-
ecution must be stopped at some point and the exception code must be
executed to handle the error. Such a model is not really functional because
it contains some state and considers the operations to be ordered or uses a
non-deterministic model otherwise [2].

All variables are divided into scalar variables, array variables and record
variables. Each of these groups has additional properties (Figure 5).

Scalar variables have the size property. The array variables have three

108 K.A. Pyzhov, R. I. Idrisov

Figure 5. Variables

additional associated variables: an element of the array, a lower bound of
the array and the size of the array. The record variables have an associated
list of variables describing the fields of the record.

The types in IR2 and IR3 represent the types of the Sisal language within
IR2 and IR3. A type contains additional low-level information about objects
(such as machine representation of the type).

3.2.4. Optimization metadata

During the optimization process, the algorithms can create additional data
connected with a node, an edge or a port (Figure 6). The data created
by one algorithm can be reused by another. Below we call the function
parameters aggregate metadata as “function call conditions” when these
data are propagated. The metadata connected with a particular port usually
mean the range of possible values known at the static analysis phase. In
the current back-end implementation, we have different data description
algorithms: based on single constant values, multiple constant values, a
single range or a set of ranges. Particularly, these data are used in the dead
code elimination to find some branches or nodes of IR2 which do not affect
the resulting value.

In the example in Figure 6, analysis has discovered that the function
always has the value “1” and therefore can be replaced by a constant.

Back-end translator for Sisal 3.1 compiler 109

Figure 6. An example of function metadata

3.2.5. Translation of IR1 to IR2

IR2 contains IR1; therefore building the IR2 nodes and edges is trivial. To
translate from IR1 to IR2, we set a partial order and assign variables to the
edges.

3.2.6. Optimization effectiveness

To check the effect of complex optimizations, we estimate the optimized
function run time in terms of the unlimited parallelism [15]. This concept
assumes that we have the unlimited number of execution units sharing the
same memory and performing any number of operations in parallel. Any
directly nested subnodes of a compound node with their connections to
each other can be considered as a data-flow graph, but if we assume the
computation complexity of such nodes as equal, our analysis will lose any
sense, because any function can be represented as a node. Its computation
complexity will be equal to that of its inner nodes.

A strict time schedule for the data dependence graph G of an imperative
program is a function defined for all graph nodes which is always ascending
when traversing the graph edges: if there is an edge from a node u to a node
v, then f(u) < f(v). The vector hi defines the computational complexity of
particular operations and wij is the data transfer delay between the nodes
i and j; hi and wij depend on the properties of computation system. The
difference between f(u) and f(v) cannot be less than operation complexity of
u plus the data transfer delay between u and v (the sum of the corresponding
values of hi and wij). The vector of initial conditions si sets the time
schedule function value for input nodes. It means that if u is the input
node, then f(u) is equal to the corresponding value of su. To estimate
the function complexity in terms of the unlimited parallelism, we need to
minimize the maximum value of the function f .

110 K.A. Pyzhov, R. I. Idrisov

In IR2, graph nodes are connected via ports and edges, and the time
schedule function should be defined for ports. Compound nodes of IR2 can
be analyzed separately without any increase of the resulting time schedule
function, but it requires an additional proof. The proof is not very complex
but long and formal; we decided to exclude it from this paper. This proof
makes possible to use the time schedule function analysis to estimate com-
plexity of the function represented by the IR2 graph in terms of unlimited
parallelism.

To conclude this part of the paper: when a complex optimization or
a set of optimizations are made, we check the minimized maximum of the
schedule function and if this value is greater than it was before optimization,
it should be considered as inefficient.

3.2.7. IR2 optimization

IR2 contains implicitly connected graphs for different functions of the source
program. To optimize the whole program as an ordinary dataflow graph,
we need to put all functions on the same hierarchical level. It is not always
possible, that is why we optimize function graphs separately and use function
cloning when the call conditions are affecting the optimization results. The
main structure for such optimizations is “Static call execution graph”.

Figure 7. Static call execution graph

Back-end translator for Sisal 3.1 compiler 111

The static call execution graph contains functions and their copies as a
hierarchy (Figure 7). It is not similar to memoization [16] because in memo-
ization the results of execution of some function are stored for reuse. In our
method, we collect similar initial conditions together and differentiate the
executed entities when the optimizations of the called function are affected
(estimated by the schedule function in terms of unlimited parallelism).

We use the term “interprocedural analysis” in the sense of the function
dataflow analysis. In the functional paradigm, we have no memory state,
all functions are pure and there are no imperative “procedures”.

In the current version, the interprocedural analysis is an iterative algo-
rithm which has two different strategies: copying and backtrack. The first
strategy creates function copies while the performance is improved (with a
restriction to avoid endless or very deep recursion), the second joins any
conditions for the function without creating additional copies.

The following set of optimizations is applied to any analyzed function of
the “Static call execution graph”:

• optimization of the variable allocation for aggregate variables;

• moving the invariant computations out of loops;

• dataflow analysis and constant propagation;

• dead code elimination.

Optimization of variable allocation. Optimization of variable alloca-
tion allows us to avoid the redundant copying of aggregate objects. This
transformation is done in two passes:

1. Finding the nodes that are the only users of aggregate objects;

2. Attaching the same variable to the “in” and “out” edges of nodes found
at the first pass.

Example 2. Consider the following fragment:

function foo(A:array[array[integer]]; N:integer returns array[array[integer]])

for i in 1, N cross j in i, N

repeat

A := old A[i,j := i,j]

returns value of A

end for

end function

Invariant code motion. The IR2 graph for the function foo has two
nodes AReplace inside the nested loops. After IR2 has been built, both of
these nodes have unique variables attached to the “in” and “out” ports. It
means that each iteration of the loop will create two copies of the array A.
But after applying the optimizing transformation, “in” and “out” edges of

112 K.A. Pyzhov, R. I. Idrisov

AReplace nodes will carry the same variables (since both AReplace nodes
are the only uses of their entries).

The invariant code motion is the transformation of the IR2 graph that
moves from the loop body all nodes that can be executed outside the loop.

Figure 8. IR2 for the function foo

Example 3. Consider the function:

function foo(A:array[integer]; k:integer; N:integer returns integer)

let

s := 0

in

for i in 1,100

repeat

s := old s + k * A[N]

returns value of s

end for

end let

end function

Figures 8 and 9 show the IR2 representation before and after applying
the invariant code motion.

Back-end translator for Sisal 3.1 compiler 113

Figure 9. IR2 for the function foo after the invariant code motion

Dataflow analysis and constant propagation. This algorithm is re-
peated iteratively for the IR2 nodes down the hierarchy to gather all the
information available at compile-time. As it was mentioned before, we have
two different strategies for function cloning. In the dataflow analysis, we
expand the “static call execution graph” and evaluate conditions for each
function. When the analysis is stopped, all ports known to have a con-
stant value and not connected to the constant are connected with the newly
created constant node.

Dead code elimination. During this phase, all nodes which are not con-
nected with the output ports are deleted. As it was already mentioned,
our IR2 graph is not similar to the plain dataflow graph. Such dead nodes
usually appeared after other optimizations.

3.3. Intermediate representation IR3

3.3.1. General description

IR3 is a classical three-address code representation with hierarchical blocks.

Example 4. The content of IR3 for a function is listed below:

114 K.A. Pyzhov, R. I. Idrisov

0 entry "function sign[integer]" (V_1(I32) returns V_3(I32));

{

1 V_5(I32) = V_1(I32);

2 V_5(I32) = V_1(I32);

3 V_9(I32) = 0x0(I32);

4 V_13(I32) = 0x0(I32);

5 V_7(BOOL) = (V_9(I32) < V_5(I32));

6 V_11(BOOL) = (V_5(I32) < V_13(I32));

7 if (V_7(BOOL) == true(BOOL))

{

10 V_15(I32) = 0x1(I32);

11 V_3(I32) = V_15(I32);

}

else

{

12 if (V_11(BOOL) == true(BOOL))

{

15 V_19(I32) = 0x1(I32);

16 V_17(I32) = - V_19(I32);

17 V_3(I32) = V_17(I32);

}

else

{

18 V_21(I32) = 0x0(I32);

19 V_3(I32) = V_21(I32);

}

}

20 return;

}

3.3.2. Translation IR2 → IR3

In this phase, the IR2 graph is translated to the sequence of IR3 statements.
IR3 is built in the following steps:

• Generating a sequence of the IR3 statements for each IR2 node.

• Inserting the obtained sequence to the whole IR3 statement sequence.

Also, at this stage all variables considered to be “safe” (cannot get the
error value at the execution time) are unwrapped with the IsError property
because this significantly affects the performance. A program at this level
becomes imperative and contains variable re-assigns; the variable without
IsError property can be set to the variable with this property and must be
explicitly converted.

When some target execution becomes parallel, the operations Thread-
Fork and ThreadJoin are created. The current implementation supports
only .NET SMP with heavyweight threads and have no runtime thread
scheduling.

Back-end translator for Sisal 3.1 compiler 115

3.3.3. Optimization of IR3

The IR3 optimization block applies the following optimizing transformations
to IR3:

• Copy propagation;

• Dead code elimination.

After optimization of IR3 has been performed, IR3 lowering is executed.
It replaces the high-level intrinsic functions by a sequence of statements or
a sequence of lower level intrinsic function calls that are inlined at the code
generation phase.

Example 5. The result of the IR3 optimization for the function sign is
shown below:

0 entry "function sign[integer]" (V_1(I32) returns V_3(I32));

{

5 V_7(BOOL) = (0x0(I32) < V_1(I32));

6 V_11(BOOL) = (V_1(I32) < 0x0(I32));

7 if (V_7(BOOL) == true(BOOL))

{

11 V_3(I32) = 0x1(I32);

}

else

{

12 if (V_11(BOOL) == true(BOOL))

{

17 V_3(I32) = - 0x1(I32);

}

else

{

19 V_3(I32) = 0x0(I32);

}

}

20 return;

}

3.4. Translating IR3 to C#

The current target platform for the Sisal 3.1 compiler is .NET. The trans-
lator generates the C# code. It allows the users to perform the experimen-
tal execution of Sisal programs and examine the effectiveness of optimizing
transformations applied by the compiler.

3.5. Results

We have translated some of the Sisal 1.2 programs available in the Internet
to Sisal 3.1 in order to check our compiler optimizations. The first example
is the Fourier discrete transform program shown in Figure 10.

116 K.A. Pyzhov, R. I. Idrisov

Figure 10. The result of DFT optimization: X is the array size, Y is the time in
seconds; the lower curve (square markers) represents the optimized version

Speed improvement for the DFT program mostly caused by the data
analysis has marked some of the variables as “safe” because the values cannot
produce any error (no division by zero and no operation can take it out of
the range). For other values we need to check for an error in every operation,
because there are no native (supported by .NET) variables with the “error”
property in C#.

The second example is a piece of a large aerodynamics code obtained
from NASA Ames by J. Dennis created for the project “Mapping Array
Computations for a Dataflow Multiprocessor”. The function operates on
three-dimensional arrays generated at runtime. In this example, we com-
pare the results with interprocedural analysis and without it. Here three-
dimensional arrays passed as the function argument and its value range can
be estimated at compile time, that is why our fully optimized program shows
good performance (Figure 11). In other words, a big part of the code was
considered as useless and replaced with one constant. Of course it is a rare
case and such a performance increase was achieved due to a non-optimal
input program.

And the last figure shows a change in the memory usage, it was not
big for the DFT task because the .NET platform allocates memory in big
pieces and sometimes the optimization does not change the external amount

Back-end translator for Sisal 3.1 compiler 117

Figure 11. The smooth optimization result: X is the array size and Y is the time
in seconds; the lower curve (triangle markers) represents the version optimized with
interprocedural analysis; the middle curve (square markers) represents the version
optimized without interprocedural analysis

of memory even if the number of variables has been changed. For this task
we have a strange “step” in the center of the chart (Figure 12); we suppose
that this “step” is caused by the features of the .NET allocation algorithms.

4. Conclusion and future work

The most part of the work done is theoretical. We have generalized the time
schedule function method for estimation of the IR2 program execution. Our
optimizations are proved not to increase the time schedule function. The
algorithm of interprocedural data-flow analysis based on the “static call
execution graph” has been introduced and proved to be deterministic.

The area of current research is the cloud environment for education and
scientific computations. The Sisal implementation here described is not flex-
ible enough because it requires the installation and .NET compiler. In our
concept, the cloud interface gives transparent ability to execute programs
in an arbitrary environment. JavaScript client do not demand installation,
so small educational programs can be executed on client workstations. V8
server allows the language parser and some optimizations to be used at both
(client and server) sides. The main aim for today is to make the language
more available for users.

118 K.A. Pyzhov, R. I. Idrisov

Figure 12. Smooth memory amount: X is the array size, Y is the memory in Mb;
the lower curve (triangle markers) represents the optimized version with interproce-
dural analysis; the middle curve (square markers) represents the version optimized
without interprocedural analysis

References

[1] McGraw J.R. et al. Sisal: Streams and iterations in a single assignment lan-
guage, Language Reference Manual Version 1.1 / Lawrence Livermore Nat.
Lab. Manual M-146. – Livermore, CA, 1983.

[2] Idrisov R. Sisal: Parallel Language Development // Proc. of the 6th
Spring/Summer Young Researchers’ Colloquium on Software Engineering
(SYRCoSE 2012), May 30–31, 2012. – P. 38–42.

[3] Allen R., Kennedy K. Optimizing Compilers for Modern Architectures. – Mor-
gan Kaufmann, 2002.

[4] Muchnik S. Compiler Design and Implementation. —Morgan Kaufmann, 1997.

[5] McGraw J.R. Sisal: Streams and Iterations in a Single Assignment Language,
Language Reference Manual, Version 1.2. / McGraw J.R., Skedzielewski S.K.,
Allan S.J., Oldehoeft R.R., Glauert J., Kirkham C., Noyce B., Thomas R. –
Livermore, 1985. – (Tech. Rep. / Lawrence Livermore National Laboratory;
M-146, Rev. 1).

Back-end translator for Sisal 3.1 compiler 119

[6] Cann D.C. The Optimizing Sisal Compiler. – Livermore, 1992. – (Tech. Rep.
/ Lawrence Livermore National Laboratory; UCRL-MA-110080).

[7] Kasyanov V.N. SFP – An interactive visual environment for supporting of
functional programming and supercomputing / Kasyanov V.N., Stasenko A.P.,
Gluhankov M.P., Dortman P.A., Pyjov K.A., Sinyakov A.I. // WSEAS Trans-
actions on Computers. – Athens: WSEAS Press, 2006. – Vol. 5, N 9. – P. 2063–
2070.

[8] Kasyanov V.N. Graph applications in programming // J. Programming and
Computing Software. – 2001. – Vol. 27, Iss. 3. – P. 146–164.

[9] Karp R.M., Miller R.E. Parallel program schemata // J. of Computer and
System Sciences. – 1969. – Vol. 3, Iss. 2. – P. 147–195.

[10] Kotov V.E., Narinyani A.S. On transformation of sequential programs into
asynchronous parallel programs // Proc. IFIP Congress (1). – 1968. – P. 351–
357.

[11] Karp R.M., Miller R.E. Properties of a model for parallel computations: de-
terminacy, terminations, queueing // ASIAM J. of Applied Mathematics. –
1966. – Vol. 14. – P. 1390–1411.

[12] Adams D A. A Computation Model with Data Flow Sequencing. – 1968. –
(Tech. Rep. / Computer Science Department, Stanford University, Stanford;
CS-117).

[13] Rodriguez J.E. A Graph Model for Parallel Computations: PhD Thes. – Mas-
sachusetts Institute of Technology, Dept. of Electrical Engineering, Cambridge,
Massachusetts, 1967.

[14] Kotov V.E. An algebra for parallelism based on Petri nets // Lect. Notes
Comput. Sci. – 1978. – Vol. 64. – P. 39–55.

[15] Voevodin V.V., Voevodin Vl.V. Parallel Calculations. – St.Petersburg, 2002.

[16] Michie D. Memo functions and machine learning // Nature. – 1968. – N 218.
– P. 19–22.

120

