
Bull. Nov. Comp.Center, Comp. Science, 31 (2010), 111–121
c© 2010 NCC Publisher

Scalable parallel subdefinite calculations for sparse
systems of constraints

Evgueni Petrov

Abstract. In the last 5 years, multi-core processors become more and more
available to the wide public. Support for multi-core processors becomes de facto
a standard for computation-intensive applications. In this paper, we present a
parallel implementation of the UniCalc solver for non-linear engineering problems.
Unlike the existent solvers of non-linear constraints, our parallel implementation
scales well for sparse systems of non-linear constraints. We give scalability data for
a quad-core processor.

1. Introduction

Constraint programming is a highly successful technology for solving the
combinatorial problems (scheduling, staff allocation, assignment, routing,
design, etc.) and non-linear constraints. Constraint programming toolkits
are used by companies such as Amazon.com, British Airways, Chevron,
Cisco, Ford, HP, KLM, Lockheed Martin, Nestle, Oracle, Proctor & Gamble,
Renault, SNCF, UPS, and Volvo [1].

UniCalc is a constraint programming toolkit developed by the Russian
Research Institute of Artificial Intelligence and A.P. Ershov Institute of In-
formatics Systems to answer the research requests from customers in in-
dustry, science and Russian government [12]. Most of such requests are
related to reliable numerical solution of non-linear design and mathematical
modeling problems.

The main constraint solver of UniCalc is called subdefinite calculations
[9]. By their nature subdefinite calculations contain a big amount of par-
allelism. In this paper we present a parallel implementation of subdefi-
nite calculations that scales well for dense and sparse systems of non-linear
constraints. In experiments on a quad-core processor, our implementation
demonstrated linear scalability on a number of benchmarks for non-linear
constraint solvers over real numbers.

It is noteworthy that good scalability has been a challenge for some
time in parallel constraint propagation over integral and real numbers. The
existent implementations of parallel constraint propagation scale well only
if the system of constraints is dense, i.e. each constraint involves a large
number of variables. In such case, the time needed to process constraints
dominates the time needed to update the queue of the constraints that wait
to be processed, and good parallelization is relatively easy to achieve [13,

112 Evgueni Petrov

10, 2]. Probably for this reason, most recent papers on parallel constraint
solvers over integral and real numbers focus on parallel exhaustive search in
combination with sequential constraint propagation [11, 14, 15] rather than
on parallel constraint propagation. Our major contribution is achieving
good scalability in parallel constraint propagation in large sparse systems
of non-linear constraints over real numbers.

The paper is organized as follows. Section 2 overviews the existent tech-
niques of software parallelization. Section 3 describes subdefinite calcula-
tions. Section 4 outlines the parallel version of subdefinite calculations.
Section 5 reports experimental performance scalability data for a set of
benchmarks on a 4 core processor. Section 6 concludes the paper.

2. Software parallelization techniques

Support for multi-core processors becomes de facto a standard for compu-
tation-intensive applications. To provide that support, several libraries and
language extensions have been developed. In this section we briefly re-
view these means of parallelization from lower level to higher level: POSIX
threads [4] and Windows threads libraries [5], Intel Threading Building
Blocks library [6], OpenMP [7] and Cilk [8] language extensions. Distributed
memory parallelism is out of our scope.

Ultimately, the libraries and extensions we discuss in this section are
functionally equivalent, that is we can program any parallel behavior on the
top of any of them. Below we point out the main differences between those
libraries and language extensions.

POSIX threads and Windows threads provide threading and synchro-
nization primitives that are very close to the level of the operating system
and hence are as fast as one get. The application that uses such libraries
is fully responsible for thread workload balance, thread data locality, and
other higher level aspects of parallelization.

Intel Threading Building Blocks consist of a runtime resource manager
and a C++ template library that provides higher level parallel constructs,
such as parallel reduction, parallel for, blocked range, etc. The TBB run-
time resource manager takes some care of balancing thread workloads by
transferring workload from overloaded CPU cores to idle CPU cores. The
overhead introduced by the TBB runtime resource manager is considered as
reasonable for all available implementations.

The OpenMP and Cilk language extensions minimize the changes in
the source code needed to parallelize an existent sequential application.
OpenMP parallel constructs are introduced via compiler pragmas. Cilk
parallel constructs are introduced via Cilk-specific keywords. Overall, Cilk
is more advanced than OpenMP. In addition to parallel sections, parallel
for, and parallel reduction, Cilk provides a more intelligent mechanism to

Scalable parallel subdefinite calculations for sparse systems of constraints 113

balance thread workloads. The OpenMP and Cilk parallel constructs intro-
duce smaller overhead than the TBB parallel constructs. OpenMP is more
mature than Cilk. Only a few compilers support Cilk at the moment.

Our choice for parallelization is the OpenMP extension for C/C++ be-
cause we want to minimize the changes in the source code of UniCalc needed
for parallelization.

3. Subdefinite calculations

Subdefinite calculations [9] have been invented by Alexander Narinjani in
early 1990s. Subdefinite calculations are one of the first constraint program-
ming techniques for constraint satisfaction problems with real numbers. In
constraint programming terms, subdefinite calculations are constraint prop-
agation for real intervals. Given a set of constraints and a bounding box for
the set of solutions to the constraints, subdefinite calculations reduce this
bounding box without losing any solution. Below we give a pseudo code for
subdefinite calculations.

Let V be a set of variables that take values from the set R of real
numbers. Let C be a set of constraints over V . Denote by proj(c, v) the
convex hull of projection of the constraint c (as a subset of some Rk) to the
variable v (as an axis of the same Rk). Denote by dependent(v) ⊆ C the
largest set of constraints that contain v. Denote by c(v1, v2, . . . , vk) the
fact that the constraint c contains only variables v1, v2, . . . , vk. Let Q be a
set of constraints with the standard predicate empty and operations select
(which can be non-deterministic) and union ∪. The set Q is called the set
of active constraints. Finally, denote the Cartesian product by ×.

Figure 1 shows the algorithm of sequential subdefinite calculations. No-
tice that at compute time we use the variables V to denote projections of
the bounding box to the axis of the solution space. A useful optimization
for constraint propagation in inconsistent systems of constraints is to exit
the while-loop as soon as newvi is empty (line 6 in Figure 1).

1 Q = C;

2 while (!empty(Q)) {
3 c(v[1], v[2], ..., v[k]) = select(Q);

4 Q = Q \ { c };
5 for (i = 1; i <= k; k++) {
6 newvi = proj(c ∩ v[1] × v[2] × ... × v[k], v[i]);

7 if (v[i] != newvi) {
8 Q = Q ∪ dependent(v[i]);

9 v[i] = newvi;

10 }}}
Figure 1. Sequential subdefinite calculations

A floating point implementation of subdefinite calculations enjoys all the

114 Evgueni Petrov

properties of constraint propagation: finite termination, preservation of the
set of solutions to C, deterministic result (the bounding box for the set of
solutions after the while-loop is exited) despite a non-deterministic operation
select.

4. Parallel subdefinite calculations

By their nature, subdefinite calculations contain a large amount of paral-
lelism because the bounding box for the set of solutions can be updated in
parallel without damaging correctness of the algorithm (line 6 in Figure 1).

Because parallelization applies mainly to loops, the first attempt is to
parallelize the while-loop (line 2 in Figure 2) and to protect the set of active
constraints by either an OpenMP critical section or by an OpenMP lock
(similar to critical sections, not shown).

1 Q = C;

2 while (!empty(Q)) {
3 #pragma omp parallel shared(Q, C)

4 {
5 #pragma omp critical

6 {
7 c(v[1], v[2], ..., v[k]) = select(Q);

8 Q = Q \ { c };
9 }

10 for (i = 1; i <= k; k++) {
11 newvi = proj(c ∩ v[1] × v[2] × ... × v[k], v[i]);

12 if (v[i] != newvi) {
13 #pragma omp critical

14 {
15 Q = Q ∪ dependent(v[i]);

16 }
17 v[i] = newvi;

18 }}}}
Figure 2. Parallel subdefinite calculations with limited scalability

Notice that we do not have to serialize updates to the bounding box (line
11 in Figure 2) because they are monotonic with respect to set inclusion.
Though a CPU core ignores some updates to the bounding box made by its
colleagues, this fact does not lead to a loss of precision since all CPU cores
share the same set of constraints. The worst consequence might be a minor
loss of performance.

The problem with this version is that it must serialize updates to the
shared set of active constraints (lines 8 and 15 in Figure 2). This fact
limits the gain from additional CPU cores for large systems of constraints,
especially for large sparse systems that consist of simple constraints. Under

Scalable parallel subdefinite calculations for sparse systems of constraints 115

such conditions, updates to the bounding box are faster than updates to the
set Q and, by Amdahl’s law, the scalability factor is limited by 2x for any
number of CPU cores. This fact agrees well with the scalability data from
[10].

To fix the problem in the parallel implementation of subdefinite calcula-
tions in Figure 2 and enable parallel updates to the set of active constraints,
we run the entire algorithm of subdefinite calculations on each CPU core
and let them share the bounding box.

However, a CPU core ignoring updates to the bounding box made by its
colleague may exit the parallel section at the very beginning of constraint
propagation and this fact will damage scalability considerably. To work
around such a premature termination, each worker thread tracks locally
without synchronization/serialization (line 14 in Figure 3a; the function
width returns the width of intervals) whether it has any chances to update
the bounding box. If there are such chances, it starts a new session of
constraint propagation (line 15 in Figure 3a).

1 #pragma omp parallel shared(C)

2 {
3 do {
4 Q = C; solved = 1;

5 while (!empty(Q)) {
6 c(v[1], v[2], ..., v[k]) = select(Q);

7 Q = Q \ { c };
8 for (i = 1; i <= k; k++) {
9 newvi = proj(c ∩ v[1] × v[2] × ... × v[k], v[i]);

10 if (v[i] != newvi) {
11 Q = Q ∪ dependent(v[i]);

12 v[i] = newvi;

13 }
14 solved *= width(v[i]) < ε;

15 }}} while (!solved);

16 }
Figure 3a. Scalable parallel subdefinite calculations (convergent case)

Implementation in Figure 3a needs yet another adjustment for the case
where subdefinite calculations cannot locate the solution to the constraints
C with the desired accuracy ε because the constraints have two (or more)
solutions that do not fit into a bounding box of size ε, or the constraints
are inconsistent, or simply not amenable to subdefinite calculations. The
adjustment is to track the number of CPU cores that execute the while-loop
(lines 5-14 in Figure 3a) and to exit the parallel section as soon as there are
no such CPU cores. Without this adjustment, the algorithm in Figure 3a
enters an infinite loop if the bounding box never gets smaller than ε in some

116 Evgueni Petrov

dimension.
The adjusted algorithm is shown in Figure 3b. This adjusted algorithm

may lose scalability on the systems of constraints that cannot be solved by
subdefinite calculations with the desired accuracy. However, if subdefinite
calculations converge to a small bounding box, the algorithms in Figure 3a
and Figure 3b have the same scalability. In the next section, we show the
scalability data for the parallel implementation of subdefinite calculations
in Figure 3b. Good scalability is due to the fact that the while-loop (lines
8–18 in Figure 3b) “overweighs” the serialized increments/decrements to the
counter alive (lines 6–7 and 19–20 in Figure 3b).

1 alive = 0;

2 #pragma omp parallel shared(C, alive)

3 {
4 do {
5 Q = C; reduced = 0;

6 #pragma omp atomic

7 alive += 1;

8 while (!empty(Q)) {
9 c(v[1], v[2], ..., v[k]) = select(Q);

10 Q = Q \ { c };
11 for (i = 1; i <= k; k++) {
12 newvi = proj(c ∩ v[1] × v[2] × ... × v[k], v[i]);

13 if (v[i] != newvi) {
14 Q = Q ∪ dependent(v[i]);

15 v[i] = newvi;

16 reduced = 1;

17 }
18 }}
19 #pragma omp atomic

20 alive -= 1;

21 } while (reduced && alive);

22 }
Figure 3b. Scalable parallel subdefinite calculations (general case)

5. Scalability of parallel subdefinite calculations

We experimented with non-linear constraint satisfaction problems from the
public AMPL repository [3] translated to the UniCalc language. Each prob-
lem involves 50-5000 variables and constraints. Please see Appendix for
details immediately, or visit the AMPL repository.

We benchmarked our parallel implementation of subdefinite calculations
on a quad-core system at 3GHz and with 8G of RAM. The best of 8 times was
recorded for each problem and a given number of threads. Each OpenMP

Scalable parallel subdefinite calculations for sparse systems of constraints 117

thread was pinned to a unique CPU core.

Figure 4 gives a table with the time (in seconds) spent by our parallel
implementation of subdefinite calculations to solve each constraint system
to accuracy of 10–4 or higher, and a chart with the speedup compared to 1
CPU core. The second column in the table in Figure 4 shows how sparse is
each constraint system – the number of variables in the biggest constraint
and the total number of variables in the constraint system. We see that our
implementation scales linearly for sparse and dense systems of non-linear
constraints.

#var
(constr.
/ total)

1
core

2
cores

3
cores

4
cores

artif 3/5000 0.281 0.203 0.172 0.141
bdvalue 3/100 17.61 8.000 5.437 4.156
broydn3d 3/1000 2.625 0.641 0.422 0.297
cbratu2d 6/529 8.375 3.813 2.734 2.063
cbratu3d 9/2000 2.500 1.031 0.766 0.609
chandheq 64/64 0.188 0.078 0.063 0.047
chemrcta 5/200 47.38 20.06 13.72 9.547
chemrctb 2/100 9.671 5.203 3.078 2.391
integreq 127/127 3.969 1.984 1.469 1.203

Figure 4. Scalability data for parallel subdefinite calculations

118 Evgueni Petrov

6. Concluding remarks

In this paper, we presented a parallel implementation of an interval con-
straint propagation algorithm called subdefinite calculations.

The value of our implementation of interval constraint propagation is
that it scales well for large sparse (and this is the novelty of our work) and
dense systems of non-linear constraints. Our contribution is that we give an
experimental evidence that good scalability is feasible for constraint prop-
agation in large sparse systems of non-linear constraints. The key feature
of our implementation of the interval constraint propagation algorithm that
enables its good scalability is a very limited amount of synchronization.

We plan to benchmark and tune our implementation of interval con-
straint propagation for systems with a large number of CPU core.

References

[1] van Beek P., Walsh T. Principles of Constraint Programming and Constraint
Processing: A Review // AI Magazine. – 2004. – Vol. 25, No. 4 .

[2] Rolf C. Ch., Kuchcinski K. Parallel Consistency in Constraint Programming
// // Proc. Internat. Conf. on Parallel and Distributed Processing Techniques
and Applications (PDPTA). – CSREA Press, 2009. – P. 638–644.

[3] Vanderbei R. Cute AMPL models. – Web site
http://www.orfe.princeton.edu/˜rvdb/ampl/nlmodels/cute/

[4] The Open Group and IEEE. POSIX Threads // IEEE Standard 1003.1. – The
Open Group and IEEE, 2004.

[5] Richter J., Nasarre Ch. Windows (R) via C/C++, 5th Edition. – Microsoft
Press, 2007. – ISBN 9780735624245.

[6] Reinders J. Intel Threading Building Blocks. – O’Reilly Print, 2007. – 336 p.
– ISBN 9780596514808.

[7] The OpenMP API specification for parallel programming. – Web site
http://openmp.org

[8] Blumofe R. D., Joerg Ch. F., Kuszmaul B. C. et al. Cilk: An Efficient Multi-
threaded Runtime System // Proc. 5th ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming (PPoPP). – 1995. – P. 207–216.

[9] Narin’yani A. S. *Sub-Definiteness, Over-Definiteness, and Absurdity in
Knowledge Representation (Some Algebraic Aspects) // Proc. Conf. Artifi-
cial Intelligence Applications 1985. – IEEE Computer Society/North-Holland,
1985. – P. 142–143.

[10] Granvilliers L., Hains G. A conservative scheme for parallel interval narrowing
// J. Inf. Process. Lett. – 2000. – Vol. 74, N 3–4. – P.141–146.

Scalable parallel subdefinite calculations for sparse systems of constraints 119

[11] Beelitz Th., Bischof Ch. H., Lang B., Sch K. Althoff. Result-Verifying So-
lution of Nonlinear Systems in the Analysis of Chemical Processes // Lect.
Notes Comput. Sci. – Springer Berlin, 2004. – Vol. 2991 – P. 198–205. – ISBN
3540212604.

[12] Botoeva E., Kostov Yu., Petrov E. A reliable linear constraint solver for the
UniCalc system // Joint Bull. of NCC& IIS. Ser.: Comput. Sci. – 2006. – Iss.
24. – P. 101–111.

[13] Kasif S. On the parallel complexity of discrete relaxation in constraint satis-
faction networks // J. Artif. Intel. – 1990. – Vol. 45, No. 3 – P. 99–118.

[14] Bordeaux L., Hamadi Y., Samulowitz H. Experiments with Massively Parallel
Constraint Solving // Proc. Int. Joint Conf. on Artif. Intel. – 2009. – P. 443–
448.

[15] Kalinnik N., Schubert T., Ábrahám E. et al. Picoso – A Parallel Interval
Constraint Solver // Proc. Int. Conf. on Parallel and Distributed Processing
Techniques and Applications (PDPTA). – CSREA Press, 2009. – P. 473–479.

Appendix

The UniCalc language is derived from the conventional mathematical nota-
tion. Large systems of constraints are specified with the help of the all con-
struct. For example, “all(i=1,2,5;x[i]*x[i+1] = i);” is equivalent to “x[1]*x[2]
= 1; x[3]*x[4] = 3; x[5]*x[6] = 5;”. Large sums and products are specified
with the help of the sum and prod constructs. For example,
“sum(i=1,2,5;x[i]*i)” is equivalent to “x[1]*1+x[3]*3+x[5]*5”. For more
detail on the UniCalc language, please, see [12].

artif

const int N = 5000;

all (i = 2, 1, N+1; x[i] >= 0.00001;

(-0.05*(x[i] + x[i+1] + x[i-1]) + atg(sin(i*x[i]))) = 0);

x[1] = 0.0; x[N+2] = 0.0;

bdvalue

const int ndp = 100;

h=1/(ndp-1);

all(i = 2, 1, ndp-1; x[i] > -1;

(-x[i-1]+2*x[i]-x[i+1]+0.5*h^2*(x[i]+i*h+1)^3) = 0);

x[1] = 0.0; x[ndp] = 0.0;

120 Evgueni Petrov

broydn3d

const int N = 1000;

kappa1 = 2.0, kappa2 = 1.0;

all(i = 1, 1, N; x[i] = [-1,1]);

(-2*x[2]+kappa2+(3-kappa1*x[1])*x[1]) = 0;

all(i = 2, 1, N-1; (-x[i-1]-2*x[i+1]+kappa2+(3-kappa1*x[i])*x[i]) = 0);

(-x[N-1]+kappa2+(3-kappa1*x[N])*x[N]) = 0;

cbratu2d

const int p = 23;

lambda = 5.0; h = 1/(p-1); c = h^2/lambda;

all(i = 2, 1, p-1; all(j = 2, 1, p-1;

(4*u[i,j]-u[i+1,j]-u[i-1,j]-u[i,j+1]-u[i,j-1]-

c*exp(u[i,j])*cos(x[i,j])) = 0));

all(i = 2, 1, p-1; all(j = 2, 1, p-1;

(4*x[i,j]-x[i+1,j]-x[i-1,j]-x[i,j+1]-x[i,j-1]-

c*exp(u[i,j])*sin(x[i,j])) = 0));

all(j = 1, 1, p; all(i = 1, 1, p; u[i,j] = [-1,1]; x[i,j] = [-1,1]));

all(j = 1, 1, p; u[1,j] = 0.0; u[p,j] = 0.0; x[1,j] = 0.0; x[p,j] = 0.0);

all(i = 2, 1, p-1; u[i,p] = 0.0; u[i,1] = 0.0; x[i,p] = 0.0; x[i,1] = 0.0);

cbratu3d

const int p = 10;

lambda = 6.80812; h = 1/(p-1); c = h^2/lambda;

all(i = 2, 1, p-1; all(j = 2, 1, p-1; all(k = 2, 1, p-1;

u[i,j,k] = [-1, 1]; x[i,j,k] = [-1, 1];

(6*u[i,j,k]-u[i+1,j,k]-u[i-1,j,k]-u[i,j+1,k]-u[i,j-1,k]-u[i,j,k-1]-u[i,j,k+1]-

c*exp(u[i,j,k])*cos(x[i,j,k])) = 0;

(6*x[i,j,k]-x[i+1,j,k]-x[i-1,j,k]-x[i,j+1,k]-x[i,j-1,k]-u[i,j,k-1]-u[i,j,k+1]-

c*exp(u[i,j,k])*sin(x[i,j,k])) = 0

)));

all(j = 1, 1, p; all(k = 1, 1, p;

u[1,j,k] = 0.0; u[p,j,k] = 0.0; x[1,j,k] = 0.0; x[p,j,k] = 0.0

));

all(i = 2, 1, p-1; all(k = 1, 1, p;

u[i,p,k] = 0.0; u[i,1,k] = 0.0; x[i,p,k] = 0.0; x[i,1,k] = 0.0

));

all(i = 2, 1, p-1; all(j = 2, 1, p-1;

u[i,j,1] = 0.0; u[i,j,p] = 0.0; x[i,j,1] = 0.0; x[i,j,p] = 0.0

));

Scalable parallel subdefinite calculations for sparse systems of constraints 121

chandheq

const int n = 64;

c = 1;

all(i = 1, 1, n; x[i] = i/n; w[i] = 1/n; h[i] = [0, 1]);

all(i = 1, 1, n;

sum (j = 1, 1, n; -0.5*c*w[j]/(x[i]+x[j])*h[j]*x[i]*h[i] + h[i]) = 1.0

);

chemrcta

const int n = 100;

pem = 1.0; peh = 5.0; d = 0.135; b = 0.5;

beta = 2.0; gamma = 25.0; h = 1/(n-1);

cu1 = -h*pem; cui1 = 1/(h^2*pem)+1/h; cui = -1/h - 2/(h^2*pem);

ct1 = -h*peh; cti1 = 1/(h^2*peh)+1/h; cti = -beta -1/h - 2/(h^2*peh);

all(i=1,1,n; t[i] = [0,1]; u[i] = [0,1]);

(cu1*u[2]-u[1]+h*pem) = 0; (ct1*t[2]-t[1]+h*peh) = 0;

all(i=2,1,n-1;

(-d*u[i]*exp(gamma-gamma/t[i])+(cui1)*u[i-1] + cui*u[i] + u[i+1]/(h^2*pem))

= 0;

(b*d*u[i]*exp(gamma-gamma/t[i])+(cti1)*t[i-1] + cti*t[i] + t[i+1]/(h^2*peh))

= 0

);

(u[n]-u[n-1]) = 0; (t[n]-t[n-1]) = 0;

chemctrb

const int n = 100;

pe = 5.0; d = 0.135; b = 0.5; gamma = 25.0;

h = 1/(n-1); ct1 = -h*pe; cti1 = 1/h + 1/(h^2*pe); cti = -1/h-2/(h^2*pe);

all(i = 1, 1, n; t[i] <= 1);

(ct1*t[2]-t[1]+h*pe) = 0; (t[n]-t[n-1]) = 0;

all(i = 2, 1, n-1;

d*(b+1-t[i])*exp(gamma-gamma/t[i])+cti1*t[i-1]+cti*t[i]+t[i+1]/(h^2*pe)=0

);

integreq

const int N=127;

h = 1/(N+1); x[1] = 0; x[N+2] = 0;

all(i = 1, 1, N; t[i+1] = i*h; x[i+1] < 1);

all(i = 1, 1, N;

(x[i+1]+h*((1-t[i+1])*sum (j = 1, 1, i; t[j+1]*(x[j+1]+t[j+1]+1)^3) +

t[i+1]*sum(j = i+1, 1, N; (1-t[j+1])*(x[j+1]+t[j+1]+1)^3)/2)) = 0

);

122

