Bull. Nov. Comp. Center, Comp. Science, 6 (1997), 71-85
© 1997 NCC Publisher

“WinALT — a simulation system for
computations with spatial parallelism

S.V. Piskunov

A description of user interface and language of a simulation system (WinALT)
is given in the article. This system is based upon formal model called Parallel Sub-
stitution Algorithm (PSA). The system combines the best features of its ancestors.
It has extensible functionality and is open for user modifications and extensions.
It has a wide set of tools for visualization and representation of massively parallel
distributed in space computations.

1. Introduction

Nowadays the most important ways to increase the performance of hardware
are based upon parallel computations. One of parallelism types which are
practically used is called fine-grained. Fine-grained parallelism is based
upon the search of source problem transformations which would convert
its solution into a group of simultaneously massively executed processes
distributed in discrete (cellular) data space.

The possibility to reach the highest degree of parallelism which can be
achieved for a particular problem (“natural” parallelism) has made this type
of parallelism rather attractive for different applications. This type of par-
allelism gives good results when used in almost any multiprocessor system
in the event that a source fine-grained algorithm is “built correctly”. A cor-
rectly built algorithm has the following features. Such an algorithm has a
multitude of rather simple operators. These operators perform local and
parallel data processing. Cellular algorithms, systolic and cellular-neural al-
gorithms satisfy the limitations mentioned above. Algorithms of these types
are used in many practical applications such as image processing, vector-
matrix computations, discrete graph optimization, image recognition and
SO on. _

The development and research of fine-grained algorithms are always
based upon a certain computation model. Several models of fine-grained
computation representation were developed by now. The best-known are
the Neumann classic cellular automaton, associative machine, systolic struc-
ture and neural network. These models are distinguished by data structures,
structure of operators and rules of their application to data. One of the fine-
grained parallelism advantages is that many implemented and hypothetic

72

special purpose high performance processors are being a direct hardware
representation of their respective fine-grained models..

An effort of a unified formal model creation has resulted into emergence
of the so called Parallel Substitution Algorithm (PSA) [1, 2]. PSA incapsu-
lates all previously existed fine-grained models. The creation of this unified
model can be justified by complexity which is a habitual feature of almost
any practically useful fine-grained algorithm. The fine-grained algorithms
can hardly be tackled without computer aided tools for a researcher or a
developer. The unified fine-grained model gives an opportunity to develop a
single widely used tool instead of many for each particular model. The tools
based on this unified theory have been developed for several years [2-6].

The aim of this article is to give a brief description of the new simulation
system of massively parallel distributed computations (WinALT).

A brief description of WinALT ancestors, which are based upon PSA,
is given in this article. An attempt has been made to draw their reciprocal
comparisons and to outline their advantages and faults (Section 2). The re-
quirements to the new system were formulated on the base of the previously
done analysis. These requirements meet the demands of researchers of big
dynamic discrete systems. A concise overview of the WinALT GUI (Graphic
User Interface) and language main distinctive features is given (Section 3).

2. Languages and systems of parallel
‘microprogramming

Languages and the tools, presented in the given section, were primarily
oriented to the description of the fine-grained algorithms and structures at
such level of detailed elaboration, which is referred to as a microprogram
level. But, as we deal with parallel algorithms and structures, it is reasonable
to name this level as a level of parallel microprogramming [1].

2.1. Brief description of PSA

PSA combines features of cellular automaton and features of the Markov
algorithm. In this model the data are represented as array of named cells
(cellular arrays). A data item is stored in a separate cell. The data trans-
formation is carried out by a set of commands (parallel substitutions). PSA
is characterized by total and simultaneous application of commands to cel-
lular arrays and explicit indication of the spatial relations between cells in
commands.

It should be noted, that PSA includes rather widely known model of
symbolic substitutions [7], which has appeared later. This is supported by
the description of the adder of many positive binary integers [8]. The PSA

73

[=]-]

0] —
0]1 1 o] [o] [1
0]0 o] [o]1 1[0

2 3 4 5
Figure 1

of this adder contains two commands which are represented by symbolic
substitutions. These commands perform the transformation of binary digits
in the rectangular binary table. The rows of this table are integers for the
summation. The binary patterns used in commands are shown in Figure 1.
The patterns 1, 4 form, accordingly, left-hand and right-hand parts of the
first substitution, the patterns 2, 6 represent the second substitution. In the
table at each step simultaneously in all configurations of the form I and 2 the
subpattern 3 in 1 is replaced by the pattern 4, and the subpattern 5in 2 -
by the pattern 6 and etc., while such transformations are possible. When
such transformations are impossible, it means that the sum is calculated.

Of course, the set of means used in PSA is much wider, than it is shown
above. In particular, in record of left and right parts of substitutions, along
with symbols from some alphabet (we shall designate A), variables can be
applied, or some functions with ranges of definition and ranges of values from
the alphabet A. These means allow to describe rather complex functional
transformation in one parallel substitution.

2.2. Parallel microprogramming language

The first fine-grained (cellular) algorithms and structures simulation lan-
guage was offered in [1] and was named Parallel Microprogramming Lan-
guage (PML). It has served as the prototype for all other simulation lan-
guages, based on PSA. Conceptually, the language directly follows PSA.
The differences from PSA are caused by necessity of the exact description
of syntax, as the language is intended to be used on a computer. It is also
taken into account, that the parallel work of algorithms and structures is
simulated on a sequential computer. An alphabet of cell states, a cellular
array, a template, a functional transformation executed by a cell, a sub-
stitution microcommand, a cyclic block, a tool microprogram, a parallel
microprogram serve as the basic constructive elements of PML.

The alphabet of the cell states consists of two groups of symbols: basic
and variable. The basic symbol is represented by either figure, or identifier,
consisting of the letter and probably empty set of figures. The basic symbols
can also be represented as codes. These codes are symbol strings in a certain
base alphabet, usually {0, 1}. The set of basic symbols can be dissected on
classes. The names of classes form group of variable symbols. A variable

4

symbol is represented as a basic symbol but unlike the latter it has only a
symbol of prefix $. It is also possible to use the codes for representation of
variable symbols.

Each cellular array has a name. The names of cellular arrays are unified.
Each name begins with prefix TS, which is followed by a positive integer.
The array dimension cannot exceed three. The array dimension is specified
by the list of the coordinate axes names (indexes) I, J, K in brackets after
array name. The size of each cellular array is listed in a microprogram head
part, which contains the declarations. A state of an array cell is a basic
symbol or its symbol code.

It is evident from Subsection 2.1 that essence of PSA consists of parallel
search in a cellular array of copies of some sample and subsequent initializing
the found cells with new states, taken from another sample. Both parallel
search and the following states assignment can be performed at once for
the whole set of various samples. The samples are taken from the left-
hand and right-hand parts of substitutions. Syntactic constructions, which
reflect this essence, are realized in the language. 'A construction, which
describes a sample, is named a zone. The microcommands are built up
from the zones. The cyclic blocks are built up from the microcommands.
The parallel microprograms are built up from the cyclic blocks and separate
microcommands.

The use of a zone, specifying a sample with the help of a shift pattern,
is most typical in the language. The shift pattern is a list of elements,
each of which contains a number of integers that is equal to dimension of a
cellular array, for which the pattern is intended. Always an element of the
pattern exists, which contains only zeroes. The elements of the pattern are
initialized with numbers. A pattern name begins with prefix PAT, which is
followed by a positive integer. The pattern serves for selection of groups of
cells in a cellular array. The procedure of coordinates calculation of group
cells in a certain (in a general case) 3D cellular array consists of summation
of the same triplet of values of indexes I, J, K with constants from pattern
elements. One can see that a set of shift functions is used for calculation
of group cells coordinates. A local variable is dynamically connected with
each cell. The variable name is the number of the corresponding element in
a pattern.

General functions (not to be confused with shift functions) can be fre-
quently used for coordinate calculation of group cells. A set of such functions
is called a functional pattern. A pattern name consists of prefix FUN, followed
by a positive integer.

A zone consists of a cellular array name (with the indication of dimen-
sion), a pattern name, and a zone body. The zone body is actually a sample.
This body is constituted by the list of components, each of which consists of
an alphabet symbol (or its code) and a variable, which is a pattern element

75

number.

In the case when a functional transformation is used for a cell state
calculation this transformation name is placed in a component instead of an
alphabet symbol, and a record of a certain zone is located in brackets after
the name. Such a zone body contains only a list of variables. These variables
are the arguments of functional transformation. The name of functional
transformation consists of prefix MAP and a positive integer.

A microcommand of PML defines a procedure of the unified access to
states of group cells and unified processing of states of group cells. The
substitution microcommand record consists of two parts: left- and -right,
which are divided by the symbol —. The left part complete record consists
of several zones, divided by the symbol *. Some of zones can be omitted
in the record. If there are no zones at all, the only symbol * remains. The
substitution microcommand right part consists of the only zone, which is
named operating, and an attribute list.)

The execution of the procedure is performed as follows. Cellular arrays,
used in microcommand record, are considered to form composition. It means
that all cellular arrays, which belong to a composition, are described in the
same system of coordinates, and the values of indexes I, J, K for all cellular
arrays from composition vary in coordination. For each cellular array (which
we refer to as basic) a duplicated array is created (which we refer to as
“double”). The procedure consists of iterative steps. Values of coordinates
of group cells in basic cellular array, specified in a record of a zone, are
calculated at a separate step for each triplet of coordinates I, J, K and for
each zone from the microcommand left part.

Calculations for a zone from the right part are performed in the double of
the array, specified in a zone record. After that the presence and absence of
coincidence of variables values in a zone body and in a group cell is fixed for
each zone from the microcommand substitution left part. If the coincidence
takes place for all variables in all zones from the left part, values of variables
from this zone body are assigned to cells of the group, constructed for a
zone from the microcommand right part.

The imitation of parallel execution of a microcommand or a group of
microcommands (in other words, synchronization of their execution) is per-
formed by overwriting the states of the cells doubles at the appropriate cells
of basic cellular arrays. The indication to overwrite execution just after ap-
plication of the given microcommand is given with the help of an attribute
W, specified in the attributes list. A non-applicability attribute can be spec-
ified in the list as well. This attribute is denoted by a symbol L, followed by
a name of a cellular array, coordinates of a cell in it and symbol, specifying a
state of this cell. A non-applicability attribute indicates that given symbol
should be inserted in the cell of the array specified in attribute record if the
given microcommand is non-applicable to data.

76

The cyclic block consists of a name (label), a header, a unlabelled sub-
stitutions microcommands list and the operator END with the block name.
The header begins with a reserved word TITLE and contains an information
on cellular arrays. The information on each array includes an array name,
indexes I, J, K, followed by their range in brackets, and at last a pattern
name. The header ends with the list of attributes. The placement of an
attribute in the header means that this attribute is the same for all micro-
commands of the block. If, for example, an attribute W is specified in the
header, and other attributes are not present, then the block is executed till
non-applicability of all microcommands included in it, and the synchroniza-
tion is done at every iteration at which all microcommands of the block were
once applied. The iteration attribute can be also specified in the header.
The iteration attribute is designated by a symbol R and a positive integer.

_This integer defines how many times it is necessary to apply the given block.
The iteration attribute can also be written at an isolated microcommand,
i.e., microcommand which does not belong to any block. '

Except microcommands of substitutions, which make a pithy part of
the microprogram, control microcommands are entered in PML. These are
required for organization of sequential execution of microcommands of sub-
stitutions. The presence of control microcommands requires that some mi-
crocommands should be marked by labels. Control microcommands are
presented by unconditional and conditional jumps.

The tool microprogram is arranged similarly to the block, it plays an
auxiliary role and serves for realization of the most typical, frequently used
fragments of computations. The reference to the tool microprogram from
any parallel microprogram is done with the help of control microcommands.
After execution of the tool microprogram the return is made in a point of a
call.

Any parallel microprogram has the following structure. It consists of
header, sequence of cyclic blocks and separate microcommands. The header
is written down in the same way, as well as the header of the cyclic block,
but in addition it contains the information on the sizes of all the cellular
arrays, which are used in the parallel microprogram.

When cellular algorithm models are implemented at a computer, the
conversion of model source text into PL/1 is carried out with the help
of libraries. These libraries contain the sets of unified access and com-
putation procedures for different types zones, used in records of microcom-
mands. Data for model and its functional descriptions are implemented in
PL/1. A number of cellular algorithms and structures [1] was described in
PML.

(s

2.3. C&M - a language and system of the parallel
substitutions simulation

The- prototype of C&M 3, 4] is PML. C&M, as well as PML, represents
one of the possible PSA notations. C&M derives C language syntax and
semantics, but it is filled up by a set of additional data types, data classes,
operations and statements. Concept of the alphabet is extended in C&M.
A way of using of all data types, permitted in language C, is provided for
representation of cell states. Means of sequential control are extended (all
C control transfer constructions are available). Nested cyclic blocks are
allowed in comparison with PML. Cyclic blocks in C&M language are called
synchronous blocks. .

In order to include correctly sequential control organization means of C
language in C&M, two classes of variables are entered into C&M language.
Variables of class OBJECT are intended for use in parallel computations as
variable data elements. In other words, these are the cells of cellular arrays.
Any change of variables of class OBJECT requires the usage of the statements
of synchronization. These means are similar to the attribute list in record of
a microprogram, cyclic block or substitution microcommand in PML. Other
variables are processed strictly sequentially as it is performed in C.

The synchronous.block is the microprogram fragment within the limits
of which all statements, varying values of the variables of the class OBJECT
(all these statements are reduced to the assignment statement) are carried
out simultaneously (synchronously). Until the end of all computations of
the synchronous block at an iteration, the modified values of variables of
class OBJECT are inaccessible to further use, i.e., the same mechanism of the
doubles of cellular arrays as in PML is used. The statements of synchro-
nization (CHANGE, CLOCK, EXHAUST) serve for the description of occurrence of
synchronous blocks in the text of the microprogram in language C&M and
for organization either once executed, or cyclic computation of synchronous
blocks. The CHANGE statement executes its synchronous block single time.
The statement CLOCK executes its synchronous block the specified number
of times. The statement EXHAUST executes its synchronous block until non-
degenerated changes of variables of class OBJECT occur, i.e., up to non-
applicability of substitutional statements of the synchronous block. The
synchronous block, incapsulated into another synchronous block, is treated
separately from its external synchronous block. All changes in its objects
are fixed by its own synchronization statement without any dependence on
completeness of computation in the external block. The usage of variables
of different types (including those of class OBJECT) allows to construct any
combinations of sequential and parallel fragments, using variables of class
OBJECT for designation of cells of cellular arrays, and using variables of
miscellaneous types for composition and auxiliary purposes of the compu-
tational process representation.

78

/* C&M model for many integers addition PSA. x/
/* Parameter declarations: */
#include <sim.h> /* standard macrodefinitions, x/
#define num 100 /* number of summands, */
#define dim 64 /* capacity of summands, */
/* Variables declarations: */
object W[dim] [num]; /* summands array, */
static area P[5][2] = /* pattern. */
{0, 0, 0,1, 1, O,
1,-1, 0,-1};
region /* Regions of centers’ coordinates: */
R(0:dim-2, 1:num-2), /* for the first microcommand, */
Q(0:dim-2, 1:num-2); /* for the second microcommand. */
main() /* Addition. */
{

int x, y; /* Coordinates of pattern center. */
init(W,dim,num); /* Summands initialization. */
exhaust /* Exhaust parallel loop. */

{
/* The first substitution microcommand: */
on R(x,y) /* selection of space region, */
in Pattern(P,¥,x,y) /* link of pattern with */
/* cellular array, - */
/* substition microcommand zones. */

if(#1 && #2 &% “#3 &% "#4 &% “#5)
(#1 = 0, #2 =0, #3 = 1);
/* The second substitution microcommand:*/
on Q(x,y)
in Pattern(P,W,x,y)

if(#1 && “#2 && “#5) (#1 =0, #2 = 1);

pict(W,num,dim); /* Output. */
}

Figure 2

In the head part of a microprogram cellular arrays are listed. The type
REGION specifies the ranges of indexes. The type AREA defines a shift pattern
in the way similar to C array access.

The substitution microcommand is specified in the synchronous block by
set of three statements: ON, IN, IF. The statement ON limits the ranges of
indexes variation. The statement IN links a pattern with transformed cellu-
lar array. The operator IF specifies a microcommand body, which consists
of two zones named base and operating, written in brackets. Explicitly ex-
pressed composition of cellular arrays in C&M language is not implemented.

79

An example of a parallel microprogram in C&M language is shown in
Figure 2. It implements a microprogram of many integers addition algo-
rithm, which was described in Subsection 2.1. There are five elements in
a pattern. They are enumerated by numbers from I to 5. These numbers
are related to rows in the array P. Numbers of pattern elements in bodies
of microcommands are marked by the symbol #. In record of bodies of mi-
crocommands a number is, actually, variable, which is dynamically assigned
to a cell with the same number in the next group, which stands in a queue.
These variables are used in expressions and assignment statements placed
in base and operating zones of microcommands. PATTERN is a procedure of
access on a given pattern to the next group cells. The procedure is made
in such a way, that the group is built for each pair of values of coordinates
z, y when they are modified in given ranges (it is possible to tell, that
“continuous” viewing of the array W is executed).

The C&M language was exploited as a source language of a parallel
computations simulation system that was implemented in MS-DOS. The
converter from C&M language generates intermediate representation of a
C&M-program in C language. The intermediate representation is translated
into a machine code by a C compiler.

2.4. ALT - a graphic system of parallel microprogramming

The major problem of research of computing processes with explicitly ex-
pressed spatial parallelism by a simulation method consists in necessity of
observing simultaneous execution of many interconnected information trans-
formations in large data arrays. An essential drawback of C&M system re-
alization, which is revealed during its test exploitation, was the absence of
advanced means of visualization. This fault can be explained by a desire to
create a tool which is primarily oriented to program compilation rather than
to a dialogue model program execution. It became evident that a system
which would have the following features should be created:

e tight integration of the graphic and text forms of the fine-grained
model description;

e the visualization of simulation process which is as complete as can be
achieved.

Such a system was developed [2, 5]. The ALT system reproduces proper-
ties of PSA. Visualization both for designing of a parallel algorithm descrip-
tion and for parallel algorithm modeling are widely used in ALT system.
The algorithm description contains graphic representation of objects of that
sort of cellular arrays, left-hand and the right-hand parts of substitution
microcomands. Visualization gives for parallel algorithm modeling the pos-

80

sibility of supervision of dynamics of separate substitutions application to
cellular arrays on a screen.

Unique names are assigned to cellular arrays and ‘patterns. Graphic
objects are represented in a window on a screen. This window consists of a
number of pages. Only one of them can be viewed at a time. The separate
graphic object is composed of colour cells. A colour represents a current
state of a cell. Considerable attention has been given to the visualization of
3D objects. 3D object is shown as a pack of layers. The layers form on a
screen a dimetric projection-so as to ease a 3D perception of an object by a
user. One of layers is open. It is shown in the screen as a matrix of colour
cells.

The program scheme language and the functional language (subset of C
language) are used for writing of parallel microprogram text. A substitu-
tion microcommand is represented by operators IN, ON, AT, DO in program
scheme language. The purpose of the operators IN and ON is similar to that
of these operators of C&M language. The pair AT, DO replaces the C&M
language IF operator. Names of the substitution microcommand left-hand
part zones are listed after the operator AT. Either a name of a substitu-
tion microcommand operating zone, or a name of functional transformation
which is recorded in the functional language is specified after the opera-
tor DO. All functional transformations are displayed in a special window.
Main distinction of the parallel substitution microcommand representation
in ALT system from representation in languages PML and C&M lies in the
fact that the names of zones are used in program scheme language only, and

sp pt
SLE .
Pla | . |
in sp
’= risit 1 at pt |
| do if |
. e - e e =

(a && (z+y+etp+q+rts+t !=8) && (z+y+z+p+g+r+s+t!=2)
L \Va && (zty+ztptatristt==3))%a=la;

Figure 3

81

each zone has a graphic image. Synchronization operators in the program
scheme language are similar to those in C&M, but usually their names are
recorded in reduced notation, for example CH, CL, EX. A parallel micropro-
gram scheme is also displayed in its own window. The Conwey’s “Life”
model which demonstrates the basic features of ALT and its language is
shown in Figure 3.

A number of fine-grained algorithms and structures [2, 9] was developed
in ALT. Cellular technology of parallel computations organization, which is
based on ALT [2, 6, 9], has been formed in an essential degree.

3. WinALT - a new simulation system
of computations with spatial parallelism

System ALT operating experience has shown vitality of through mutual
visualization of dynamic and static elements of model, while both of arrays
and graphic images of commands which describe data transformations are
simultaneously presented in the screen space.

At the same time, construction of a rather wide set of fine-grained mod-
els algorithms and structures was also shown, that the user needs such a
system that can provide both a possibility of the work within an interac-
tive environment with the detail analysis (and visualization) of evolution of
computation process in each cell and the possibility of execution of parallel
information transformations during many steps in large data arrays.

It has also become evident that in connection with diverse and rather
frequently varying (depending on a class of simulated structures) user’s re-
quests which can hardly be satisfied by a creation of a set of standard means
it is appropriate to provide the system with the possibility of its replenish-
ment by means, developed by the user himself, possibility of configuration
and programming of system according to user’s specific interests.

The system ALT does not meet the requirements mentioned above be-
cause of its limitations, which are most pronounced at employment of sys-
tem for imitation of neural computations and for designing of complex fine-
grained computing structures from sets of more simple structures.

The basic limitation of ALT system lies in the fact that the interpreters
of program scheme and functional languages (subset of C language) are
the independent programs, which cannot communicate with the modules
produced by a standard C compiler. Therefore the ALT system functionality
cannot be extended by these modules. Such a drawback strongly limits
representational possibilities of language means of ALT system.

Other limitation of ALT system is the absence in its interpreter of a fast
run mode, which would allow to simulate work of fine-grained algorithms
with large volumes of data within acceptable time on the computer. For

82

example the fast run mode would allow to use ALT system not only for
research and debugging of fine-grained algorithm, but also for production of
real results of its work.

Accumulated experience also shows that a vital need is felt to bring
the interface of system in conformity with modern demands of a user for
comfortable work in application area, i.e., wide and convenient set of tools
for editing textual and graphic parts of model is required, it is necessary to
use as much as possible completely the potential of operating system.

Simulation system (WirALT) [10] satisfying the increasing requirements
of users, which are involved in researches of fine-grained computations was
developed under the direction of the author of this article. The new system
retains the functionality of ALT. It also has a lot of additional functions,
which expand both the user interface, and its modeling functions. It is
possible to say that the new system has combined the best features of two
previous systems. In addition WinALT implementation is done on the mod-
ern Win32 (Windows 95, NT) platform. The usage of this platform gives
advantages in GUI design, allows to exploit its rich functionality in multi-
process organization and synchronization, memory management.

The WinALT GUI is based on the usage of standard Microsoft GUI
means such as document windows, menus, toolbars and dialog windows. One
of the three implemented toolbars is standard for any Windows application
and supports a set of buttons for file loading, editing, saving and printing.
This WinALT toolbar has a lot of useful GUI features which are absent
in ALT. Two other toolbars are specific for WinALT. They are “WORK”
and “TOOLS”. These toolbars support means of visualization, intended for
both designing and modeling of parallel algorithms in a way similar to that
of ALT. The image of a graphic object is similar to that in ALT. Asin ALT
the program of a model is displayed in a separate window. The number
of tools for graphic object transformation is increased in comparison with
ALT. For example, the “TOOLS” toolbar contains buttons for initialization
of cellular arrays with random states, importation of objects from the BMP
format. The “WORK” toolbar contains buttons for graphic object size
and dimension modification, 3D object layer editing, cell block transfers
within objects. WinALT breaks the limits for object size imposed by an
obsolete MS-DOS environment which was the platform for ALT. Object
sizes are limited only by amount of available virtual memory. Model text
editing support tools, modular construction and model program debugger
are available. _)

The main goal of WinALT language is to maintain extremely flexible
structurization of fine-grained computation expression devices at different
detalization levels. Another goal was to construct a system which can be
easily extended by new functionality. Just as the ALT program scheme
language the WinALT language has its own interpreter and does not depend

83

on any external tools. But its set of tools for designing of the program models
forms a superset of C&M language, which was constructed as extension of
C language. The language can be divided into three levels in accordance
with types of its syntactical constructions.

The first level of WinALT language is represented by a set of syntac-
tical constructions which is habitual for the most structured programming
languages. Namely, there are conditional loop, IF-THEN statement, function
and procedure support and immediately executed assignment for variables
or cells. There is the set of standard unary and binary arithmetic and logic
operations in the language. Cellular array processing looks more like a work
with ordinary arrays at this level.

The second level is based on the first and is formed by means which are
intended for compact representation of distributed in space parallel compu-
tations. The means are identical with those in C&M and ALT systems. As
in C&M language WinALT variables are divided into two classes: ordinary
variables (local or global) and objects. This level is represented by syn-
chronous blocks and loops (operators: EXHAUST, CLOCK, CHANGE are used),
substitution describers: IN, ON, AT, DO, and synchronized assignment opera-
tor.

The third level is formed by language constructions, which enable inte-
gration of modules, written in C or C++ into WinALT. This modules are
dynamic linked libraries with a specific set of interface functions and named
ACL, which stands for ALT C language Library.

While all the ordinary functions are to be written in the usual way, all
the exportable functions which are intended to be visible from a WinALT
program need to be specially declared and defined.

A declaration of an exportable function is placed into DECLARE_ACL sec-
tion. Each declared function should be defined in ACL_EXPORT section. A
definition consists of its C name, WinALT name and a quantity of parame-
ters to get.

The last and the most important thing to do is to implement a func-
tion. An interface was designed to allow an ACL to access cellular arrays,
change state of WinALT program execution and control other parameters
“in WinALT system.

The program of model consists of the main program block, placed be-
tween BEGIN and END keywords. ACL module function calls, declarations of
global variables, descriptions of functions and procedures could precede this
block. '

A screenshot of the WinALT is shown in F igure 4. Cellular arrays, left
and the right parts of substitutions for the model of 3—2 adder [2] are
shown in an object view window, a fragment of the simulating program is
represented in the program scheme edit window. As a whole, the model has
a style of ALT system models.

84

Figure 5

The local filter model for picture processing is shown in Figure 5. The
ACL module external functions are used in this model.

4. Conclusion

WinALT language and auxiliary tools allow easily present a great number
of interconnected processes with different complexity in a model program,
which imitates a fine-grained algorithm or a structure. These processes
can have different types of interconnection and distribution in cellular data
space.

WinALT functionality can be changed and extended by a user.

WinALT provides as much as possible wide sphere of tool requirements
of the researcher of large discrete dynamic distributed systems, not removing
his for limits of paradigm of cellular model of parallel computations, which is
very natural for the given area of researches. A conclusion can be given that

85

WinALT provides a set of tools for miscellaneous demands of researchers in
exploration of large discrete distributed dynamic systems (e.g., in physics,
biology or technics) without dependence on a narrow specialization.

References

[1) P. Anishev, S. Achasova, O. Bandman, S. Piskunov, S. Sergeev, Parallel Mi-
croprogramming Methods, Nauka, Novosibirsk, 1981 (in Russian).

[2] S. Achasova, O. Bandman, V. Markova, S. Piskunov, Parallel Substitution
Algorithm. Theory and _App]ication, World Scientific, Singapore, 1994.

[3] S. Piskunov, Yu. Pogudin, Parrallel microprogramming as a tool for micropro-
cessor systems design, Proc. Int. Conf. SAPR SVT’89, section 2, Leningrad,
April 17-21, 1989, 197-205 (in Russian).

[4] Yu. Pogudin, C&M - C language extension for microprogram applications,
Informatics and Programming, Computer Center, Novosibirsk, 1989, 62-85
(in Russian).

[5] Yu. Pogudin, ALT - a Grafical System for Parallel Microprogramming, Par-
allel Algorithm and Structures, Computer Center, Novosibirsk, 1991, 77-88
(in Russian).

[6] V. Markova, S. Piskunov, Yu. Pogudin, Formal methods and tools for design
of cellular algorithms and architectures, Programmirovanie, 4, 1996, 24-36
(in Russian).

[7] K. Brenner, A. Huang, N. Streibl, Digital optical computing with symbolic
substitutions, Applied Optics, 25, No. 18, 3054-3060, 1986.

(8] Yu. Kornev, S. Piskunov, S. S;argeev, P. N436350 (USSR), Binary adder, Byul-
leten’ izobretenii, No. 26, 1974 (in Russian).

[9] V. Markova, S. Piskunov, Computer models of 3D cellular structures, Lecture
Notes in Computer Science, 964, 70-84, 1995.

[10] D. Beletkov, M. Ostapkevich, I. Zhileev, A simulation system of computation
with spatial parallelism, Proc. Conf. of Young Scientists, Computer Center,
Novosibirsk, 1997, 16-23 (in Russian).

