
Bull. Nov. Comp.Center, Comp. Science, 48 (2024), 13–32
© 2024 NCC Publisher

On some technological issues of LuNA active
knowledge system implementation*

K. Buyko, R. Kapralova, M. Kopylov, A. Kudryavtsev,
V. Perepelkin, A. Pirozhkov

Abstract. Active knowledge concept is a methodology for parallel programs con-
struction automation. It allows automatic construction of programs which meet
non-functional requirements in particular subject domains. To support the automa-
tion an active knowledge base has to be constructed, which contains information
on peculiarities of the subject domain. LuNA system is an academic project aimed
at implementation and practical research of the active knowledge concept. In the
paper we concern some technological problems which arise during practical imple-
mentation of the active knowledge concept, as well as their solutions developed in
LuNA project.

Keywords: active knowlege concept, automated program construction, parallel
program.

Introduction

Development of high performance numerical parallel programs is a com-
plex problem, which requires skills and knowledge in both applied domain
and system parallel programming. Automation of programs construction is
advantageous, because automated program construction requires less qualifi-
cation and effort. Also, the quality of automatically constructed programs is
potentially higher than that of manually constructed programs (hereinafter
by quality of a program we mean its efficiency in terms of execution time,
memory consumption, network load, etc.). The same can be seen from the
history of conventional compilers, where the quality of constructed machine
code was poor, but now it is far beyond practical abilities of an assembly
language programmer.

Automatic programs construction is an algorithmically hard problem.
This is confirmed by the fact that no universal automatic programs con-
structor exists today. Only particular solutions exist, which are capable of
constructing programs for a particular class of problems.

Among many works devoted to programs construction automation in the
paper we consider the active knowledge concept [1], which is an approach

*The study was carried out under state contract with ICMMG SB RAS FWNM-2022-
0005.



14 K. Buyko, R. Kapralova, M. Kopylov, et al.

to automatic programs construction. With this approach, to provide high
quality of automatically constructed parallel program in particular subject
domain, an active knowledge base has to be constructed. Active knowledge
base is a machine-oriented representation of knowledge about a subject do-
main, which allows automatic construction of high quality parallel programs.
A program is constructed automatically from its high level specification for
a particular class of problems in the subject domain.

The active knowledge concept is based on the theory of computational
models based synthesis of parallel programs [2]. Implementation of the ac-
tive knowledge concept in practice raises a number of technological issues to
resolve. In the paper, we consider an active knowledge system prototype to
concern the issues. The prototype is based on LuNA parallel programs con-
struction system [3], and further development of the prototype will produce
the subsequent version of the system.

The paper is organized as follows. In Section 2, the main ideas are ex-
plained and a whole prototype overview is given. In the next sections par-
ticular technological issues are studied by discussing particular components
of the system. In the end of the paper a conclusion is given.

1. Active knowledge concept ideas and terms

The key idea, which provides automatic programs construction is the idea of
solving a problem that is formally defined based on a computational model.
In details the idea is explained in [2] (see also [4]). Here we will briefly
explain it with some non-essential simplifications.

Computational model is a bipartite oriented finite graph whose parts
are two sets of vertices, called the set of operations and the set variables
correspondingly. The arcs entering and exiting an operation define which
variables are the input and output variables of the operation, respectively.
A computational model describes a certain subject domain, where the prop-
erties of objects in the domain are represented by the set of variables (prop-
erty values are represented by variable values), and the ability to compute
the values of some properties from the values of some other properties is
represented by the set of operations (see the example in Figure 1).

For example, in the “trigonometry” subject domain the following com-
putational model can be defined. Variables represent the lengths of the sides
of a triangle, the magnitude of its angles, the radius of inscribed circle, etc.
Operations represent the ability to compute, for example, the area of the
triangle from two sides and the angle between them; the ability to compute
the angle from the other two angles, etc.

To provide the ability to compute values, a computational module called
a code fragment must be provided. Conventional subroutine is a good ex-
ample of code fragment.



On some technological issues of LuNA active knowledge system implementation 15

Figure 1. An example of a computational model.
Circles and rectangles denote variables and operations correspondingly

In order to construct a program based on computational model a problem
to be solved by the program has to be defined. For that two subset of
variables V and W are defined. The set V defines input variables of the
program while W defines output ones. It is called VW-task. If there is a
subset of operations in the computational model, the orderly execution of
which allows obtaining the values of variables in W provided the values of
variables in V are given, then the subset of operations is called VW-plan.
Any VW-task may have zero or more VW-plans. VW-plan represents a
VW-task solution algorithm.

Once a VW-plan is obtained, there is not a problem to invoke code
fragments, corresponding to the operations, step by step computing values
of variables until all variables in W are computed.

This is the basic idea that makes it possible to automatically construct
programs which solve new problems using existing code fragments.

In the trigonometry example, once we have included all the trigonometry
formulas as operations into the computational model, we are able to auto-
matically solve a wide variety of trigonometry problems by defining different
V and W sets, including the problems which can only be solved in multiple
steps.

Note, that in a computational model there are normally more operations
than in a VW-plan. Also, while in one VW-task a variable can be input, in
another VW-task the same variable can be output, intermediate or unused.

Implementation of the idea of automatically constructing a program
based on a computational model, in practice requires consideration of a
number of issues, such as optimization of program’s non-functional prop-
erties, provision of program’s dynamic properties, data formats conversion,
code fragments representation formats, execution organization, data stor-
ing, profiling, etc. Active knowledge base can be defined as an aggregate
of several components, the main of which is a computational model, and



16 K. Buyko, R. Kapralova, M. Kopylov, et al.

other components are code fragments, non-functional properties specifica-
tions, execution profiles and other entities, needed to construct a program
fully automatically.

Concerning the technological issues of the active knowledge system im-
plementation the following system architecture can be considered. The ac-
tive knowledge system is a software, capable of automatic programs con-
struction based on an active knowledge base. Input for the system is a
specification of a VW-task for a given computational model, values of vari-
ables in V and non-functional requirements for the program to construct.
The output of the system is either a program which solves the VW-task, or
values of variables in W, depending on which mode is selected – program
generation or problem solution.

The system is an aggregate of a number of components, which can be
combined in various configurations. Some components can operate on their
own or in connection with other components, while other components can
only operate in connection with other components. The basic components
connection scheme is the microservice approach, where each component is
a web service with a HTTP REST-like interface. However, a more tight
API-based connection is also possible. The components are as follows.

Interpreter. A component, which receives a computational model, a
VW-task and values of input variables, and returns the values of output
variables. The component implements the problem solution mode of the
system. The interpreter derives a VW-plan and performs operations execu-
tion. The interpreter can work as a standalone component, or use external
executor, values storage, planner. It can be accessed via graphical user
web-interface or a command line interface.

User Interface. A web-based graphical user interface which allows a
user to describe computational models, browse variables and values, define
VW-tasks, inspect executing processes, etc. The user interface can interact
with many system components, giving access to their functionality to the
user.

Generator. A component, which receives a computational model and
a VW-task and produces a program, which solves the task. So, there are
two main possibilities for a user to solve a VW-task. The first one is to use
interpreter, and the second one is to generate a solver and run it.

Code library. A storage which provides access to code fragments for
other components, such as interpreter or executor. It encapsulates technical
peculiarities of code fragments and provides a common interface to use them.

Planner. A component which derives VW-plans from VW-task on given
computational model. Deriving a plan is an optimization problem, because
different VW-plans possess different non-functional properties, and depend-
ing on the optimization criteria different VW-plans should be derived. The
planner is mainly used by interpreter and generator.



On some technological issues of LuNA active knowledge system implementation 17

Profiler. A component which gathers and analyzes the execution char-
acteristics of constructed programs. The gathered information can be used
by interpreter or planner to improve efficiency.

Values storage. A component which stores values of variables in the
long term or during a particular execution process. It is mainly used by
user interface, interpreter and executor. Generator normally constructs a
program which uses ordinary memory (shared or distributed memory of a
multi-threaded or multi-process program), but it is also possible to generate
a program which uses an external storage, such as values storage.

Executor. A component capable of executing a code fragment by apply-
ing it to given input arguments in order to produce output arguments. Since
generated programs can also be considered as code fragments, executor can
run generated programs too.

Core. A component, which connects all the components together en-
capsulating network details and particular implementation details of the
components. It is also responsible for organizing execution of complex com-
mands, which involve multiple steps and components (e.g. solving a user-
defined VW-task by generating and running a solver program on an external
computing cluster).

Other components may exist, but their consideration is out of the scope
of the paper.

2. User interface

To work with the active knowledge system, a user interface is required. The
interface of the active knowledge system is a user web interface for inter-
active interaction with active knowledge bases and programs generated and
executed on them. Figure 2 shows the general appearance of the interface;
an elemental computational model describing a linear dependence was spe-
cially created for demonstration.

The interface should provide users with access to all the functional ca-
pabilities of the system and hide the complex internal organization of the
system from the user. For the interface of the active knowledge system,
clarity is important to facilitate the user’s understanding of the concepts of
the system and the correct distribution of his attention when working with
a relatively new concept.

The interface of the active knowledge system has a number of features
that make its development a non-trivial task, the solution of which requires
the use of scientific methods. Let us consider these features.

The interface should take into account the features of human work with
the active knowledge system. It is necessary to study how the work with the
active knowledge base is organized, what standard scenarios and actions are
included in the process. Users may require different ways of working with



18 K. Buyko, R. Kapralova, M. Kopylov, et al.

Figure 2. User interface of the Active Knowledge System

the system in different subject areas, including ways of navigating the active
knowledge base and ways of displaying elements of computational models
and data.

The interface must be flexible and adapt to changes, since the project is
at an early stage of development.

Graphical notation is necessary to display elements of the active knowl-
edge base and the program execution process. Graphical notation must
support user customization. As the system develops, the graphical notation
must be easily expanded with new operators, such as variable collections
and mass operators.

The active knowledge base can be large, then it will be difficult to navi-
gate through it; in addition, a person is not able to perceive a large number
of concepts at a time. Therefore, it is important to introduce interface com-
putational models that contain only the elements necessary to set a task for
the system.

To generate a program, the user needs to define its interface. It is also not
enough to select input and output variables, one needs to assign a format
to them, that is, determine how the program will work with arguments.
The system also provides the ability to generate programs in accordance
with non-functional requirements. The list of interfaces, argument formats
and requirements that the system can work with will change as the system
develops.

The interface supports interaction with the computational process to
display its stage and interact with it.

General scenario of user interaction with the system. Consider the
process of user interaction with the system. The user navigates the active
knowledge base, presented in the form of computational models. The user



On some technological issues of LuNA active knowledge system implementation 19

edits the computational models; loads variable values and selects code frag-
ments; sets tasks for the system, determining which elements are input and
which are output.

Now the user can start the computational process for the task, track
its progress, pause or cancel its execution. The user can also request the
generation of the corresponding program, download it and run it on user’s
device.

Current version of the user interface of the active knowledge sys-
tem. The interface displays computational models. Graphic notation spe-
cially represents operations and variables; variables with and without values;
operations with a given and unspecified code fragment; input, output and
unmarked variables.

The computational model can be imported or exported in JSON-based
format or created using the computational model editor, which provides the
ability to add and delete variables, operations, and relationships between
them.

Variables and operations are handled using dialog boxes. They display
the properties of the selected computational model’s element and elements
for working with values and code fragments for variables and operations
respectively.

The variable value can be set by the user by uploading a file to the
system, or it can be deleted. The value available in the system can be
downloaded.

The code fragment for the operation is selected by the user from the
list of code fragments available in the system. It is possible to search for a
computational model by name and description. There are elements for de-
termining the correspondence between the arguments of the computational
model and the variables of the computational model.

To inform the user about events occurring in the system, the interface has
a stack of pop-up messages. At the moment, the functionality for starting
the program generation and executing the computational process for the
task has not been implemented.

3. Code generator

The process of program construction can be viewed as the mapping of a
given algorithm (in the form of a VW-plan) onto available computational
resources and the specification of the control structure necessary for the
constructed program that solves the problem specified by the user.

The process of program construction is viewed as a sequential decision-
making process. At each step of this process, different decisions can be
made. For example, choices may include selecting a node for performing an



20 K. Buyko, R. Kapralova, M. Kopylov, et al.

operation, determining the order of operations, or deciding how to allocate
data in memory. The decisions made can affect non-functional properties
of the constructed program. For instance, they can impact the execution
speed of the generated program, memory consumption, and the utilization
of other computer resources.

Automatic program construction is a challenging problem. It is algorith-
mically hard to choose a good solution from a variety of possible options.
This obstacle impedes the practical applicability of automatic program con-
struction, as algorithms do not always succeed in finding a good solution.
The possibility of human intervention in the construction process not only
helps to mitigate these limitations but also significantly expands the range
of tasks that can be addressed through automatic construction. Humans can
leverage their knowledge to make decisions in situations where construction
algorithms may struggle.

Customizable construction involves the user being able to influence the
decision-making process. This allows the user to impact the program con-
struction at a high level without relying on low-level development tools. In
this problem statement, a person can make partial decisions while leaving
the remaining decisions to the construction system. This approach ensures
an effective distribution of decision-making between the automatic construc-
tion system and the user.

For example, the user can specify the desired non-functional properties
(such as minimizing program execution time or making it energy-efficient)
or select the necessary operations in the computational model that they
consider essential for effectively solving the problem. The generator in this
process understands the conditions set by the user and selects suitable op-
erations from the provided computational model (knowledge base). In this
way, a program is constructed that aligns with the user’s requirements.

Thus, customizable program construction combines two approaches: au-
tomatic construction and construction with user influence. This approach
is capable of yielding better results in tasks where system algorithms fail to
provide satisfactory quality.

To implement customizable program construction, it is first necessary to
implement automatic program construction. In this process, it is essential to
ensure that the user can manage the program construction. Let us consider
the key elements and approaches through which the generator implements
the program construction process.

Program construction is carried out using special “building materials”––
constructs. Each construct contains the necessary parameters and properties
for the program construction.

Several types of constructs are used for the generator: program specifi-
cation, memory cell, port, snippet and partially defined program.



On some technological issues of LuNA active knowledge system implementation 21

Program specification is the input representation through which the user
describes the program to construct. The user specifies which variables are
input for the program and which are output, as well as the operations that
the user wants to be performed and some other information.

A memory cell is a data storage unit used in the process of computation.
In the generated program, memory cells are the variables that are used in
operations.

To correctly link variables between operations, ports are used. Each port
in an operation describes a variable, as a variable can be either an input or
an output for the operation. This allows the correct order of operations to
be established according to the information dependencies in the constructed
program.

Operations in the program are described by the main building blocks –
snippets. Snippets are responsible for executing one or several operations in
the program. Moreover, snippets not only describe the operations that need
to be performed in the program, but they can also carry out additional tasks,
such as providing communications between processes if the user requires the
construction of a parallel program. Additionally, these snippets can be used
for input and output of data from external sources (files, command-line
arguments), or for data transformation to correctly pass them to the ports,
or other operations.

All the aforementioned constructs are used within the main construct––
partially defined program. This construct serves as the skeleton of the future
generated program.

The process of program construction occurs iteratively. The entire pro-
gram is constructed within the “partially defined program” construct. Ini-
tially, this construct contains only one snippet that terminates the program,
as the construction begins from the end of the program. However, it is also
possible to start constructing from the very beginning or from several snip-
pets, regardless of whether it is the start or the end of the program. It all
depends on the implementation of the construction algorithm.

For example, if the user wants to construct a program that calculates the
area of a triangle given two sides and the angle between them (Figure 3), the
construction process will begin with the partially defined program containing
the last snippet for outputting a variable to a file. This means that the
snippet will be responsible for writing the computed area of the triangle to
a text file.

In each iteration, the construction algorithm checks the ports of the snip-
pets in the partially defined program and refers to the program specification
to identify which operations can fit the ports in the partially defined pro-
gram. It adds suitable snippets and the necessary memory cells. Thus, in
each iteration, the process of refining the partially defined program occurs.
The constructed partially defined program becomes fully defined when the



22 K. Buyko, R. Kapralova, M. Kopylov, et al.

Figure 3. Example of calculating the area of a triangle using a computational
model and a partially defined program

required snippets from the program specification have been utilized, and a
correct order from the input variables to the output variables has been fully
established in accordance with the information dependencies.

In the partially defined program that calculates the area of a triangle,
the construction algorithm examines the snippet for outputting the variable
to a file to see which input ports are available. In this case, there is only
one port for the variable representing the area of the triangle. Next, it is
necessary to review the program specification to identify which operations
have the computed area of the triangle as their output port. For the sake
of simplicity in this example, let’s assume that there is only one operation
in the program specification, which has three input ports: the angle and
the two adjacent sides of the triangle corresponding to that angle, and one
output port for the area of the triangle. This snippet is then added to the
partially defined program. Additionally, a memory cell is added to store
the variable for the computed area of the triangle. This represents a step
in the refinement of the program. Then, snippets for reading data from file
will be similarly added, which will then be fed into the input ports of the
snippet that performs the area calculation. At this point, all the necessary
constructs for calculating the area of the triangle are in place.



On some technological issues of LuNA active knowledge system implementation 23

As soon as the partially defined program is fully defined, code generation
takes place. Each construct contains the necessary data that allows it to be
transformed into code in C++. Thus, the program is generated.

The user can customize the construction process by selecting which op-
erations are more preferable in the input representation. The construction
algorithm will immediately add snippets with these operations to the par-
tially defined program, allowing the user to make decisions on behalf of the
construction algorithm. As a result, the generator will not have to choose.

For example, the user knows many parameters of the triangle: all three
sides and some angle. Therefore, to calculate the area, two operations may
be suitable: one based on the three sides or the other based on two sides
and the angle between them. The user can specify the desired operation
in the program specification at their discretion, and the generator will au-
tomatically complete the remaining snippets. Alternatively, the user can
choose not to make any decisions and leave the decision-making process to
the generator.

Let us consider how a task is formulated in the active knowledge sys-
tem and how it appears in the described generator. The task is formulated
using a VW-task and a computational model. The computational model
describes the variables and operations involved. In the generator, it is nec-
essary to list these operations in the input representation and to describe
the ports–specifying which variables are input for each operation and which
are output. From the VW-task, it is needed to define which variables are
inputs to the program and which are outputs from the program. The user
also specifies certain non-functional properties in the input representation,
thereby implements customizable program construction.

Thus, the generator can perform customizable program construction us-
ing active knowledge technologies.

4. Profiler

Program profiling is an integral part of software development. Its essence
lies in collecting the program’s characteristics during its execution. These
characteristics may include execution time, errors encountered during run-
time, or communication duration (in the case of distributed computations).
The collected information can be used to analyze program performance and
optimize it. For instance, the generated profile can help identify the causes
of performance degradation and take measures according to the SLOW
methodology [5] or eliminate imbalances across computational nodes [6].
The specifics of the active knowledge system provide extensive opportuni-
ties for both profiling and applying profiling information. For instance, the
use of a computational model enables profiling of operations and variables,
while the planner’s generation of VW plans allows it to utilize profiling in-



24 K. Buyko, R. Kapralova, M. Kopylov, et al.

formation for more efficient plan construction. A key feature of profiling in
the active knowledge system is the ability to conduct it with consideration
of the domain area. This approach enables embedding knowledge about
profiling specifics tailored to the unique characteristics of the domain into
the system.

A profile obtained from a single computation is valuable on its own.
It can help identify errors, debug the computational model, detect imbal-
ances in processor core loads, and redistribute operations more efficiently.
However, multiple profiles collected from computations of the same com-
putational model provide even greater practical value. They enable the
calculation of statistics, such as the average execution time of an operation
or the average size of an output variable. Additionally, they allow the deter-
mination of the dependency between the execution time of an operation or
the size of its output variable and the input data. All this information can be
presented directly to the user to make necessary changes for optimization
and debugging or shared with other components of the active knowledge
system. For example, the planner can use it to create more efficient VW-
plans, the executor for load balancing, and the variable storage for storage
optimization.

In addition to providing raw profiling data or statistics, it is also pos-
sible to deliver estimates. Most estimates are functions of two arguments:
pre-collected information about the estimate target and information from
the current computation. For example, the planner may request not just
the average execution time of an operation but an estimation of this time
for generating a new VW plan. The profiler, in turn, provides this esti-
mate based on the average execution time of the operation, the nature of
its dependency on input variable sizes (pre-collected data), and the size of
the input variables (current computation data). The quality of this esti-
mate depends on the completeness of the provided data and the algorithms
implemented by the profiler.

Providing profiling information and its derivatives to other components
of the active knowledge system allows them to improve their operation. It is
essential to note certain limitations associated with this. For instance, pro-
filing information obtained for one computational model is generally not
applicable to optimizing another, even if they share some similarities (e.g.,
certain operations map to identical code fragments). The same applies to
different configurations of the computing system. Essentially, the computa-
tional model is optimized for a specific system, and transitioning to another
configuration may require restarting the profiling process.

Profiling information can be collected in several ways. The simplest
and most straightforward approach is to collect the profile every time the
user runs a computation. However, if the task is known for the compu-
tational model and all necessary data for its resolution is available (e.g.,



On some technological issues of LuNA active knowledge system implementation 25

input variables have values, and operations are assigned code fragments),
the computation can be run without user involvement for profiling pur-
poses. Moreover, additional tasks not previously defined by the user can be
generated, executed, and profiled.

Currently, the “Profiler” component has been implemented to parse log
files, calculate statistics from the collected profiling data, and store them
in a PostgreSQL database. The component can be deployed in a Docker
container for easier integration into various environments. The “Executor”
component is instrumented with code that collects profiling data into log
files. Additionally, a REST API has been developed for retrieving profiling
information (reports) and providing estimates (Figures 4 and 5 correspond-
ingly).

For these API, an attachment mechanism (“localStorage” block) has
been implemented, allowing additional information to be attached to re-
quests for use by the profiler in calculations. This optimizes the component’s

Figure 4. Report API example Figure 5. Estimate API example



26 K. Buyko, R. Kapralova, M. Kopylov, et al.

operation since, in the absence of such information in the request body, the
profiler would need to request it from other components, potentially leading
to significant communication overhead. This mechanism also enables iso-
lated testing of the profiler from other system components. Furthermore,
the API employs an optimization technique where parameters common to
each report/evaluation can be moved to a common parameters block.

In future it is planned to eliminate the log file and implement sending
profiles directly to the profiler’s endpoint (buffering can be used to reduce
the number of requests), implement of algorithms for generating evaluations
and integration with components that consume evaluations.

5. Executor

Program execution is a key stage in the software lifecycle, during which
parts of a program’s code are executed on a computing platform. This pro-
cess involves interpreting or compiling the source code, loading the necessary
data, and managing the processor, memory, and other system resources. The
primary goal of program execution is to ensure correct and efficient opera-
tion, which requires considering the capabilities and limitations of hardware
resources, such as processor performance, available memory, and network
bandwidth.

Modern computational challenges impose increasingly stringent require-
ments on the program execution process. One such challenge is the execution
of parallel programs, which is particularly important for tasks where the vol-
ume of data or the computational workload is so extensive that the task can
no longer be solved on a single machine. In such systems, individual parts of
the program are executed across multiple nodes of a multicomputer, which
must interact to achieve a common goal. This necessitates task coordination,
data dependency management, and synchronization between nodes, signifi-
cantly complicating the execution process compared to sequential execution
on a single device.

The execution of parallel and distributed programs also entails manag-
ing non-functional characteristics, such as scalability, fault tolerance, and
energy efficiency. For instance, programs must adapt effectively to changing
workloads by redistributing tasks to optimize performance. Additionally,
these systems must account for the characteristics of diverse architectures
and execution environments to minimize data transmission delays and max-
imize the utilization of available computational resources. If all decisions
regarding the execution order of operations, mapping of operations to mul-
ticomputer nodes, and memory management are made during the program
generation phase, it becomes impossible to ensure the program’s dynamic
properties. Therefore, there arises a need for a mechanism to make decisions
dynamically during execution.



On some technological issues of LuNA active knowledge system implementation 27

The LuNA system supports two primary approaches to program execu-
tion:

1. Compilation –– This approach involves constructing a program based
on a pre-planned computation graph and code fragments using the generator
component, which produces a single code fragment to be executed. In this
case, the program transitions from the original computational model to a
final computational model for which an executor is implemented. Often,
the final computational model corresponds to the hardware computational
model (CPU or GPU). All nondeterminism is resolved during translation,
resulting in a program where the entire computational process is strictly
defined.

2. Interpretation –– This is a method of planning, generating, and exe-
cuting a program where each code fragment is executed sequentially or in
parallel, and the next stage (or plan step) is selected based on the results of
the preceding execution. This process is handled by the interpreter compo-
nent, which implements the original computational model of the program.
When the computation process is not strictly determined, the interpreter
takes such decisions dynamically during execution. In contrast to the com-
pilation approach, all nondeterminism is resolved at runtime.

Each of these approaches has its own advantages and disadvantages. Dy-
namic decision-making is more efficient in some cases, while static decision-
making works better in others. Consequently, there is a need for a hybrid
approach that combines the benefits of both static and dynamic methods.

In the hybrid approach, some decisions are made statically during the
translation phase, while others are made dynamically during execution. The
efficiency of this hybrid method depends on how the decision-making process
is divided. In this sense, the hybrid approach involves forming an intermedi-
ate representation of a program. First, the source program is translated into
this intermediate model, with some decisions being made statically. Then,
this model is executed in interpreter mode, dynamically resolving decisions
that were not made statically. To effectively apply the hybrid approach, sev-
eral issues have to be addressed to determine the most suitable intermediate
program representation:

1. What intermediate computational model is most appropriate for a
given case?

2. How should the source program be translated into the chosen compu-
tational model?

3. Which runtime system should be selected to execute the intermediate
representation in the given scenario?

The answers to these questions depend on the specific task to be executed
and even on the input data used for the task. Implementing this approach



28 K. Buyko, R. Kapralova, M. Kopylov, et al.

requires capabilities for resource management, dynamic adaptation of the
execution process, and both static (e.g., computational characteristics of
the processor or network bandwidth) and dynamic (e.g., processor load or
the volume of incoming data) information about the task and its execution
process.

Thus, the executor component must meet the following requirements:

� Extensibility –– to allow the addition of new types of code fragments
for execution.

� Access to information about node characteristics and status–– enabling
execution that takes this information into account.

� Support for various levels of execution management–– to facilitate the
operation of other components, such as the interpreter, that make
decisions regarding execution.

Additionally, the executor must satisfy certain technical requirements
necessary for executing application tasks for which the system is intended.
For instance, it must be capable of operating without network connectivity,
as such scenarios are encountered in fields like geophysics.

Based on these requirements, a distributed architecture for the executor
component was developed. This architecture, illustrated in Figure 6, is

Figure 6. Executor architecture

built around two key entities: Manager
and Machine, each of which performs
strictly defined functions.

Manager provides an interface for
other components of the active knowl-
edge system to interact with the ex-
ecutor. It is also responsible for col-
lecting information about the state of
all machines, selecting an appropriate
runtime system for task execution, and

making decisions related to the execution process. This functional organi-
zation allows the Manager not only to abstract the implementation details
of different machines but also to make dynamic decisions based on a holistic
analysis of the system’s state. This capability is particularly important for
tasks requiring features such as load balancing.

Machine, in turn, focuses on executing operations at the level of individ-
ual multicomputer nodes. It handles node status monitoring, preparation
for task execution, and the initiation of operations using the “code fragment
library” component. A critical feature of the Machine is the division of its
functionality into two parts: monitoring and runtime systems.



On some technological issues of LuNA active knowledge system implementation 29

� The monitoring part gathers information about the node’s state and
adapts it for different types of machines, such as personal computers
or computing clusters.

� The runtime systems part enables the easy integration and support of
new runtime systems, thereby extending the component’s capabilities
to execute programs on various platforms.

6. Core

The core of the system serves as a binding link between all components, cre-
ating a unified system and ensuring the operation of the active knowledge
base. It enables message exchange within the system, allows for complex
decision-making logic regarding the selection of the target request point, and
separates specific implementations and interfaces from the abstract repre-
sentation of requests to components.

The process of the system’s operation is divided into several stages, each
implemented in a separate component by different people, with each devel-
oper bringing their own professional skills and experience. This leads to
significant differences in implementation technologies. The integration of
components, standardization of protocols, and data transfer formats is a
crucial task that requires a solution. Without a binding element and es-
tablished abstract interfaces for interaction, components will be unable to
exchange data with each other or with the user. This work is dedicated to
the problem of establishing communication between the system’s elements
and the user.

To implement the full range of functions for designing and executing par-
allel programs, several types of components are being developed: user in-
terface, generator, scheduler, variable value storage, and others. They must
interact by exchanging requests and information. For executing requests
of the type “get/execute/save,” additional computations may be required,
necessitating navigation across all nodes and effective distribution of com-
putational load. Interactions between components encompass a range of
complex aspects, including:

1. Requests to the variable value storage. Since there may be several
independent variable storages connected dynamically, it is necessary
to address search, aggregation, and distribution tasks among them.
Additionally, extra mechanisms may be employed, such as distributed
value storage or data duplication to enhance reliability.

2. Executor. When a request for execution is made, a decision must
be made about the target executor for that request. Factors such
as the capabilities of the executors, their load, reliability, and other
parameters are taken into account. Additional processes may also be



30 K. Buyko, R. Kapralova, M. Kopylov, et al.

utilized, such as launching tasks on multiple executors to obtain results
from the first one that completes.

3. Monitoring the number of active tasks on each component, as well as
their hardware specifications and availability, is crucial for correctly
directing requests. This includes monitoring system resource status
and managing task queues, which helps avoid overloads and ensures
stable system operation.

The core is a binding element that ensures connection and interaction
between components. The main goal here is to develop the system’s core for
constructing and executing parallel programs within the active knowledge
system. The tasks include developing a message exchange protocol, defining
message formats, designing the interface, and establishing a request handling
approach from clients.

The core’s main entity is the request. Requests are sent by compo-
nents with the content “get/execute/send”. Formalizing and simplifying,
each request can be represented as a type Get/Set, a name, for example,
VAR VALUE (variable value), and some parameters such as an identifier.
A Get request contains only parameters, while a Set request has a body
with the data that needs to be sent.

As for the data and request exchange protocols, it has been decided to
use HTTP and gRPC with HTTP/2.0. Requests to both the core and other
components can be transmitted via either protocol. HTTP is used as a more
traditional and familiar communication tool in a multi-service architecture,
while gRPC is a new, efficient, and reliable method of message exchange
and is experimental. Both servers, HTTP and gRPC, accept requests and
package them into internal representations with the information described
above.

The request lifecycle in a simplified form looks like: sent by a compo-
nent; received by the core; the core determines the endpoint of the request;
the core opens a data transmission stream between components; the re-
quest is executed. The request reception point in the core is handled by
the server, after which routing must be performed. This stage involves
the main decision-making logic regarding the target node of the request.
Decision-making may require additional computations unique to each re-
quest. Describing the logic for handling each request within the core is not
an optimal solution, as the logic may frequently change, switch, or be de-
veloped by other project members. A more appropriate solution would be
to separate the decision-making responsibility to external software — the
operator. The operator connects to the core as another component, but
unlike the other working parts of the system, it does not primarily respond
to requests; it only determines the target node.



On some technological issues of LuNA active knowledge system implementation 31

For the core to pass a request to the operator, the operator must indicate
which requests it will handle. To facilitate this, we transition from the
concept of a request to an event. Requests are a subset of events. An event
is a marker indicating that a request has been received, resolved, completed
successfully or with an error, that a request was sent from a component or
an operator, etc.

The operator subscribes to the events it is prepared to handle; if the
event is the arrival of a request, it responds with the component that should
handle the request or directly with the response. Otherwise, the operator
may not perform any external actions, using the information for its purposes.
For decision-making, the operator may require additional information from
other components. The list of components connected to the core is passed
along with the event, allowing the operator to address specific components,
bypassing the routing stage.

Operators typically exhibit passive behavior, responding to events from
the core, but they can also perform active actions. They have several oppor-
tunities available: requesting a list of components, redirecting (Get request
to component A ⇒ Set request to component B), or requesting to a compo-
nent. Thus, operators open significant possibilities for scaling the system,
modifying and expanding behavior through a ready interface and function-
ality. The logic of the operators can subsequently be formalized into an
abstract description for even simpler system behavior modification.

The next stage of the request lifecycle is the creation of the data trans-
mission stream. For this, the core, having received the specific target com-
ponent of the request, calls its adapter. Adapters facilitate the transition
between the component interfaces and the core’s internal representation.
Through the adapter, request stream handlers are created, connecting with
the corresponding ones received from the request’s source from the server,
enabling data exchange. After data transmission is completed, as in other
cases, an event signaling the completion of the request is sent.

Currently, a basic core with adapters for the code fragment library and
variable value storage has been implemented. In the current implementation,
static routing at the core level is used as the operator. Additionally, a user
interface for the system is running on the core side.

The set goal, namely the development of the core of the system for
constructing and executing parallel programs, has been achieved. The core
functions and can process requests to access the code fragment library and
variable value storage. In the future, there are plans to both expand the
number of adapters and thus the supported components of the system and
to redesign the architecture to support external operators and events.



32 K. Buyko, R. Kapralova, M. Kopylov, et al.

Conclusion

In the paper the authors’ current understanding of active knowledge system
architecture and technological issues is considered. Although it is not final
and will evolve further, it was concerned worth sharing, because it covers
a wide range of problems which arise when attempting to implement auto-
matic programs construction, and it is concerned how the active knowledge
concept allows addressing the problems.

The ideas considered are being implemented as an academic software
project LuNA (Language for Numerical Algorithms), so the paper shows
a practical view on the topic, not just a theoretical consideration. The
software is used to implement practical applications.

References

[1] Malyshkin V. Active Knowledge, LuNA and Literacy for Oncoming Centuries
/ Essays Dedicated to Pierpaolo Degano on Programming Languages with Ap-
plications to Biology and Security. –– 2015. –– Vol. 9465. –– Berlin, Heidelberg:
Springer, P. 292–303.

[2] Valkovsky V.A., Malyshkin V.E. Synthesis of Parallel Programs and Systems on
Computational Models / Ed. V.E. Kotov // AN USSR, Sib. branch, Computing
Center. — Novosibirsk: Nauka, 1988 (In Russian).

[3] Malyshkin V.E., Perepelkin V.A. LuNA fragmented programming system, main
functions and peculiarities of run-time subsystem // Proc. 11th Int. Conf.
on Parallel Computing Technologies (PaCT-2011). –– 2011. –– P. 53–61 (LNCS;
6873).

[4] Malyshkin V.E., Perepelkin V.A. definition of the concept of a program //
Problems of Informatics.–– 2024.––No. 2.––P. 16–31. DOI: 10.24412/2073-0667-
2024-2-16-31. –– EDN: CEDVVD (In Russian).

[5] Sterling T., Brodowicz M., Anderson M. High Performance Computing: Modern
Systems and Practices. ––Morgan Kaufmann, 2017.

[6] Perepelkin V.A. Optimization of fragmented program execution based on pro-
filing // Sixth Siberian Conf. on Parallel and High-Performance Computing:
Program and Abstracts.–– Tomsk: Tomsk University Press, 2011.–– P. 117–122.


