Bull. Nov. Comp. Center, Math. Model. in Geoph., 6 (2000), 91-113
(© 2000 NCC Publisher -

Two and three-dimensional modeling
of tzunami generation
due to a submarine mudslide

V.E. Petrenko

Introduction

The mathematical models of the tsunami wave generation by an underwater
landslide should include a set of the fluid flow equations and the landslide
motion equations along the sloping surface taking into account the energy of
the wave generation and the necessary initial and boundary conditions. Ex-
amples of the two-dimensional (2D) and three-dimensional (3D) numerical
modeling of the tsunami generation are represented.

In Section 1, the numerical modeling of tsunami generation due to the
submarine slides for simple models of a landslide has been developed. In
Section 1.1, the linear and the nonlinear 2D incompressible shallow water
and the long wave equations, including the friction effects and the Coriolis
parameter are solved by the SWAN code [1]. In Section 1.2, the solution
of the 2D time dependent Navier-Stokes equations for an incompressible
flow solved by the ZUNI code is presented [1]. In Section 1.3, the simplified
slide models are used to consider the slide as a solid nontransformed body
[2-4] moving due to the gravity forces, fluid resistance and the Coulomb fric-
tion along the bed. In Section 1.4, examples of the numerical modeling of
some hypothetical and observed slide tsunamis in the past are discussed, for
instance: the hypothetical 105 Ka Lanaitzunami [5], the ebserved underwa-
ter landslides of Storegga [6-10], the landslide lapse occurred in the Tafjord
fjord in western the Norway in 1934 [11] and the underwater landslides of
Floras Island in Indonesia [12].

In Section 2 the 2D, unsteady, single-layer, depth-averaged turbidity
currents driven by nonuniform, noncohesive sediments have been mathe-
matically modelled [13]. The model comprises the fluid, momentum and
sediment conservation laws for hydrodynamics, and a bed sediment con-
servation equation for the bed dynamics. The finite volume method was
selected, because it is useful for solving hyperbolic, time dependent equa-
tions such as conservation laws.

In Section 3, unstable sedimentary bodies of the slide and their hydraulic
effects are numerically examined [14]. The 2D fluid mechanics model based
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on the Navier-Stokes equations has been developed assuming sediments and
water as mixture [15]. The sediments are treated as the Bingham fluid that
can diffuse into water. The model includes the viscous—plastic relations and
the Fick law of diffusion for the sediments [14].

In Section 4, the impact of a debris avalanche with a volume of 40 x
10 m? into the sea and tsunamis it generates are considered [16]. It has
been numerically simulated by a mixture model [17] solving the 3D Euler
equations. The mixture composed of sediments and water is treated as
a homogeneous fluid. Numerical tests show that the generated waves are
sensitive to both the initial impact velocities and the avalanche fronts of the
landslide. The water surface and velocities calculated by the 3D mixture
model are used as input data in the nonlinear shallow water model [18] to
calculate tsunami propagation along the coasts of Montserrat.

In Section 5, the numerical 3D model [19] is developed to simulate
tsunami generation due to a viscous mudslide on a gentle uniform slope.
The problem of the mudslide dynamics is formulated, where the mudslide
is treated as an incompressible 3D viscous flow. The seawater is treated
as an nonviscous fluid, and the water motion is assumed irrotational. The
long wave approximation is adopted for both the water waves and the mud-
slide. The resulting differential equations are solved by the finite difference
method. Numerical results are presented for successive profiles of the mud
surface, the horizontal velocities of the mudslide, the evolution of the surface
elevations, and the water motion velocities. Comparisons of the present 3D
calculations with the previously published 2D results have been done.

In Section 6, there is a brief review of several papers on the 2D numerical
simulation of the submarine landslides.

1. Numerical modeling of tsunami generation
due to submarine slides for simple models
of a landslide

The wave formation and propagation due to landslides and avalanches are
complex phenomena that may be divided into three parts: energy transfer
from the slide motion to the water motion, the wave propagation in open
water, and the wave run-up on the shores. From the viewpoint of modeling,
the second part may be the simplest one, since well-established hydrody-
namic equations may be directly applied. The physical processes involved
in the first part are much more complex, and no common model equations
are available that would describe the motion of different slide materials as
rock, clay, mud, ice and snow and the energy transfer mechanism between
the slide and the fluid.
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The waves generated by slides can often be classified as long waves.
Most energy transferred from the slide to the water motion is distributed
among the waves with a typical wavelength A, which is much larger than the
characteristic water depth Dy. From the assumption Dy/A < 1 it follows
that the pressure is approximately hydrostatic, and the vertical variations of
the horizontal velocity are small. It is also assumed that the characteristic
amplitude of the waves a is much less than Dy. Nonlinear effects may be
important in the wave generation area, but only in a restricted region and for
a short period of time. The accumulative effect of the nonlinearity will not
probably exceed errors that originate from uncertainties in the slide shape
and motion. On the basis of these assumptions, the linearized shallow water
equations are used.

The estimations of sliding tsunamis are often obtained by the numeri-
cal solution of nonlinear or linear shallow water equations and considering
landslide lapses approximately. In other cases, they are taken into account
through the bed topography change due to the landslide motion. The bot-
tom topography is set either as a function of coordinates and time, or it is
determined by the velocity change law of the solid landslide body motion of
a given shape, or it results from the solution of the solid landslide dynam-
ics equation taking into consideration the gravity and the resistance forces
of the bottom and liquid. In these cases, the shallow water equations and
the boundary conditions comprise the terms with the function hy(z,y,t)
reflecting the bottom topography change.

The formation of tsunami waves because of an initial sea surface displace-
ment similar to the tsunami waves due to the landslide has been examined.
Given an initial sea surface displacement the characteristics of the tsunami
wave formed by the landslide using the nonlinear shallow water model and
the incompressible Navier-Stokes model are compared.

1.1. The shallow water numerical model

The incompressible shallow water and the long wave equations including the
friction effects and the Coriolis parameter solved by the SWAN code are:
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where ¢ is time, u is the velocity in z direction, v is the velocity in y direction,
g is the gravitational acceleration, —h(z,y) + hs(z,y,t) < z < ((z,y,t) is
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the liquid flow in the area, h is the unperturbed depth of water close to
z =0, ¢ is the water surface displacement, h, = hs(z,y,t) is the bottom
topography change due to the landslide motion, H = h 4 ¢ — h, is the bed
depth of water, h, is the bottom motion, f is the Coriolis parameter, C'
is the DeChezy coefficient for the bottom friction, F(®), F(¥) are forcing
functions of the wind stress in z and y directions, V' = (u? 4+ v2)1/2 is the
water module velocity.

The details of the computational procedure SWAN are described in the
reference [1].

The linear shallow water and the long wave equations including the fric-
tion effect and the Coriolis parameter are the following:
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where H = h(z,y) — h,(z, y, t) is the water layer thickness. The symbols of
the other variables are the same as for the system of equations (1)-(3).
1.2. The Navier-Stokes numerical modeling

The two-dimensional time dependent Navier-Stokes equations for incom-
pressible flow solved by the ZUNI code are the following:
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where p is pressure and # is the viscosity coefficient. A partial cell treatment
that allows a rigid free slip obstacle to be placed through cell diagonals is
included. The desired boundary slope is obtained by choosing the appro-
priate aspect ratio for mesh cells. Thus, the numerical technique can be
used to calculate the wave run-up on the exposed coasts in addition to the
submerged coasts. The details of the calculational procedure ZUNI are de-
scribed in reference [1].

The detailed Navier-Stokes numerical simulation of the gravity waves
that resemble the profile of actual tsunami waves was first done in refer-
- ence [1]. The interaction of tsunami waves with slopes that resemble the



Two and three-dimensional modeling of tzunami generation . . . 95
-

continental slope and shelf was simulated. Wave heights were calculated
to increase by a factor of four as they shoaled up 6.66 percent continental
slope.

1.3. Slide modeling

Obviously, the energy transfer from the slide mass to water is a very com-
plicated process that is impossible to simulate in detail. The composition
of the slide may vary over a wide range from large blocks to fine particles
that will experience resistance from the viscous drag, form a drag and added
mass. The slide will also lose energy due to collisions and friction among
slide particles and because of the bottom friction. The slide characteristics
can considerably change during the slide process; blocks can be crushed,
mass may be released or deposited along the sea bed, and water can entrain
into the total slide mass, thereby generating the turbidity currents.

The complexity of the real slide process accounts for developing sim-
plified slide models. Such models do not take into consideration many of
the enumerated factors and reflect only certain physical features of the slide
material. Given below are examples of slide models according to their com-
plexity.

Modeling of the surface waves generated by the motion of a submerged
body is a specific application to underwater landslides. In such problems,
an underwater “bump” initially at rest on the sloping bottom is gradually
moving under the action of gravity.

Consider a slide as a solid nontransformed body [2-4] moving due to the
gravity forces, the fluid resistance and the Coulomb friction along the bed.
The friction between the fluid and the slide body can be neglected if it is
infinitesimal in comparison with inertia, i.e., the dimensionless parameter
€ = cpUl/(2h\/gDy) < 1, where cp is the coefficient of the slide resistance,
! is its length, h is the maximum height, U is the slide velocity, Dy is the
basin depth. This model is useful for describing the motion of slides of
consolidated material which preserve their form during the motion. It is
applied in studying tsunami waves due to the fall of rocks, ice blocks and so
on into the sea.

1.4. Examples of the numerical modeling of underwater
landslides

Let us consider the examples of the numerical modeling of hypothetical and
observed slide tsunamis occurred in the past.

1.4.1. Modeling the 105 Ka Lanai tzunami. The first example refers
to the large tsunami wave run-up with the height of ¢ ~ 325 m which
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happened 105 thousand years ago on Lanai island in the Hawaiian chain.
One of the reasons for this historical event could be the underwater landslide.
In future, there will be a great possibility for very large shore landslide lapses
which might generate gigantic tsunamis and cause the greater part of the
Hawaiian islands to sink. Therefore, the analysis of such events is of primary
concern.

The numerical simulation of the hypothetical event on Lanai island was
made in [5] based on the system of equations (1)—(3) solved by the obvious
finite difference method on the code SWAN [1]. The landslide lapse was
approximately described by the instantaneous topography change of the sea
bottom (descent 20 x 20 x 1.5 km of a shore slope part of the island and
ascent 28 x 28 x 0.75 km of a flat ocean bottom) in such a way that the
landslide volume of 600 km® was preserved. The calculations have shown
that the earlier estimated volumes of local underwater landslides appear to
be insufficient to generate a gigantic tsunami wave.

1.4.2. The underwater landslides of Storegga. Let us consider an-
other aspect of the problem, namely, the aspect connected with the descrip-
tion of the landslide motion. The lapse of an underwater landslide actually
means the collapse of nonconsolidated sediments moving along the sea bot-
tom slope until they reach its flat part. While the landslide moves, the
topography of the sea bottom changes, and its duration is not negligibly
small as compared to the time of the sea surface displacement. Thus, the
actual landslide lapse cannot be adequately simulated by the instantaneous
change of the sea bottom topography.

The so-called underwater landslides of Storegga which occurred at least
three times in the Storegga area of a continental shelf of the western Norway
are well studied. They formed a sediment layer of 450 m wide and 800 km
long on a flat part of the sea bottom at the depth of 3.6 km. The greatest
landslide happened 30-50 thousand years ago. Its volume was large enough
to cover the entire surface of Alaska with a thick sediment layer.

However, the greatest attention was given to the analysis of tsunami
induced by the second landslide which occurred 6-8 thousand years ago.
Two slide bodies of the horizontal size of 10 x 30 km moved downwards
along the continental slope for 200 km and generated tsunami with the wave
run-up found along the shore line of the eastern coast of Northern Atlantic
[6, 7]. The deposition of sediments was retrieved in the areas located 4 m
higher than marks of the highest water level. In the numerical modeling of
the water waves generated by the second landslide of Storegga, the landslide
motion was described by the solid body dynamics equation, and the water
motion - by simple linear shallow water equations (1)-(3) solved with the
help of obvious finite difference method [8, 9]. It was found that the values of
tsunami wave run-up considerably depended on the average velocity of the
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landslide motion and the shear stresses at the water-slide body interface.
The landslide moving at the average velocity of 35 m/sec should make a
wave run-up from 43 to +5 m high along the eastern coast of Greenland,
Iceland, Scotland and the western coast of Norway. There is a marked initial
lowering of a water level (below — 10 m) along the western coast of Norway.
The second landslide probably caused two main tsunami waves as well as
some minor fluctuations of the water level.

In another numerical model of the second landslide of Storegga [10],
the landslide lapse was not considered. The estimation of the initial wave
amplitude in the center (~ 10 m) was obtained by the simple formula:

|4
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where V is the landslide volume, H is the average water depth. Then using
the linear shallow water equation, the numerical calculation of tsunami wave
in the direction of the eastern coast was done. The calculated values of the
tsunami wave runup appeared to be close to the measured ones [8].

The numerical model similar to the model [8] was applied to analyze
the drastic event connected with the landslide lapse in Tafjord fjord in the
western Norway in 1934 [11]. The predicted heights of the wave run-up
according to the numerical simulation well agree with the measured ones,
the calculated oscillations of quiescent waves coinciding with the observed
ones.

1.4.3. The underwater landslides of Floras Island in Indonesia.
Underwater earthquakes together with tectonic tsunamis can be called slide
tsunamis, their amplitude can be higher than the amplitude of the former.
Probably, the following event testifies to this. On December 12, 1992, the
earthquake with a magnitude M = 7.5 on the Richter scale struck the cen-
ter of Floras Island in Indonesia. Nearly 2,000 people were killed by the
earthquake and the tsunami.

The measured values of a tsunami wave runup in some places of the
northern shore of Hading Bay appeared to be much higher than the val-
ues predicted by numerical simulation results of tectonic tsunamis. Great
heights of the wave run-up were bounded by the area around the underwater
ground sliding and could be caused by the waves generated by a underwater
landslide rather than by tectonic tsunamis.

A tsunami model including the motion of a landslide using a circular
arc slip model and a subsidence model is proposed and applied to the wave
generation for the case of significant phenomena on the southern shore of
Hading Bay, Floras Island, Indonesia [12]. The one-dimensional propagation
and simple topography are introduced to simplify the numerical conditions
due to the lack of field data. The effects of the soil diffusion, bottom friction



98 V.E. Petrenko

and drag on the wave generation are also discussed. The results of this
research suggests that two circular arc slip models properly describe the
significant phenomenon in Hading Bay.

A few models were developed for the case of the Floras Earthquake
Tsunami with allowance for the kinematic and the dynamic processes of
the landslide near the coastal line. The subsidence model is simple. The
slope just drops vertically downward. The force causing the vertical drop is
obtained as follows:

* _ C 0
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where m is mass of the soil, ¢ is displacement of the sea bottom/slope, C is
the soil cohesiveness, and tan @ is the soil friction.

In the second model, the circular arc slip model, two types of the slip
are considered: toe slip and base slip. The failure surface for both models
is assumed to be a circular arc profile.

To confirm this, a numerical model of tsunamis including three models
of a landslide slip which differed from those mentioned above was proposed
in [12]. Two of them considered the material slip of the shore slope along
an arc circle, and the third describes vertical subsidence of this material.
The numerical simulation of the one-dimensional wave in Hading Bay was
performed on the basis of the shallow water theory supposing a simple bot-
tom topography, taking into account the resistance forces and the effects of
mixing on the landslide edge.

The results presented in [12], allowed one to explain the cause of a consid-
erable difference among heights of the wave run-up for the northern and the
southern shores of Hading Bay. The paper summarizes the geologic data
for these tsunamis. These data are compared to the data of the present
mathematical modelling of landslides and tsunamis. It is remarkable that
there is rather a good consent between estimations of the tsunami wave run-
up obtained on the base of the sediment data and those obtained in model
experiments.

2. Mathematical model of the two-dimensional,
time dependent turbidity current driven by
nonuniform sediments

A mathematical model has been developed for the 2D, unsteady, single layer,
depth averaged turbidity currents driven by a nonuniform, noncohesive sed-
iments [13]. The sediment entrainment and deposition are explicitly ac-
counted for, which encourages the simulation of the turbidity growth and
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evolution. The model consists of the fluid, momentum and sediment conser-
vation laws for hydrodynamics, and a bed sediment conservation equation
for the bed dynamics. The finite volume method was selected because it
is an ideal technique for solving the hyperbolic, time dependent equations
such as conservation laws.

2.1. The equations for the two-dimensional turbidity
current driven by nonuniform sediments

The equations that form the basis of the model are: vertically integrated
fluid, momentum, and sediment conservation equations. They constitute a
coupled system of nonlinear, hyperbolic, spatial differential equations. Tur-
bidity currents occur as underflows in the deep sea, when the flow thickness
does not exceed approximately 7.5 % of the overall ambient fluid depth,
hydrodynamics of the turbidity current can be accurately described by a
“single layer” formulation. The equations are valid for the 2D turbidity
current driven by nonuniform, noncohesive sediments flowing beneath an
infinitely deep layer of the quiescent fluid with the constant density, they
are written in the integral form [13]:

%LUdQ+£ﬂ(de—de)=LQdﬂ,

where UT = (h,hU,hV,hCy,...,hCy,) is the vector of conservative vari-
ables, and

v

FT = (AU, hU? + %gthCT,hUV, RUC, ..., hUC,.),
GT = (hV,hUV,hV? + %gh2RCT,hV01,...,hVC",),

QT = (E,VU? + V2, —ghRCrs, — u?, —ghRCrs, — v?,
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where RCt = }_12, RiCi.

The term h represents the flow thickness; U and V are vertically averaged
velocities in the z and y directions, respectively, and C; is the vertically
averaged volume concentration of the i-th sediment. The total number of
sediments contained in the current is denoted by n,. The parameter R; =
(ps; — p)/p, Where p,, is the density of the i-th sediment, and p is the density
of the ambient water, while g denotes the acceleration due to the gravity.

The term E,, is the fluid entrainment coefficient. The following expres-
sion is used in the present model:

0.075
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where Ri is the Richardson number: Ri = gRCr/(U? + V?2).

The parameters s, and s, are bed slopes in the z and y directions,
respectively, while u, and v, represent the shear velocities in the z and y
directions, respectively. The shear velocities are defined as:

u? = cpUVU? + V2, v =cpVVU2Z+ V2,

where cp is the bed drag coefficient. A typical range of values presented is
0.002-0.06.

The volume fraction of the i-th sediment in the bed is rerepresented by
pi, while Ej, is the i-th sediment entrainment coefficient. The expression
E,, is used for the closure, i.e.,

1.3 x 107725,

B = s 10-725,

where Z,; = kv/u2 + u2/vn, f(Ryp,), and k is the strain parameter defined
as:

k=1-0.2880,,

where ¢, is the standard deviation of the grain-size distribution based on
the phi-scale, ¢ = log; D,. The function f is dependent on the particle
Reynolds number, R,, = \/gR;D,, D, /v, i.e.,

Ry, =R)%, R, >35 R, =058R.?® 1<R, <35,

where cj, is the near-bed concentration of the i-th sediment. This expression

18
. Di 1.64
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where D,; denotes the geometric mean size of the suspended sediment mix-
ture. Finally, v, is the fall velocity of the i-th sediment in the quiescent
water.

2.2. The bed-sediment conservation equation

The equations governing the hydrodymamics have been coupled to the evo-
lution of the bed through a bed-sediment conservation equation. The bed
continuity equation is needed to keep track of the amount of loose sediments
at the bed. This is critical in order to limit sediment erosion in areas where
loose sediments are not covering the bed. In addition, tracking the bed el-
evation allows one to calculate bed slopes, which are needed to solve the
momentum equations.
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The bed-sediment conservation equation has the form

0z <
(1 _7)'37 =E”8e(cb¢ cosf — p;Ey,), (4)
=1 '
where z and 7 are the elevation and porosity of the bed, respectively, and
it has been assumed that %% ~ 0. Note that p; may also change with
time. In order to compute its variation, each grain size may be considered
individually, i.e.,

a a '_ s
(1-7) [p,-a—j + 251:“] - ; vy, (¢5; 08 6 — piEy,), (5)

assuming # not changing rapidly with time. Substituting the expression for
dz/0t from (4) into (5) yields:

ap;
(1- 7)2";9% = fs = pifi,

s ns
fs= Z fo, = Z v, (cp; cos 0 — p;Ey,).
=1

=1

2.3. The finite volume numerical model

The numerical solution is obtained by a high resolution total variation di-
minishing, finite volume numerical model, which is known to accurately
capture sharp fronts. The monotone upstream scheme for conservation laws
is used in conjunction with predictor—corrector time stepping to provide a
second order accurate solution. Flux limiting is implemented to prevent the
development of spurious oscillations near discontinuities.

3. Diffusive viscous—plastic model of
a two-dimensional submarine slide

The sliding unstable sedimentary bodies and their hydraulic effects are stud-
ied numerically.” A 2D fluid mechanics model based on the Navier-Stokes
equations has been developed assuming the sediments and water as a mix-
ture. The sediments are treated as the Bingham fluid that may diffuse
into water. The viscous—plastic relations and the Fick law of diffusion for
sediments have been introduced into the model [14].

3.1. Rheological model of the dense part of the slide

Bingham plastic model is employed to describe the behaviour law of these
fluids by combining the yield stress 7, called also the Bingham yield, and the
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plastic dynamic viscosity ug. These non-Newtonia.n_ fluids are also called the
“generalized Newtonian fluids” with a viscosity u(D). The nonlinear stress-
strain relation between the shear stress and the rate of shear is expressed
by:

7 =2u(D)D, (6)

where

To

u(D) = pp + = if T+, 27
) V D:c:zr + Dyy

p(D)=00, D=0, if 7247 <72,
7 is the non-diagonal part of the stress tensor, D is the shear rate or non-
diagonal part of the strain rate tensor.

The nonlinear constitutive relation (6) leads to two distinct zones in the
flow, a shear zone and a plug zone, or only one of them according to the
value of the yield stress.

3.2. Nasa—VOF2D numerical model and its extension

The Eulerian code Nasa~VOF2D solves the complete incompressible and
nonlinear Navier—Stokes two-dimensional equations for one single fluid with
a free surface [15] and its extension [14].

Modeling of the water waves generated by a submarine slide on the long
wave approximation gives wrong results for steep slopes of the sea bottom.
In this case, we have to discard the long-wave approximaticn and consider
models on the basis of the complete Navier-Stokes equations. Such an ap-
proach was used, for example, in [14] with the following assumptions:

The mechanism which may initiate the landslide is not examined

The submarine sediments are treated as a monophasic isotropic con-
~ tinuity; the motion of interstratal fluid is then neglected

e Both water and sediments are assumed to be incompressible

¢ An impermeable rigid slope is considered, and the erosion of the sea
bottom caused by the slide flow is neglected.

The mixture equations of conservation of mass and momentum, the water
surface equation and one additional diffusion equation, which takes into
account the concentration changes are expressed as follows:

dp

i TV (0)=0,  p=pitcdp, dp=p-p (7

F) - =
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oF
—b-i-+V-(Fv)=0. (9)
% +V. (c-u) = -;;V . (XVC), (10)

where V = 3‘% i+ % .7, 7 and '] are the horizontal z and the vertical Y axes
orts in the Cartesian system of coordinates, v is the fluid velocity vector
of the mixture, 7 is the shear stress tensor, g is the gravity acceleration,
c¢(z,y,t) is the volume fraction of the solid phase, p(z,y,t) is the mixture
flow density, p; and p; are the water and sediment densities, F(z,y,t) is the
fractional volume of the cell filled in with the mixture and ¢ is used for the
calculation, p(z,y,t) is the pressure, j = xVc is the diffusion flux.

So far, the sediment diffusivity x has been assumed constant in time and
space for numerical reasons. The value of the diffusion coefficient is then an
artificial value. ‘

The Navier-Stokes equations are solved by an Eulerian finite difference
technique. The resolution of eqyation (7) leads to the problem of the nu-
merical diffusion at the water-sediments interface. The method has been
developed based on a donor-acceptor technique. This technique is adapted
for the convection of F (see equation (9)). When no physical diffusion is
calculated (x = 0), the convection of ¢ from a donor cell to an empty down-
stream cell (¢ = 0) is carried out provided that the upstream donor cell is
full (¢ = 0). This method allows one to follow the interface water-sediments
without the numerical diffusion. When physical diffusion is introduced into
the model, the method still calculates an interface for each cell. Each cell is
conventionally divided into two parts, one part with the concentration (eu)
of the upstream cell and the other part with the concentration (c ) of the
downstream cell.

The initiation mechanism of a slide runup in [14] as well as in the works
mentioned above is not considered. The slide is thought to start its motion
and move along the inclined slope. The friction force of the slide against the
slope surface is taken into account, the friction force of the slide against the
fluid being neglected.

3.3. The flow of an underwater landslide in different
approximations within the system of equations (7)—(10)

The considered model of waves generated by an underwater landslide in-
cludes four parameters: the diffusion coefficient y, the Bingham yield stress
To, the viscosity coefficient pup, and the friction coefficient along the slope
surface ky. Assuming some values of these parameters equal to zero, it is
possible to simulate the flow of an underwater landslide in different approx-
imations within the system of equations (7)-(10), for example:
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e nonviscous fluid (up =0, 70 =0, x =0, ks = 0);

e viscous fluid (up #0, 0 =10, x =0, ks # 0);

e plastic fluid (up =0, 70 #0, x =0, ks # 0);

e the Bingham viscous-plastic fluid (ug # 0, 70 # 0, x = 0, ks # 0);

¢ nonviscous fluid solid phase diffusion (g =0, 70 =0, x # 0, ks = 0);
e viscous fluid with solid phase diffusion (up # 0, 70 = 0, x # 0, ks # 0);

o the Bingham viscous-plastic fluid with solid phase diffusion (pp # 0,
T0# 0, x #0, k_f7(£0)

The diffusive model from equations (7)—(10) allows us to describe the
water penetration into the granulated mass. The rheological law (ug # 0,
7o # 0) is used only for the dense part of the slide body, i.e., in the cells of the
calculated area with a high concentration of the solid phase (e(z,y,t) = 1).
The diffusion mechanism of the granulated mass into the surrounding liquid
is triggered only in those cells, where shear stress exceeds yield stress.

3.4. Sand flows at small-scale and water waves they
generates )

The experiments are to generate water waves by allowing a mass of sand
to slide freely down a frictionless inclined plane with the angle of 45°. The
channel is 4 m long, 0.03 m wide and 2 m high. For the water depth of
© 1.60 m, the wave celerity is about 4 m/s. The sand mass is as wide as the
channel so that experiments are two-dimensional in a vertical plane. The
initial vertical profile of the coarse gravel mass is triangular. This mass is
of 0.65 x 0.65 m in its cross section.

The computational domain is 4 m by 2 m in z and y directions. The
mesh consists of 300 columns with variable spacings and 200 rows. The
computed density maps and the computed wave profiles are presented at
t=0.4 and 0.8s.

In the first simulation, the sediments are modelled by an ideal fluid
without rheological law and without further diffusion. The slide is governed
by inertia forces, but not by viscosity forces. The computed mud mass is
mainly concentrated in the mud front, whereas in the experiments, the most
important part of the mud remains close to the initial position.

The following simulation has been carried out using the Bingham law
without diffusion. The plastic viscosity up is set at 0 (up = 0 Pa-s) assuming
the yield stress to be exceeded. According to numerical results for the yield
stress value of 79 = 1000 Pa at ¢ = 0.8 s a part of the mass is located on top
of the slope, but the most important mass is still concentrated in the mud
front. The same distribution of the density p is observed for the case with
a lower yield stress value.
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The concluding simulation has been carried out with an artificial diffu-
sion and the Bingham model ug = 0 Pa-s, where the value of 7y = 1000 Pa
is high. The diffusion model based on the Fick law X = 0.004 Pa-s allows one
to reproduce the penetration of water into the gravel mass, which induces
the motion of the mass. The computed density maps can be considered
close to the experimental results. The yield stress has a sufficient value, an
important part of the mass is close to the top of the slope and the sand
volumes are well distributed along the slope, particularly, in the slide front
where the mass of sand is decreased.

The comparison of numerical simulation results and small-scale labo-
ratory experiments concerning the subside of some sand mass into water
along the slope surface under the angle of 45° has shown [14] that the Bing-
ham model together with the diffusion mechanism reproduce experimental
observations rather accurately.

4. Three-dimensional numerical modeling of the
debris avalanche impact upon the sea

An impact of a debris avalanche of 40 x 108 m3 volume upon the sea and
the generated tsunami have been numerically simulated by a mixture model
solving 3D Euler equations [16]. The mixture composed of sediments and
water is considered as a homogeneous fluid. Numerical tests show that gen-
erated waves are sensitive to both the initial impact velocities and avalanche
fronts of the landslide. The water surface and velocities calculated by the
3D mixture model are used as input data in a nonlinear shallow water model
to calculate tsunami propagation along the coast of Montserrat [17].

The 3D hydrodynamics model [16] is developed for a single fluid. The Eu-
ler equations are solved with a free surface for a mixture of two incompress-
ible fluids using the Eulerian finite difference method. The debris avalanche
is assumed to be a non-viscous fluid flowing down a frictionless slope and
non-porous while sliding into water. Mixture equations of conservation of
mass and momentum, water surface equation and one additional diffusion
equation with allowance of concentration changes are expressed as follows:

0
5§+V-(pv)=0, p=p1+cdp, p=p;—p,

dpv

%+V'(pvv)=pg—Vp,

oF P2—P1g .
——+ V. (Fv) =0, Viv="-—2V.
ot (Fv) P1p2 7

K

where V = 3% i+ % g+ 565 . E, i, 7, and k are the axes orts in the Cartesian
coordinate system (z,y, z), v is the fluid velocity vector of the mixture, g is
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the gravity acceleration, p(z,y,t) is the mixture flow density, p1 and p, are
the water and sediment densities, F(z,y,t) is the fractional volume of the
cell filled in with the mixture, and c is used for the calculation, p(z,y,t) is
the pressure, j is the diffusion flux at 0, since no dilution of debris material
in water is calculated.

The continuity equation leads to the classical problem of numerical dif-
fusion at the interface between water and debris flow. The method has been
developed based on a donor-acceptor technique used for the convection of
F. The convection of ¢ from the donor cell to the entry downstream cell
¢ = 0 is carried out provided that the upstream donor cell is full ¢ = 1.
This method allows one to follow the water-sediments interface without the
numerical diffusion.

The 3D computational domain extends over 8 km in the z direction,
over 4.5 km in the y direction and from —750 m to 400 m in the vertical
direction. The mesh consists of 100 x 80 cells in the horizontal direction and
60 cells in the vertical direction.

The relative importance of the initial avalanche fronts and the initial
velocities is investigated by varying these parameters in 12 cases (4 velocities
and 3 front heights). The numerical experiments are performed for a mass
entering the sea at 40 m/s with a 25 m avalanche front. The waves propagate
in a semi-circular fashion outside the slide area, with the maximum wave
heights occurring in the slide direction.

A series of numerical results also shows that the mean velocity of the
mass penetrating into the sea decreases for the initial velocities of 55 m/s
and 40 m/s, whereas it increases for velocities lower than 25 m/s.

The propagation is simulated by a standard shallow water model ini-
tialized by the results of the 3D model. The selected case is the numerical
experiment with the impact velocity of 40 m/s and the avalanche front 25 m.
The considered nonlinear shallow water equations are referred to as 2 + 1
model in literature [18] indicating to the fact that there are two spatial hori-
zontal propagation directions (¢ and y) and one temporal (¢). The equations
are solved by a finite difference method using the upwind scheme which is
iterative in time to limit numerical oscillations due to nonlinearities.

The water wave heights and velocities used as initial conditions in 2+ 1
model have to be calculated by the 3D model at times when most energy
was transferred from the landslide to the water wave.

The 3D mixture model is used to calculate water waves generated by a
debris avalanche entering the sea. Water waves are propagating at further
distances by a shallow water model. The calculated water heights along the
Montserrat coast are in the range of those estimated for the event occurred
in Old Town on December 26, 1997.
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5. The three-dimensional modeling of tzunami
generated by a submarine mudslide

The general case of the three-dimensional viscous slide flow is considered
in [19], where they deal with the effect of slides spreading along the slope
both in the longitudinal and the transverse directions on the characteristics
of water waves generated by them. The landslide material is treated as
incompressible and nonviscous fluid. The long wave approximation is used
for both water waves and the slide. The characteristic length scale of the
wave motion is more than the local water depth and the slide thickness is
much smaller than the characteristic length scale of the slide along the slope.
The long wave approximation is valid only for waves on small slopes (1-10°).
There are governing equations for the three-dimensional viscous slide and
the surface waves generated by the slide. The surface waves and the water
circulation produced by three initial slides of various shapes with different
width/length ratios were calculated using finite difference method.

5.1. Governing equations for a viscous slide

The problem of the viscous fluid flowing down a rigid impermeable slope
inclined at a small angle 8 with respect to the horizon is represented. Let
Z, Yy, z be the Cartesian coordinates with their origin at the upper margin
of the slope, with  measured seaward at still water level, y measured along
the shore, z normal to the z — y plane. The free surface is designated by
z =1(z,y,t), and the sloping bottom by z = —n,(z, y, t). By the long-wave
approximation slide velocities are essentially horizontal, and the vertical
momentum equation reduces hydrostatic pressure distribution, that is,

(2,9, 2,t) = prgl(n(z,y,t) + h(z, y,1)] - paglz + h(z,y,t)],  (11)
_hs(x:y) S 2 S —h(.’l!,y,t),

where p(z,y, z,t) is the pressure in the mud layer, t is time, p; and p; are
densities of water and mud, respectively; h(z,y,t) is the undisturbed water
depth.

The viscous slide is assumed laminar and the nonlinear Navier-Stokes

equations will be employed. The z- and y-direction momentum equations
can be written down as:

oU,, U, oU,, U,
P2 (W + UmE‘— + Vm—afy— + me)
) a 0?U,,
= (b2~ pr)gsind - 22 4 22, (12)
WV o Vo | OV W) _ dp, 8V,
”2( o TUngg tVm Tt W’"?a?) =y TF e 13
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where Un(z,y, 2,t), Vim(z,y, 2,t), and Wm(z,y, 2,t) are the slide velocities
in the z, y, and z directions, respectively,  is the dynamic coefficient of the
slide viscosity. The viscous forces involving z and y derivatives are neglected
because of the relative thinness of the slide. '

The corresponding boundary conditions are 1) the zero-shear condition
on the water-slide interface,

W Vi _
-a—z = Ep = 0, z= h(:ﬂ, Y, t)‘l (14)

and 2) the no-slip condition on the seafloor,
Un=Vmn=Wn=0, z=—h,(z,y,t). - (15)

The mudslide rapidly reaches its equilibrium velocity so that the vertical
parabolic approximation may be used for horizontal velocities Un(z,y, z,t)
and V. (z,y, z,t); namely,

Un (2,9, 2,t) = U(z,1,2) [2(ZE") - (z;h-’ﬂ, (16)

Vin(z,9,2,t) = V(2,y,t) [2(2-;)’1‘9) - (z Bh’)z}, (17)

which satisfy the boundary conditions on the water-slide interface and on
the slide bottom (14), (15); U(z, y,t) and V(z,y,t) are horizontal velocities
of the slide at the water-slide interface, z = —h(z,y,t) and D(z,y,t) is the
thickness of the slide.

The vertical component of the velocity Wi, (z, y, z,t) can be derived from
continuity equation:

U | OV | W,
5z "oy T or =

0, (18)

integrating (18) with respect to z from z = —h,(z,y) to z = ~h(z,y) and
substituting (16) and (17) yield -

Wn(z,y,z,t) = =D(z, y,t) (-g—[:-l- %;i) [2(‘2;’%) - (z-;)h,)z]. (19)

Integrate momentum equations (12) and (13) with respect to z from
z = hy(z,y) to z = h(z,y,t) and substitute (11), (14), (16), (17), and (19)
to obtain z and y direction depth-averaged momentum equations for the
slide in terms of the unknown D(z,y,t),U(z,y,t), and Viz,y,t):
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m[50% - v + 50 (vG + v 5 v 5]
=D[(P2—p1)g(a—g—f) pxgg"] 2#%, (20)

N )
=D[—(pz—p1)g%§) plgg;'] 2#%, (21)

where o = sin 6.
The mass conservation equation for the entire slide can be written down

3D 6 ‘.'ha+D 3 —hs+D
wrall o) g ([ ) =0,

aD
3

There are the following dimensionless variables:
(z*,y" 2", t) = ([L]HI(ZJ ) [H]—lzv (g'/[L])llzt)# (23a)
(n*, D", h*, Hy) = [H]™'(n, D, h, hy), (23b)
Uy Vs W, U, V) = (U] (Unm, Viny Winy U, Vi) (23¢)

or

2[3 (UD)+ %(vp)]:o. (22)

g' is the reduced gravity defined as ¢’ = g(p2 — p1)/p2.
With (23), the governing equations of the slide (20)-(22) take on the
form (with asterisks omitted):

2 08U 1.06D 2 ou oUu v
-D— T 3U Y + (5U6 + 4V — 3y U?y-)
. 3D € On 2 U
—D(“‘fﬁrr_lax) FRD’
2.0V 1_0D 2 ov 6V BU
Do 3V % + —D(E)V-é; +4U 5~ - a:c)

_ oD € On 2V
- D( 6y+r—16y) FeRD’

D, %[%(UD) + a—y(VD)] 0.

where € = [H]/[L], r = p2/p1, R = po[H](¢'[L])/?/p, R may be called the
slide intensity parameter which combines parameters that affect the slide
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flow mode. The Reynold number is defined as Re = p, DU /i to characterize
the mud flow.

The laminar flow mode is expected for the Reynold numbers Re =
p2Uho/p < Re. = 1000, and the contact surface stability in the two-layer
shear flow (landslide body — water) demands that the Keulegan number
Ke = p2(AU)3/((p2 — p1)gu) < Ke, = 180, where hq is the initial maximum
height of the landslide, AU = U — u, U is the typical velocity of the land-
slide, u is the typical velocity of water, p; is the density of the landslide,
p1 is the density of water. It follows from the expression for the Keulegan
number that the contact boundary in the two-layer shear flow is steadier for
large values of viscosity and density differences.

5.2. Governing equations for waves

For waves on a gentle slope in shallow water the long-wave approximation
is adopted, i.e., the vertical length scale is much smaller than the horizontal
one. Thus, the water motion is essentially horizontal and the pressure distri-
bution in water can be assumed hydrostatic. Neglecting the wave dispersion,
depth averaged dynamic equations for nonlinear shallow-water waves due to
the impermeable seabed motion are the following:

O(n+h)  Ou(n+h)]  Ov(n+h)] _

ot + 9z + By =0, (24)
ou Ju ou don
E+u%+va—y+ga—0, (25)
Qv  Gv  dv  dn
§+u£+v5§+9‘5§—0a (26)

where u(z,y,t) and v(z,y,t) are horizontal particle velocities of the water
motion. Nonlinear terms are retained in (24)-(26) but the wave dispersion
is neglected.

Let us adopt the same length, velocity and time scales as those used
for the mudslide and the relation A(z,y,t) = hs(z,y) — D(z,y,t), then
equations (24)—(26) in dimensionless variables (with asterisks omitted) are
the following;: :

A Y A |
ou er On Ju ou
FI —r—-la_x_va_y'_ué;’
v er dnp  Ov = v

E l‘-—l—i}; va—y—u-é;.
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5.3. Numerical results

The slide is initially at rest. Consider a parabolic initial slide surface with a
rectangular bottom periphery. The initial slide surface can be expressed as:

h(z,y,0) = ho[l - [2(z — 20)/Lo’][1 - [2(y - v0)/(nLo)]?],  (27)

where z¢ and yp are the initial z- and y- coordinates of the center of the slide
bottom, L is the initial length of the slide bottom, hg is the initial maximum
slide thickness, and n is the ratio between the breath (in y direction) and
the width (in z direction) of the slide. To examine the three-dimensional
effects of the slide on the surface wave generation and water circulation, one
has to examine the cases for two different width/length ratios of the slides.
Equation (27) in dimensionless variables reads:

h(z,y,0) = ho[l - 4(z — z0)?] {1 - ;j%(y - yo)z]-

Given the slope angle, the typical parameters and the initial positions
of the slide, one can calculate %(z,y,t), u(z,y,t), and v(z,y,t) for waves
and water current, and D(z,y,t), U(z,y,t), and V(z,y,t) for the slide.
The governing equations of the slide and the waves are solved with a finite
difference method. The numerical scheme employed is an explicit finite
difference scheme in space and time.

Numerical results are presented for successive profiles of the mud surface,
horizontal velocities of the mudslide, the evolution of surface elevations, and
velocities of the water motion. Comparisons of the presented 3D calculations
with the previously published 2D results [20] indicate to small differences for
large length/width ratios after the initiation of the slide. Generally, however,
water surface profiles deviate significantly from the 2D results. Adequate
simulations thus require an accurate representation of the aspect ratio of
the sliding mass. .

6. Some numerical results unavailable
in literature

There are several papers on the 2D numerical simulation of the submarine
landslides. A two-phase description of the sediment motion was introduced
to simulate an underwater landslide in [21]. The computation of waves
generated by submarine landslides was performed in [22]. Fluid mechanics
models are used to simulate subaerial or submarine landslides due to their
observed fluidlike behaviors [23, 24]. The coupling of two absorbing bound-
ary conditions for the 2D time-domain was shown, and simulations of free
surface gravity waves were examined in [25].
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