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On the influence of the dilatancy,
compression of pores, and filtration
on stability of shearing sliding in a rock

V.E. Petrenko

Dilatancy, or increase in void volume, is typically associated with the in-
elastic deformation of a relatively intact rock. However, dilatancy associated
with frictional sliding in laboratory samples also has been observed. At low
normal stresses, dilatancy may be due to the uplift in sliding over asperity
contacts. At higher normal stresses, dilatancy appears to result from the
initiation and extension of microcracks adjacent to the sliding surface. If the
rock is fluid-saturated and dilatancy occurs more rapidly than a pore fluid
can diffuse into the newly created void space, the local pore pressure near
the sliding surface decreases. This decrease in the pore pressure increases
the effective compressive stress (the total compressive stress minus the pore
fluid pressure) and inhibits a further frictional slip.

This paper investigates the stability of the quasi-static shearing slid-
ing along a rock porous layer that can result from the coupling between
the change in porosity, pore fluid diffusion and dilatancy accompanying the
friction sliding. Analysis was made using a mechanical model of unstable
sliding [1] for the evolutional law of friction, when the friction coefficient is
a given function of the velocity of sliding and the so-called variable of the
state characterizing the evolution of the system [2]. Such effects as shearing
dilatancy, the diffusion of fluid and compressibility of the fluid and pores
are also taken into account.

A linear analysis of stability has shown that a steady sliding can be both
stable and unstable depending on the value of elastic rigidity. An estimate
of critical rigidity as function of governing parameters of the problem (the
velocity of sliding, the effective normal stress, the coefficients of shearing
dilatancy, the diffusion of fluid, and compressibility of pores, as well as
parameters of the evolutional law of friction) has been obtained.

A qualitative analysis of the influence of the governing parameters on
the stability of sliding is given. In particular, the shearing dilatancy and
low values of the effective normal stress (7 = o — p, where o is the normal
stress, p is the pore pressure) favor the stability of steady sliding. Thus, an
increase in the pore pressure stabilizes sliding. This is in accord with the
experiment.
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1. Evolution law of friction

According to the existing concepts, sliding at the surface of contacts occurs
when the ratio between the tangential stress r and the normal stress ¢
attains the value of the static friction coefficient f,. The friction drag as well
as the friction coefficient decrease in sliding taking the values of the dynamic
friction coefficient f;. This decrease in the drag can be due to rigidity of
the system and can result in the instability of sliding. The following facts
have been experimentally established in the physics of rocks:

e the static coefficient of the friction f, depends on the history of sliding
of surfaces;

¢ the dynamic coefficient of the friction f; for the steady sliding depends
on the velocity of sliding. It is also influenced by such factors, as the
type of rocks, temperature, and some other parameters.

e if the velocity of sliding varies jumpwise, the evolution of friction to a
new steady state takes place at a characteristic distance of sliding d..

The time of the contact of surfaces and, hence, the dependence of the
friction of sliding on the velocity of the sliding v are important [2]. The
effective time of the contact is determined as a ratio between the critical
distance of the sliding d., at which the contact surface is renewed, and the
sliding velocity v. The ratio d./v is considered as average time of evolution
of the contact @ or as a characteristic time of the contact.

An experimental dependence of the dynamic coefficient of friction on the
sliding velocity v and the variable of the state of the system 6 is approxi-
mated by formula in [2]:

f:f0+aln(v/vg)+bln(0/00), (1)

where fp is the coefficient of friction at v = vg and @ = @, a and b are the
empirical constants of the rock, vy and @ are the reference constants.

Equation (1) should be considered jointly with the evolution equation
for the state variable #. Various evolutional equations were proposed, for
instance

dé Ov

'd_t' =1- 'd_¢: (2)
de v fv

—&?-—ul—d—cln(&:), (3)
do Ov \? '

7 =1 () @

where t is the time variable.
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Experimental data for rocks are well described by using equations (1)
and (2) [3], and therefore we use these equations below.

With the use of the expression 6, = d./v for the case of steady sliding,
equation (2) can be written down in the form d8/dt = —8v(8 — 6,)/d.. It
follows that at a constant velocity of the sliding v the value # exponentially
tends to #,.

It follows from (1) that there is a continuum of values of the coefficient of
friction. If, however, the dynamic coefficient of the friction f; is determined
for a steady velocity of sliding, dfs/d(Inv) = a — b. Similarly, if the static
coefficient of the friction f, is determined for the state after a long period
of the contact of surfaces, df,/d(Inv) = b.

The influence of the jumpwise change of the sliding velocity v and of the
state variable 8 on the coefficient of friction at b > a is schematically shown
in Figure 1. The initial sliding velocity is v; = v. There is a jump up to
v = 10v, and then back to v3 = v. The expression for the coefficient of
friction at steady sliding is found from equations (1) and (2) and has the
following form:

f=f0+(a-b)1n(v30). (5)

At a jumpwise increase in the velocity (Av = vy — v;), the coefficient of
friction increases by a value a. Then it monotonically decreases by a value
b due to the evolution effect described by the variable §. At the time of the
jump of the velocity from the high value v3 to the low value v, the coefficient
of friction first decreases jumpwise, and then monotonically increases in the
velocity interval vz = v.

L v1=v vz =10v v3=u
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Figure 1. The coefficient of friction for the case of the
piecewise constant velocity of sliding, b > a
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2. A model of the shear sliding with friction

Let us consider a model problem on the stability of quasistatic shear slid-
ing with friction along the porous layer taking into account such effects as
shearing dilatancy, diffusion and compressibility of the fluid and pores.

The rock-porous layer horizontal interface is the sliding along a porous
layer with the velocity v. The normal stress o is acting on it vertically (from
the surrounding rock) and the porous pressure p (from the porous layer).
The tangential stress 7 and the elastic force, which has a given velocity v,
is acting on interface horizontally. The pore pressure p in the porous layer
can vary as a result of diffusion of the ﬂuld into the surrounding space with
the pore pressure p,.

Using the law of friction (1), the tangential stress at the rock-porous
layer interface can be written in the following form:

r_[f0+aln( )+bln(;0)]_, (6)

where T is the tangential stress, & is the effective normal stress, expressed by
an applied normal stress o and the pore pressure p by the relation & = o —p.

Considering the process of quasistatic sliding of the rock-porous layer
interface, we can write the following equation for the variation rate of the

tangential stress:
i k(v — v) (7)
dt [

where k is the elastic force rigidity, v; is the given velocity of motion of this
force, and v is the sliding velocity.

Equations for the pore pressure and for the inelastic porosity component
are discussed in Sections 3 and 4.

3. Equation for the pore pressure

Let us obtain the equation for the pore pressure using as follows:
1. The equation of discontinuity for the flow of a fluid in a relatively
rigid porous skeleton:

M
7S +divg=0, (8)

where ¢ is a flow of the fluid mass, M is the fluid mass in unit volume.

2. Darcy’s law:

. K
7= —po;V;o, 9

where K is permeability, po and p are, respectively, the actual density and
viscosity of the fluid.
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3. The equation for the change rate of the fluid mass:
aM dm dp _ dm
T g =gt m(ng), 10

where m is porosity, and 8, = p~'0p/8p is the fluid compressibility coeffi-
cient.

4. The equation for the porosity variation as sum of the elastic and the
plastic components:

dm dp dmp
@ ="yt o (11)

where (8, = m‘lamfap is the coefﬁment of elastic compressibility of pores,
dmy/dt is the variation rate of the plastic porosity component.
Substituting (11) into (10), we obtain:

B m2 4 4]

- dt (12)

where g = 3, + 32 is a combination of the compressibility coefficients of the
fluid and pores. From (12) we have for dM/dt = 0:

dp 1 dm,

dt ~  Bm dt (13)
Hence, it is evident that the pore pressure increases as the rock becomes
denser (dm,/dt < 0) and decreases as its density decreases (dm,/dt > 0).
Substituting (12) and (9) into (8), we obtain the equation for the pore
pressure:

dp 2 1 dm,
Cw =PV (14)

where D = K/(fp) is the diffusion coefficient. For the model being consid-
ered with one degree of freedom, we approximate equation (14) for the pore
pressure in the following form:

dp
dt

1 dm
= D*(p, — p) = — —L, 15
where p is the pore pressure in the sliding layer, p, is the pore pressure
outside this layer, D* = K/(BuL?) is the coefficient of fluid diffusion, and
L is the characteristic scale of diffusion.

4. Equation for the inelastic porosity component

The inelastic change in porosity depends on the sliding velocity and is taken,
by analogy with relation (7), in the following form:
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dm v
Tp = _E"c'(mp = Mys), (16)

where m,; is the value of porosity for the steady sliding. Its value depends
on the sliding velocity:
v
Mps = Mg + ¢4 1n —, amn
Yo
where ¢4 is the coefficient of dilatancy. It can be seen from (17) that the
steady porosity m,, increases with the increase in the velocity.

5. Analysis of linear stability of sliding

In the case of the steady sliding of the rock-porous layer interface, friction
and elastic forces are in equilibrium. Hence,

(0= p)f(v,60) = k(ut - u), (18)

where f(v,8) is the function for the friction coefficient given by expression
(1), u is the displacement, t is time. The variables for the steady sliding
take the following values: v, = v, 8, = d./v;, ps = po, T, = (o — po) fs,
fs = fo+ (a = b)In(vs/v0), mps = mg + cqln(v1/vp).

Linearizing the system of governing equations (2), (7), (16), (15), and
(18) in the vicinity of the equilibrium state, we obtain the following linear
system of equations:

dée _ v 1 chm,, _ v C4

_di— = —EC’(SB — 1—};61), at = —dc6mp + a:émp, (19a)
dép 1 dém, déu

a dév _ bu dé6 dép

P = a (19<)

where ¢ denotes small deviations of the variables from their values at steady
sliding.

Equation (19c) was obtained under the assumption that the normal stress
o is kept constant during the process of sliding.

The characteristic equation for the system of equations (19) has the
following form:

[a(0 — p)A+kd.2])(D*+A) (24 A) = b(o — p) zA(D*+ A) + -'%ﬁm\z =0, (20)
where z = v;/d..

Equation (20) is a polynomial of the third degree with respect to A. As is
known, if real parts of all the roots Re();) less than zero, i = 1,2, 3, system
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of equations (19) is linearly stable. If Re()\;) > 0 for some );, the system is
unstable.

The critical rigidity is determined by the largest value of kd., for which
Re(A;) > 0 for a certain . The solution of equation (20) gives the following
estimate of the critical rigidity:

b—a cafs
k=0 -p 7" - 5
c [

where the function ¥(D*) is given by the expression

v(Dr), (21)

U(D*) = [1 +e1+ e — \/(1 +e+e)? - 4e2]/2, (22a)
_Blo—pa_¢ _Blo-p)(b-a) 1

T g+l 07 cifs g+1’ (22b)

g = D*d./v. (22¢)

Estimates of critical rigidity are obtained from (21) and (22) for the
following two limiting cases:
1) an infinitely large diffusion of the fluid (D* — oo, e — 0, and
¥(D*) - 0):
keoo = (6 —p)(b - a)/d.. (23)

and 2) an infinitely small diffusion (D* — 0, e; — 1, and ¥(D*) — 1):

ko = (0= )0~ 0) - %] /a, (29

The limiting case of the infinitely small diffusion of fluid implies the
absence of flow of the pore fluid.

Estimate (21) means the following: for small perturbations of the sliding
velocity and an inconsiderable deviation of the elastic rigidity coefficient
k from a critical value k. given by the estimate (22), the amplitudes of
oscillations of all variables (sliding velocity, tangential stress, pore pressure,
and porosity) will either attenuate under the condition k/k, > 1 (stable
sliding) or increase under the condition k/k. < 1 (unstable sliding) with
time.

Using estimates (21)-(24), we can conclude that:

1. The critical rigidity k. — 0 as the effective normal stress tends to zero

(7 =0 — p— 0). Hence, an increase in the pore pressure contributes
to the stability of sliding,.

2. The stability of sliding is influenced by the ratio between the coeffi-
cients of the dilatancy cq and the compressibility of the fluid and pores
B, i.e., the parameter ¢g/83. -
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3. The instability of sliding under the condition of the absence of the flow
of pore fluid will be suppressed, when the coefficient of dilatancy ¢4
will be higher than the critical value determined by (24).

4. For the instability of sliding, under the condition of the absence of
flow of the porous fluid, the effective normal stress & must exceed the
value ¢qf;/B(b — a) (since ko > 0) even for sufficiently small values of
rigidity. Hence, the requirement of the instability of sliding in these
conditions leads to the severe limitation on the ratio between the pore
pressure and the normal stress:

P cdfs

Figure 2 shows the limiting values of the ratio between the pore pressure
and the normal stress versus the coefficient of dilatancy for unstable sliding
in the absence of flow of the pore fluid. The area of instability is under the
curve, and the area of stability is over the curve. It is seen from the figure
that for each value of the parameter b — a there exist critical values of the

1.09 p/eo

Figure 2. Limiting values curves: b —
a = 0.001 (solid curve), b — a = 0.0025
(dotted curve), b — a = 0.004 (dashed

curve)
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Figure 3. The critical rigidity k/kcco versus the diffusion D*d./v;:

a) h = 1300-2000 m (& = 32 MPa), 8 = 0.00045 MPa~! (solid curve),
B = 0.0007 MPa~! (dashed curve) and

b) h = 2500-4000 m (& = 64 MPa), § = 0.00035 MPa~! (solid curve),
B = 0.00032 MPa~! (dashed curve)
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coefficient of dilatancy d; such that at d. > d% and any p/o > 0 only a
stable sliding takes place.

The dependence of the critical rigidity (k./ke.o) on the diffusion
(D*dc/w) given by equation (21) is shown in Figure 3. Figures 3a and
3b present the results for two rocks: 1) sandstone with cemented clay ce-
ment and 2) sandstone and aleurite tightly cemented with clay-carbonate
cement, with depths h = 1300-2000 m and h = 2500-4000 m. The dif-
ference between the rocks influences the values of the combined coefficient
of compressibility 3, and the difference between the depths influences the
values of the effective normal stress & = o — p. For other parameters we
took the following values: f, = 0.6, 5 — a = 0.005, ¢ = 0.001, d, = 0.01 m.
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