Bull. Nov. Comp. Center, Comp. Science, 46 (2022), 43-55
(© 2022 NCC Publisher

Preliminary results on fault tolerance support in
LuNA system*

V. Perepelkin, V. Malkhanov, V. Zakirov

Abstract. Fault tolerance support automation is a relevant problem, because it
is both demanded for large scale computations and hard to implement manually.
General approaches exist, but they lack efficiency which is required in high perfor-
mance computing as compared to particular approaches, which exploit peculiarities
of subject domain and applied algorithm in order to reduce overhead on fault tol-
erance support. Usage of parallel programming systems, such as LuNA, opens
possibility to automatically or semiautomatically implement fault tolerance sup-
port in constructed programs which are more efficient than general approaches due
to exploitation of peculiarities of the computational model on which the system is
based. The problem of automated fault tolerance support in LuNA system is con-
sidered in the work. Some preliminary results are presented, such as checkpointing
technique adaptation and the problem analysis.

Introduction

Development of numerical parallel programs for high performance comput-
ers is troublesome due to the necessity to provide non-functional properties
of the programs. Such properties include high efficiency, low power con-
sumption, memory or network efficiency, dynamic load balancing etc. One
of such properties is fault tolerance. Fault tolerance is the ability of a pro-
gram to keep running in case of hardware faults of particular kind. In
scientific computations fault tolerance is relevant for large scale supercom-
puters, comprising thousands and millions of cores, because the larger the
supercomputer is, the higher is the hardware fault probability. Absence
of fault tolerance support means that in case of hardware fault the whole
computation has to be rerun from the very beginning. Thus, the longer it
takes to compute, the less is the chance for computation completing in a
reasonable time, not to mention the resources waste for failed executions.
Fault tolerance support is hard to implement because of different reasons.
Firstly, there is no universal efficient solution to the problem. Such general
approaches as periodic memory dumping imply the overhead which penalize
the high performance computing, and is much higher, than some particular
solution could take. Secondly, development and implementation of a partic-
ular fault tolerance tool is often not trivial and requires specific knowledge

*This work was carried out under state contract with ICMMG SB RAS 0251-2021-0005.



44 V. Perepelkin, V. Malkhanov, V. Zakirov

and skills in system parallel programming. Such skills and knowledge are
not commonly possessed by supercomputer users.

One of the ways to overcome the difficulties in provision of fault tol-
erance support is programming automation. Many parallel programming
systems and frameworks suggest the automatic provision of fault tolerance
support [1-3]. Usage of high level programming languages gives the system
a much deeper understanding of how the program performs, and thus the
fault tolerance often can be implemented more efficiently than in the general
case. For example, if there is a task-based computational model, where each
task is a serializable object, then the fault tolerance can be implemented
by serialization of tasks, rather than dumping the whole memory. Different
programming systems and languages are based on different computational
models, which provide different capabilities for automatic provision of fault
tolerance.

This paper is devoted to the problem of automatic provision of fault
tolerance in LuNA system. LuNA (Language for Numerical Algorithms)
is a language and a system for automatic construction of numerical paral-
lel programs for multicomputers (distributed memory computers). LuNA
is an academic project of ICMMG SB RAS [4]. It is based on the theory
of structured synthesis of parallel programs on the basis of computational
models [5], which suggests rich possibilities in automation of non-functional
properties provision. In this paper we describe how the fault tolerance can
be implemented in LuNA and demonstrate some preliminary results in im-
plementation of this kind of support.

The rest of the paper is organized as follows. In Section 1 a brief de-
scription of LuNA model is given, as well as the discussion of the basic
idea of automatically supporting fault tolerance. Section 2 concerns the im-
plementation of particular checkpointing technique. Section 3 concerns the
checkpoint format. Section 5 is devoted to the problem of dynamic addition
and removal of computing nodes using the means of MPI (Message Passing
Interface). The paper ends with a conclusion and a related work review.

1. LulNA system and fault tolerance

In LuNA system, a program is explicitly represented as a set of triplets
both in the input language and in run time. Each triplet has the form
(in, mod, out), where in and out are finite sets of input and output argu-
ments, correspondingly, and mod is a sequential subroutine with no side ef-
fects, capable of computing the output arguments from the input ones. Such
triplet is called computational fragment (CF), and arguments are pieces of
immutable data (called data fragments — DF). DFs and CFs are coarse-
grained objects, rather than single numbers and operations on them. For
example, a DF can be a submatrix or a mesh domain, and a CF can be



Preliminary results on fault tolerance support in LuNA system 45

a subroutine to process such data. If a DF is an input argument of a CF
and an output argument of another CF, then the second CF is information
dependent on the first one.

LuNA program is a description of the set of CFs and DFs. Its execution
consists in the following. At any given moment a set of CF's to be executed
and a set of computed DF's are distributed over computing nodes of a multi-
computer. LuNA system selects a CF and checks whether all its input DFs
are computed. Then LulNA transfers the input DF's to a particular comput-
ing node and invokes corresponding subroutine. The subroutine execution
produces the values of output DF's, which are then distributed to comput-
ing nodes. Multiple CFs can be executed in parallel on different computing
nodes and cores.

The basic idea of the checkpointing mechanism in LuNA is straightfor-
ward. The flow of a program execution is fully defined by the sets of DFs
and CFs, which exist in the system at any given moment. Thus, if all the
DFs and CFs are saved into files, then they can be restored later to continue
the program execution. All DFs are immutable, so data modification is not
a problem. All CFs are side-effect free, therefore a CF can be executed on
any node (or after the checkpoint has been restored) with exactly the same
output values computed.

So, saving a checkpoint is as simple as pausing execution, waiting for
currently running CFs to finish execution and then dumping all the CFs
and DFs into a file. The DFs dumping is possible because all DFs in LuNA
are serializable. This is necessary for the system to be able to transfer them
over the network from the computing node (where a DF was produced) to
the nodes where it can be stored and consumed by other CFs. Serialization
of a CF is also not a problem, because a CF is actually a triplet descriptor,
which LuNA is able to serialize when transferring CFs over the network.

Checkpointing in LuNA is different from checkpointing in conventional
parallel programs, such as MPI programs. The main reason is because the
LuNA program is not bound to any hardware resources. Any CF or DF
can be stored and restored at any node with no influence on the computed
values. The only exception is the execution of CFs subroutine, which is a
conventional subroutine call. Therefore, CFs are not saved into a checkpoint
if they are already being executed. Before saving a checkpoint, executing
CF's should be either aborted or waited for completion. Absence of binding
to hardware resources makes it possible, in particular, to restore a checkpoint
on a different multicomputer, or on a different number of computing nodes,
which is uncommon for regular checkpointing.

Another peculiarity of checkpointing in LuNA is the ability to dump
only necessary part of data, not the whole memory. This is possible because
all the application data are explicitly represented as DFs. Moreover, when
dumping a conventional process, all the data must be put to exactly the



46 V. Perepelkin, V. Malkhanov, V. Zakirov

same addresses, because otherwise the pointers may become invalid. There
are no pointers in LuNA, thus any DF can be loaded into a different memory
location (or even into the memory of another computing node) with no risk
of invalidating the execution. Another problem with conventional programs
is open file descriptors and other local resources, which need special handling
and cannot be recovered automatically. For LuNA, CF subroutines have no
side effects, thus this problem is not raised at all.

In conventional programming, checkpoint saving is often made not at
random time point, but at particular steps of execution. For example, when
an iteration of a numerical method is performed and the intermediate data
are cleaned up. This is useful to reduce the checkpoint size (and saving
time) and to simplify the restoring routine. Also this allows to control
the checkpointing frequency. In LuNA, more or less similar effects can be
obtained automatically. In particular, since all the DFs are “visible” to the
system, it can watch the total amount of data. Once the total DFs size
drops to some low level, the checkpoint saving event can be triggered. The
frequency of saving checkpoints can be selected by the system automatically,
e.g., for a given “save time” to computing time ratio.

Another concern for considering here is the ability to resume the program
execution from a checkpoint using a different run-time system. Basically,
LuNA consists of a translator and a distributed run-time system. But in
practice, to achieve the high performance of LuNA programs execution,
multiple specialized run-time systems exist. If an application belongs to a
particular class of applications (e.g., dense or sparse linear algebra applica-
tion), a specialized run-time system is used to increase the execution effi-
ciency [6,7]. Checkpointing mechanism brings here an interesting possibility
to switch between the run-time systems during LuNA-program execution: a
checkpoint is saved by one run-time system while it is restored by another
one. This technique can be used to dynamically adapt to peculiarities of
an application. However, implementation of such a portability requires a
common checkpoint format, compatible with multiple run-time systems.

To implement checkpointing in LulNA, the following problems were to be
concerned. Firstly, this is “pausing” and “resuming” the system required
for coherent run of the program. This means all executing CFs should be
completed, and all network messages should be delivered before saving a
checkpoint. Secondly, the checkpoint format has to be defined. An addi-
tional requirement here is the portability across different run-time systems.
Another related problem here is changing the number of nodes for operating
the LulNA. This is necessary if checkpointing is used to cope with hardware
faults. Therefore there should be an ability to continue execution on a re-
duced set of nodes, as well as to dynamically add new nodes to computation
process for replacing the failed ones. The next sections of the paper concern
these questions.



Preliminary results on fault tolerance support in LuNA system 47

It is worth mentioning, that stopping the whole run-time system in a
barrier manner is not the only option. Another interesting way to do this is
to explicitly mark some subset of CFs and DFs as candidates to comprise
a checkpoint. Multiple subsets can be marked as different checkpoint can-
didates. Once the system needs saving a checkpoint, it just waits for CFs
and DF's from the next candidate start appearing and serializes them into a
checkpoint. This method allows eliminating any barrier-like synchronization
or system pausing and making a consistent checkpoint on-the-fly. And the
checkpoint candidate subsets can be selected in such way that the amount
of data to be saved is not too big. Marking the candidates can be performed
manually (e.g. by annotating the application source code) or automatically
(if a suitable algorithm is provided).

2. Stopping and resuming run-time system

Once creation of checkpoint has been triggered, the run-time system has to
be paused. For that, two subsystems are to be stopped: the CF execution
subsystem and the communication subsystem. If dynamic load balancing
(or another system module which can affect checkpointing) is running, it
must be stopped. However, this issue is out of the scope of the paper.

Stopping the CF execution subsystem. In the run-time system,
CF's can exist in three states: waiting for an external event (such as receiving
a DF or end of migration to other computing nodes), waiting for a thread in
a thread pool to perform the next action or running the current action by
a thread from the thread pool. So, the first thing to be done is preventing
threads from the thread pool to accept the CFs for execution. Instead, all
those CFs should be put to a buffer. A corresponding flag is set to force
such behavior. The second thing is to wait until all currently running CFs
will complete their execution.

Stopping the communication subsystem. It is necessary to make
sure no migrating CFs, DF's or other system objects keep migrating over the
network before saving the checkpoint (the whole list of objects is presented
in Section 4). Once all CFs are paused, no new migration is possible. After
that all the messages currently being transferred have to be delivered to the
destinations. The modified Dijkstra-Scholten algorithm [8] is used for this
purpose.

Resuming work. After stopping the two subsystems, the checkpoint
can be saved, and then the execution can be resumed. To resume the exe-
cution, the pause flag has to be cleared and all the buffered CFs have to be
re-submitted to the thread pool of the CF execution subsystem.



48 V. Perepelkin, V. Malkhanov, V. Zakirov

3. Checkpoint format

A checkpoint must store all the information necessary to resume execution
from this point. The format should allow to restore execution not only
for the run-time system (which saved the checkpoint), but also for other
run-time systems. A particular case is when the checkpoint is restored by
the same run-time system, but with different configuration (e.g., with dy-
namic load balancing enabled while it was disabled before the checkpoint
was saved). This allows changing the configuration of the run-time system
unsuitable for altering while a program is running.

Checkpoints are saved in a binary format in a structured form. The
format is described below starting with primitives.

String format:

[length: int32]
[string: bytel...

Such notation is intuitive and denotes a binary object, which starts with
a 4-byte integer. It encodes the length of the string, followed by a corre-
sponding number of bytes in the string body. Note here that no terminating
symbol is used in this format. Note: ellipsis means there is a sequence of
such records. Here it means that multiple bytes represent the string body.

ID denotes an identifier of CF or DF. Here ID is a system record, which
is a sequence of a number of integers. ID format:

[ids length: int32]
[element: int32]...

Here a number of integers in the ID is stored as a 4-byte integer, and then
the corresponding number of 4-byte integers are stored, each representing
an element of the ID.

Data Fragment (DF) is basically a memory region and an associated
LuNA type (int, real, string or value). DF format:

[data size: int32]
[data: byte]...
[type: bytel

Computational fragment (CF) is a system record, which consists of mul-
tiple fields:

1. next block: an integer denoting the current step of the CF execution;

2. args: an array of DFs, which were defined at the CF initialization;

3. ids: an array of references accessible by the CF;



Preliminary results on fault tolerance support in LuNA system 49

4. store: a dictionary of DFs with identifiers, which are either input or
output DFs of the CF.

CF format:

[next block: int32]
[args length: int32]

[args: DF]...

[ids length: int32]
[ids: ID]...

[store length: int32]
[ID, DF]...

Note: the last sequence is the sequence of pairs of types ID and DF,
representing key-value pairs of the store dictionary.

The whole checkpoint is represented as a composition of checkpoints for
each node. Node Checkpoint (NC) consists of 5 elements:

CFs: array of CFs;
posts: array of DFs;

requests: array of requests (CF requests an input DF);

waiters: array of CFs waiting for responses;

A .

destroys: DF deletion requests.
Request format:

[dfid: ID]
[requesters length: int32]
[cf_idx: int32, node: int32]...

Here requesters is the array of CFs, which have sent requests, cfidz is
the index of the CF in the CFs array of the NC, node is the rank of the
request origin node.

Waiter format:

[dfid: ID]
[waiting CFs length: int32]
[cf_idx: int32]...

Here dfid is the identifier of the requested DF. It is followed by the list
of CFs which are waiting for response.



50 V. Perepelkin, V. Malkhanov, V. Zakirov

NC format:

[CFs length: int32]

[cf: CF]...

[posts length: int32]

[id: ID, req_count: int32, df: DF]...
[requests length: int32]

[Request] ...

[waiters length: int32]
[Waiter]...

[destroys length: int32]
[ID]...

Here reg_count is a counter of remaining usages of DF. When the counter
reaches zero the DF is deleted.
Checkpoint format:

[format version: int32]
[number of nodes: int32]
[node checkpoint size: int32]...
[node checkpoint: NCJ...

CF storage problem. In LuNA run-time system, CFs have no persis-
tent unique identifiers. All the identification was carried out using point-
ers to local objects, which represent CFs, which were used in callbacks
and remote callbacks. Note: a callback is a pointer to a lambda function
(std :: function) that handles an event; a remote callback is a pointer to a
lambda function on another computing node. Running a remote callback is
carried out as passing a message to the node and calling the lambda there.
Such technique is efficient in terms of callback lookup time (which is of con-
stant complexity), but the problem is that serialization and identification of
CF's becomes not possible as is. That is why the CFs in a checkpoint are
identified by their index in the CFs array (in NC). And where a CF has to
be referred to, the index is used. Such approach implied some additional
logic in the run-time system.

4. Dynamic nodes reallocation with MPI

Normally, parallel programs are run on a static number of computing nodes,
e.g., on a computing cluster via a task queue system, such as OpenPBS [9].

However, sometimes there is a need to dynamically add more nodes to
computation process, or to reduce the number of used nodes. For example,
this is a must if an application consists of different computational steps re-
quiring different amount of resources or if an application can dynamically



Preliminary results on fault tolerance support in LuNA system ol

scale up to the currently available resources. In the context of fault tolerance,
dynamic nodes reallocation is needed in two cases: 1) if there is a hardware
failure on a computing node, so the node has to be excluded from the set of
used nodes; 2) if a number of nodes are added to compensate the reduction
of nodes due to hardware faults. No matter what is the reason, the dynamic
computing nodes reallocation support is a relevant problem. Message Pass-
ing Interface (MPI) is the most widely used interface for implementation of
high performance communications in scientific computations. Starting from
version 2, MPI possesses some means for support such reallocation. The Sec-
tion describes an attempt to use the means for dynamic nodes reallocation
in LuNA (which uses MPI to perform communications).

Let us concern two simple examples demonstrating some reallocation
benefits.

Example 1. Suppose there are 16 computing nodes available on a clus-
ter with two programs running on it, each occupying 8 nodes. Assume the
first program will run for about two days, and the second one— for one day
only. Dynamic nodes reallocation could make use of the released 8 nodes af-
ter a day of computations for the first program, speeding up its computation
rate.

Example 2. Suppose a low-priority task is running on the whole cluster.
To start a new high-priority task, we could release the necessary amount of
resources from the first task and use them to run the second task.

The main idea of dynamic nodes reallocation is to run another instance
of the distributed run-time system in a special mode, which consists in con-
necting to the already running instance of the distributed run-time system.
By that time the first instance has to be listening for such connections at
some address.

The implementation of this feature is based on MPI-2 standard, which
includes dynamic process generation and process management. The key
aspect is the ability of the MPI process to participate in the creation of new
MPI processes or to establish communication with MPI processes that were
started separately. The MPI-2 specification describes three main interfaces
through which MPI processes can dynamically establish the communication:

e MPI_Comm _spawn— allows a child processes to be spawned.

e MPI_Comm_accept / MPI_Comm _connect — allows to establish a con-
nection between two independently running applications. These oper-
ations are blocking and collective.

e MPI_Comm_join — allows to combine two processes connected by a
socket (intended only for environments that support the Berkeley sock-
ets interface).

MPI_Comm_accept / MPI_Comm_connect was chosen as the most suit-
able interface for the following reasons.



52 V. Perepelkin, V. Malkhanov, V. Zakirov

Firstly, using MPI_Comm _spawn would require to initiate somehow the
generation of new processes, moreover, it would also be necessary to pass a
host file containing the hosts for launching the new processes. This option
does not suit clusters with a task manager and this is a common case for
scientific computations.

Secondly, MPI_Comm_join allows to combine only two processes when
it is necessary to combine the groups of processes. Moreover, this interface
supports only the Berkeley sockets.

Thirdly, MPI_Comm _accept / MPI_Comm _connect allows to re-run the
required program on the necessary nodes, which then merge with the original
program, which is the most convenient way.

Thus, it is possible to describe the algorithm of resource capture and
release as follows:

1. Initiate the connection of two independently running programs. There
are several options:

(a) Handling UNIX/Linux process signals.
(b) Listening to a socket in a separate thread.
(¢) Running MPI_Comm_accept in a separate thread on each process.

2. Send to all processes a tag indicating the start of resource capture or
release.
3. Stop the execution system.

4. Establish a connection using MPI_Comm_accept / MPI_Comm_connect
and update the main communicator, as well as the total number of
processes and the ranks of each of them.

(a) In case of resource capture, the process groups can be combined
into a common communicator using MPI_Intercomm _merge.

(b) If resources are released, MPI_Comm_split can be applied making
different colors for released processes.
5. Redistribute tasks and data between processes.

6. Resume the execution system.

Stopping the system is described previously in the Section 2.

Let us consider redistribution of tasks and data between processes. Once
the number of computing nodes has changed, four kind of objects are to be
redistributed:

e ('Fs—a list of CFs on the node;
e Posts—a list of DF's being stored on the node;



Preliminary results on fault tolerance support in LuNA system 53

o Requests— a list of requests of DFs by some CFs;

e Destroys — a list of DF deletion requests.

All four kinds of objects are distributed to computing nodes and to the
node allocated for distribution are defined by a dynamic function called
locator. This function can be considered as a function of the following form:
locator(id, size) => node. Here size is the number of computing nodes.
Since size has changed, some object’s locations can alter as well. That’s
why each object has to be looped through and have its location recomputed.
If the location has changed, the object has to migrate to the corresponding
node.

Implementation of dynamic nodes reallocation using MPI faced some
technical problems associated with MPI implementations (we considered
MPICH and OpenMPI).

1. MPI_Comm_accept / MPI_Comm_connect does not work in OpenMPI
when connecting two independently running programs.

2. MPI_Comm _accept causes all MPI functions to hang if initialized with
MPI_THREAD MULTIPLE. This problem is reproduced in MPICH. Be-
cause of this, it will not be possible to run MPI_Comm _accept in a separate
background thread on each process to initiate a connection (which would be
the most straightforward way to do it).

3. In the case of resource release after the communicators have been sep-
arated using the MPI_Comm _split, it is not possible to immediately stop the
freed processes using MPI_Abort. According to the MPICH and OpenMPI
documentation, the command MPI_Abort does not guarantee the continu-
ation of the work of the remaining MPI processes. That is, this function
terminates all processes, even those that do not relate to the transmitted
communicator. It means that the real hardware fault shall cause the whole
MPI application to abort. Nevertheless, we hope the MPI will evolve to the
capability of sustainable running while hardware faults, because the demand
of this feature tends to increase for the large-scale supercomputers.

Related work and conclusion

The software fault tolerance in distributed parallel computing has been stud-
ied for decades [10]. Many particular and general solutions have been de-
veloped. For example, a fault-tolerant MPI [11] is an attempt to imple-
ment general transparent fault tolerance under the MPI interface. Besides
checkpointing, replication [12] is another common technique to support fault
tolerance. Both techniques can be used together [13]. From the user’s per-
spective, fault tolerance may take a form of rollback mechanism [14]. Many
other techniques and approaches were introduced [15-23].



54 V. Perepelkin, V. Malkhanov, V. Zakirov

Although many results were introduced, no general solution is expected
to be found. Particular solutions may be efficient, but hard for manual
implementation or require a particular programming framework or a system.
Of great importance is automated provision of fault tolerance. It is based
on creating a system that predicts the kind of an application and supplies
it with a suitable heuristic (or specialized) fault tolerance mechanism.

LuNA system is a system designed for analysis of running application and
providing build-in automatic fault tolerance. In this paper some preliminary
results are presented on automatic fault tolerance support in LuNA system.
In the future research, the proposed technique has to be tested and adapted
for particular application and execution conditions.

References

[1] Dean J., Ghemawat S. MapReduce: simplified data processing on large clusters
// Commun. ACM.—2008.— Vol. 51, No. 1.—P. 107-113.

[2] White T. Hadoop: the Definitive Guide.— O’Reilly, 2012.

[3] Isard M., Budiu M., Yu Y., et al. Dryad: distributed data-parallel pro-
grams from sequential building blocks // EuroSys ’07: Proc. of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007. — New
York, NY, USA: ACM, 2007.—P. 59-72.

[4] Malyshkin V.E., Perepelkin V.A. LuNA fragmented programming system,
main functions and peculiarities of run-time subsystem // Parallel Comput-
ing Technologies. 11th International Conference, PaCT 2011, Proc.— Springer,
2011.— P. 53-61.— (LNCS; 6873).

[5] Valkovskii V., Malyshkin V. Parallel Program Synthesis on the Basis of Com-
putational Models. — Novosibirsk: Nauka, 1988 (In Russian).

[6] Belyaev N., Perepelkin V. High-efficiency specialized support for dense linear
algebra arithmetic in LuNA system // Parallel Computing Technologies. PaCT
2021.— Springer, Cham, 2021.—P. 143-150. — (LNCS; 12942).

[7] Belyaev N.A. Automatic construction of high performance parallel programs
for dense linear algebra applications in LuNA system // Problems of Infor-
matics. — 2022. — No. 3. —P. 46-60.

[8] Dijkstra E.W., Scholten C.S. Termination detection for diffusing computations
// Information Processing Letters.— 1980.— Vol. 11, No. 1.—P. 1-4.

[9] OpenPBS Open Source Project web page. — https://www.openpbs.org (Ac-
cessed 29.10.2022)

[10] Egwutuoha I.P., Levy D., Selic B. et al. A survey of fault tolerance mechanisms
and checkpoint /restart implementations for high performance computing sys-
tems // J. Supercomput.— 2013.— Vol. 65.—P. 1302-1326.



Preliminary results on fault tolerance support in LuNA system 99

[11]

[12]

[13]

[19]

[20]

Jung H., Shin D., Kim H., Lee H.Y. Design and Implementation of Multiple
FaultTolerant MPI over Myrinet (M3).— Seattle, Washington, USA: ACM,
Nov 2005.— (SC-05; 1218).

Walters J., Chaudhary V. Replication-based fault tolerance for MPI applica-
tions // IEEE Transactions on Parallel and Distributed Systems. — 2009. —
Vol. 20, No.7.—P. 997-1010.

Chtepen M., Claeys F.H.A., Dhoedt B., et al. Adaptive task checkpointing
and replication: toward efficient fault-tolerant grids // IEEE Transactions on
Parallel and Distributed Systems.— 2009.— Vol. 20, No. 2.—P. 180-190.

Jafar S., Krings A., Gautier T. Flexible rollback recovery in dynamic het-
erogeneous grid computing // IEEE Transactions On Dependable and Secure
Computing. — 2009.— Vol. 6, No. 1.—P. 32-44.

Yang X., Du Y., Fu P.W., Jia J. FTPA Supporting fault-tolerant parallel
computing through parallel recomputing // IEEE Transactions on Parallel
and Distributed Systems.—2009.— Vol. 20, No. 10. —P. 1471-1486.

Gorender S., Raynal M. An adaptive programming model for fault-tolerant dis-
tributed computing // IEEE Transactions On Dependable And Secure Com-
puting. — 2007.— Vol. 4, No. 1.—P. 18-31.

Luckow A., Schnor B. Adaptive checkpoint replication for supporting the fault
tolerance of applications in the grid // Seventh IEEE International Symposium
on Network Computing and Applications, 2008. —2008.— P. 299-306.

Bouteiller B., Cappello F., Herault T., et al. MPICH-V2: a fault tolerant MPI
for volatile nodes based on pessimistic sender based message logging // SC
’03: Proc. of the 2003 ACM/IEEE Conference on Supercomputing. — 2003. —
P. 25.

Leon B., Gomez-Sanchez P., Franco D., et al. Analysis of Checkpoint I/0O
Behavior // Computational Science — ICCS 2020.—2020.— P. 191-205.

Bajunaid N., Menasce D.A. Efficient modeling and optimizing of checkpointing
in concurrent component-based software systems // J. Systems and Software.—
2018.—Vol. 139.—P. 1-13.

Han L., Le Fevre V., Canon L-C., et al. A generic approach to scheduling and
checkpointing work flows // Intern. J. High Performance Computing Applica-
tions.—2019.— Vol. 33, No. 6.—P. 1255-1274.

Garg R., Praveen K. A review of checkpointing based fault tolerance tech-
niques in mobile distributed systems // Intern. J. on Computer Science and
Engineering. —2010. — Vol. 2, No. 4. —P. 1052-1063.

Riesen R., Ferreira K., Da Silva D., et al. Alleviating scalability issues of
checkpointing protocols // CS ’12: Proc. Intern. Conf. for High Performance
Computing, Networking, Storage and Analysis.—2012.—P. 1-11.



56




