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Modeling of the basic melt intrusion into
the platform cover*

Yu.V. Perepechko, K.E. Sorokin, Sh.Kh. Imomnazarov

Abstract. This paper numerically studies the flow of magmatic melts in a horizon-
tal channel under gravity. A difference approximation of the two-velocity hydrody-
namic equations is performed using the control volume method. Non-uniform flows
with different model parameter values and their influence on the flow structure are
considered.

Introduction

The problem of heterophase magmatic melt emplacement into lithospheric
mantle conduits beneath the cratons of the Siberian Platform is studied
numerically using a hydrodynamic model of the evolution of magmatic and
fluid-magmatic systems. The mathematical model describes the two-velocity
dynamics of the redistribution of hot heterophase melts and magmatic fluids
in a flow during their movement from generation zones to the platform
cover, as well as heat and mass transfer processes between melts and rocks
in permeable zones of the lithosphere. The relevance of this problem is
determined by the fact that the nature of the flow of liquid fractions of
aluminosilicate, sulfide, native, and oxide liquids, in which a subliquidus
solid phase appears during movement and decompression boiling occurs, and
the characteristics of heat and mass transfer processes determine the type
of igneous and magmatic deposits of the Siberian Platform trap formation.
This paper examines the flow structure of magmatic melts over a wide range
of temperatures, melt phase viscosities, intrusion rates, and the degree of
stratification of heterophase magmatic flow. A mathematical model of heat
and mass transfer in a heterophase medium can be used to describe the
dynamics of various types of magmatic, fluid-magmatic, and hydrothermal
systems.

1. Mathematical model

The system of two-velocity hydrodynamic equations, obtained within the
framework of the method of conservation laws [1–3], in a gravity field has
the form [4]
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Here u, v, ρs, ρl are defined as the velocities and partial densities of the
phases, respectively; ρ = ρs + ρl; s is the specific entropy of the two-phase
medium; T is the temperature; p is the hydrodynamic pressure; q is the
parameter of interphase interaction determined by the difference in pressures

in the phases uik = ∂iuk + ∂kui −
2

3
δik divu, vik = ∂ivk + ∂kvi −

2

3
δik div v.

Energy dissipation occurs due to viscous friction in the phases, thermal
conductivity, and interphase friction: ηs, ηl is the viscosity of the phases,
χ is the thermal conductivity coefficient, b = ηl/ρk is the coefficient of
interphase friction, k is the permeability coefficient.

The system of equations (1)–(4) is closed by the equations of state

1

ρ0
δρ = αpδp− βT δT, δs =

cp
T0

δT − 1

ρ0
βT δp,

1

ρ0s
δρs = αpδp+ ρ0sαqδq − βT δT,

where the heat capacity at constant pressure cp, the volumetric compression
coefficients αT , αq and the coefficient of thermal expansion βT are additive
with respect to the thermodynamic parameters of the phases [4]

cp = cphps (1− ϕ) + cphpl ϕ, βT = βph
Ts(1− ϕ) + βph

T lϕ,

αp = αph
ps (1− ϕ) + αph

pl ϕ, αq = αph
qs (1− ϕ).

Here ϕ is the volume content of the dispersion phase.

2. Problem statement

This paper examines the intrusion of a hot viscous melt into a horizontal
channel containing a heterophase medium under normal conditions. Ini-
tially, there is no movement in the channel. The computational domain is
shown in Figure 1.

At the lateral boundaries y = 0, y = Ly the boundary conditions of no
leakage and no adhesion are set, the boundaries are considered adiabatically
isolated

ux|y=0 = uy|y=0 = 0, vx|y=0 = vy|y=0 = 0, ∂yT |y=0 = 0.
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Figure 1. Problem statement

On the left boundary x = 0, the components of the velocity vectors of
the dispersed and dispersion phases are specified, the temperature of the
introduced flow is considered to be given

ux|x=0 = ux(in), uy|x=0 = uy(in), vx|x=0 = vx(in), vy|x=0 = vy(in),

T |x=0 = T(in).

In addition, the volume fraction of the dispersed phase is specified on the
left boundary.

On the right boundary, the following conditions are set for the compo-
nents of the velocity vectors of the dispersed and dispersion phases and the
temperature:

∂xux|x=Lx = ∂xuy|x=Lx = ∂xvx|x=Lx = ∂xvy|x=Lx = ∂xT |x=Lx = 0.

The difference algorithm is based on the control volume method [5].
Discretization is performed on a rectangular uniform grid with a shift in
the computational nodes for the velocity vector components relative to the
computational nodes for the remaining model variables. The velocity fields
satisfying the continuity equation and the consistent hydrodynamic pressure
field are calculated using the SIMPLE iterative algorithm modified for the
two-velocity model. The terms of the equations of motion corresponding to
the interaction of phases are approximated completely implicitly. Convective
terms in calculating flows through the boundaries of control volumes are
approximated using a second-order linear-parabolic scheme [6]. Diffusion
terms are approximated using a central-difference scheme.

3. Simulation results

Numerical calculations were performed for a model heterophase medium
with the following physical parameters: physical densities of the phases
ρphs = 2.6 · 103 kg/m3, ρphl = 9.9 · 102 kg/m3, and phase viscosities varied
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within the ranges ηl = 10−3 ÷ 10−1 N·s/m2, ηs = 1 ÷ 105 N·s/m2. The
volumetric compression coefficients for the dispersed phase were αps = 1.2 ·
10−10 Pa−1, and for the dispersed phase αpl = 4.7 · 10−9 Pa−1. The volume
fraction of the dispersed phase at the initial moment of time was specified
within the range ϕ = 0.2 ÷ 0.8. The remaining parameters correspond to
normal conditions. The velocities of the dispersed and dispersed phases took
on the values u = 0.02÷ 0.1 m/s and v = 0.02÷ 0.1 m/s.

Below are the results of calculations of the introduction of a hot het-
erophase flow for different values of temperatures, viscosities and volume
contents.

3.1. Variation of the temperature of the introduced flow. The re-
sults of calculations for the flow in a two-phase medium channel at different
temperature values of introduced flow are presented in Figure 2.

Figure 2. Temperature distribution of a two-phase medium across (left) and along
(right) a channel for flows with the initial temperature T (◦C): (a) 500, (b) 800,
(c) 1000
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3.2. Variation in the viscosity of the dispersed phase of the intro-
duced flow. The calculation results for the flow in a two-phase medium
channel with the different viscosity values of the dispersed phase ηs are
presented in Figure 3. The temperature of the introduced flow was set to
T = 500◦C, and inside the calculation region the temperature at the initial
moment of time was T = 300◦C.

Figure 3. Temperature distribution of a two-phase medium across (left) and along
(right) the channel for a flow with the viscosity of the dispersed phase ηs (N·s/m2):
(a) 105, (b) 103, (c) 10, (d) 1
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3.3. Variation of the volumetric content of the dispersed phase of
the introduced flow. The calculation results for a two-phase medium flow
in a channel with a dispersed phase viscosity ηs = 1 N·s/m2 are presented in
Figure 4 for two variants of the initial profile of the volumetric content of the
dispersed phase: with a higher concentration in the lower part of the flow
(see Figure 1) and the opposite profile with a higher concentration in the
upper part of the flow. The volumetric content of the dispersed phase in the
vertical cross-section varied from ϕs = 0.6 to 0.4. The temperature of the
injected flow was set to T = 500◦C, and within the computational domain,
the temperature at the initial time was T = 300◦C. The phase velocities on
the left boundary were u = v = 0.1 m/s for the dispersed phase.

Figure 4. Temperature distribution of a two-phase medium across (left) and along
(right) the channel for a flow with a direct (a) and reverse (b) profile of the volume
content of the dispersed phase

To compare the character of the flow, Figure 5 shows the temperature
distribution for the case of an inverse volumetric content profile (see Fig-
ure 4) in the case of a lower viscosity of the dispersed phase of viscosity
ηs = 10−1 N·s/m2. The volumetric content of the dispersed phase in the
vertical section varied from ϕs = 0.6 to 0.4. The temperature of the in-
jected flow inside the region at the initial moment is T = 300◦C. The phase
velocities at the left boundary are u = v = 0.1 m/s.

It should be noted that setting different values for the phase velocities
at the inlet boundary leads to an increase in the relative phase velocity
within the computational domain, but does not significantly affect the flow
structure.
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Figure 5. Temperature distribution of a two-phase medium across (left) and
along (right) a channel for a flow with the viscosity of the dispersed phase
ηs = 10−1 N·s/m2

Conclusion

In this paper, a hydrodynamic model of a viscous two-phase medium is ap-
plied to simulate the flow structure of heterophase melts in magma conduits.
Numerical calculations of unsteady flows were performed over a wide range
of temperatures, melt phase viscosities, intrusion velocities, and the degree
of stratification of the heterophase magma flow. The mathematical model
can be used to describe various types of magmatic, fluid-magmatic, and
hydrothermal systems.
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