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Layered flows of high-temperature suspensions*

Yu.V. Perepechko, K.E. Sorokin, Sh.Kh. Imomnazarov

Abstract. The paper numerically studies the flow of a high-temperature two-
phase mixture in a gravity field. Thermodynamically consistent equations of two-
speed hydrodynamics of a suspension with a foreign impurity are developed within
the framework of the conservation law method. The numerical non-stationary non-
isothermal 2D model is implemented based on the modified control volume method.
The paper studies the nature of the flow of a high-temperature suspension in a
horizontal channel at different values of the viscosity of a two-phase mixture. The
effect of non-uniform distribution of solid phase particles on the development of
instability of the flow of such a medium is considered.
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Introduction

Modeling of heat and mass transfer in suspensions of solid particles, liquid
particles and suspensions of liquid droplets is relevant for solving problems
arising in the study of both natural and technological systems. Interest in
the problems of heat and mass transfer of suspensions of solid particles is
due to the development of modern technologies for the conversion and trans-
mission of energy (for example, the combustion of particles and droplets in
fluidized bed reactors, cooling with nanofluids containing nanoparticles) and
modeling of natural processes of industrial importance (for example, the for-
mation of ore deposits). The development of consistent models of heat and
mass transfer of heterophase media based on multi-velocity hydrodynam-
ics can be the basis for the development of such technologies. One of the
most general methods that allows obtaining physically correct models of
heat and mass transfer is the conservation method. This phenomenological
approach ensures thermodynamic consistency of the equations of thermohy-
drodynamics of suspensions. In this paper, based on this method, we study
the hydrodynamics of high-temperature suspensions in the presence of an
impurity taking into account the surface tension of the dispersed phase. The
hydrodynamic model also takes into account such dissipative phenomena as
thermal conductivity, viscosity of a two-phase suspension, diffusion of im-
purities, and interphase friction. Modeling of various flows of two-phase
suspensions in a channel is carried out for problems with a uniform and
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non-uniform initial distribution of the concentration of solid particles of the
suspension.

1. Mathematical model

Simulation of heat and mass transfer of suspensions is based on mathemati-
cal models that use various simplifying approximations [1, 2]. In this paper,
a complete model of two-velocity thermohydrodynamics of a compressible
non-isothermal suspension is investigated. The elementary volume of a two-
phase suspension is characterized by partial densities ρ1, ρ2 and velocities
u1, u2 of the dispersed and dispersion phases, the density of the impurity ρa,
the number of particles of the dispersed phase n, as well as the concentration
of the impurity c and the temperature T . The equations of the dynamics
of a heterophase suspension are derived based on the method of conserva-
tion laws [3] under the assumption of phase equilibrium in temperature and
pressure [4, 5]. Taking into account dissipative processes, conservation laws
and balance relations can be represented as follows
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Here ρ = ρ1+ρ2 and j = ρ1u1+ρ2u2 are the density and momentum of the
two-velocity medium; w = u1−u2 is the relative velocity; p is the pressure;
µa is the chemical potential of the two-phase medium and the impurity; σ
is the surface tension tensor; ς is the specific surface area of the dispersed
phase; g is the acceleration vector of gravity. The notation w2 in formulas
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The impurity concentration in the two-phase medium and in the phases
are determined by the relations c = ρa/ρ, c1 = c + 2λ1ρ2/ρ1, c2 = c − 2λ1.
S is the entropy of the two-phase medium, S2 = Sρ2/ρ− 2λρ2/ρ and S1 =
Sρ1/ρ + 2λρ2/ρ are the entropies of the phases, λ = λ2 − ρλ1µa/T . The
kinetic coefficients of interphase friction b, shear viscosity of the phases ηi,
mutual viscosity η12, thermal conductivity of the two-phase medium κ and
the coefficients λ1, λ2, ν are functions of the thermodynamic parameters.
The strain rate tensors are defined by the relations u1ik = ∂ku1i + ∂iu1k −
2/3δik divu1, u2ik = ∂ku2i + ∂iu2ik − 2/3δik divu2. The effects of bulk
viscosity are not considered in the model.

The equations of state of a two-phase medium closing the dynamic equa-
tions above are obtained with the linear approximation:

δρ = ραδp− ρβδT, δs =
cp
T
δT − 1

ρ
βδp.

The coefficients of volumetric compression α, thermal expansion β, and spe-
cific heat capacity cp are additive across phases. The impurity is taken into
account in the approximation of an ideal solution µa = d1p+ d2T + R̄T ln c,
where R̄ is the universal gas constant. The surface tension is determined by
the Shishkovsky relation

σ = σ0
Tc − T

Tc − Tref
− σ1 ln(1 + ac).

The difference approximation of the equations of two-velocity hydrodynam-
ics is based on the control volume method [6, 7], which ensures accurate
integral conservation of mass, momentum and energy in any volume. The
differential equations are discretized on a rectangular uniform grid with a
shift in the computational nodes for the velocity vector components rela-
tive to the computational nodes for the remaining variables. A completely
implicit time scheme is used. When approximating convective terms for cal-
culating flows through the edges of control volumes, the second-order HLPA
scheme is implemented [7]. When approximating diffusion terms, a central
difference scheme is used. To calculate the pressure field consistent with the
flow field, an analogue of the IPSA iterative procedure is implemented [8].
The continuity equations are not solved explicitly; their discrete analogue is
used to derive the correction equation for pressure and the remaining dis-
crete equations. The difference approximation of the boundary conditions is
carried out using a second-order scheme. To calculate the velocity fields sat-
isfying the continuity equation and the pressure field consistent with them, a
variant of the SIMPLE iterative procedure [6] is implemented. When switch-
ing to a new time step, an initial assumption is made about the approximate
value of the pressure field, and the true value is determined through a cor-
rection. Corrections for velocities are introduced in a similar manner. The
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alternating direction method is used to numerically solve systems of lin-
ear algebraic equations of discrete analogues of differential equations and a
correction equation for pressure.

2. Calculation results

The formulation of the problem of introducing a high-temperature suspen-
sion into a channel with an initially non-uniform suspension is shown in
Figure 1. The computational domain is taken as a rectangular channel with
a size of 0.3×1.5 m. At the initial moment of time, there is no movement in
the channel, the thermodynamic parameters of the suspension correspond
to normal conditions with a constant temperature

u1x = u2x = u1y = u2y = 0, T = Tin.

The volume content of solid particles of the suspension is initially non-
uniform, shown in Figure 1 in color (blue –– low concentration, red –– high
concentration of the suspension). The distribution of physical and partial
densities of the phases at the initial moment of time is specified in agreement
with the pressure assignment as a result of the iterative process taking into
account the gravity field.

Figure 1. Statement of the problem

On the left boundary, constant velocities of the suspension phases and
the flow temperature were set

u1x|x=0 = u01x, u1y|x=0 = u01y, u2x|x=0 = u02x, u2y|x=0 = u02y, T |x=0 = T0.

On the right boundary, the normal derivatives of the phase velocities and
temperature were set equal to zero:
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The lateral boundaries were assumed to be impermeable and adiabati-
cally isolated. The absence of slippage of the suspension flow and the absence
of heat flow through the boundary were specified:
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u1x|y=0 = u1y|y=0 = 0, u1x|y=Ly = u1y|y=Ly = 0,

u2x|y=0 = u2y|y=0 = 0, u2x|y=Ly = u2y|y=Ly = 0,
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The values of the physical parameters for the dispersed phase are the
following: ρf1 = 2.6 ·103 kg/m3, α1 = 1.2 ·10−10 Pa−1, η1 = 1÷105 N/(ms2),

ρf2 = 9.9 · 103 kg/m3, α2 = 4.7 · 10−9 Pa−1, η2 = 10−3 N/(ms2). The model
parameters are calculated as follows

ρ1 = ρf1(1− φ), ρ2 = ρf2φ, α−1 = (1− φ)α1
−1 + φα2

−1.

The volume fraction φ of the dispersion phase at the initial moment of time
varied within 0.4 ÷ 0.6. In addition, the following parameters were set:
d1 = 0.1 m3/kg, d2 = 0.001 m2/(Ks2), Tc = 513 K, Tref = 293 K, a1 =
7 · 10−2 N/m, σ2 = 0.1÷2 N/m, λ2 = 10−2 kg/(ms2), λ1 = 10−6 kg/(ms2).
Diffusion coefficient D = 2 · 10−9 m2/s. The calculations take into account
the change in the friction coefficient associated with the change in the density
of the dispersed phase during the dynamic process of phase redistribution.

Figures 2–9 show the distributions of the particle number density of the
dispersed phase in the suspension n and the temperature distribution T .

Figures 2 and 3 show the results of modeling the introduction of a hot
suspension into a horizontal channel in which a suspension of non-uniform
concentration is under normal conditions. At the input boundary of the
channel, the horizontal components of the velocity vectors of the carrier and
dispersed phases are specified u1x = u2x = 0.1 m/s. At the initial moment
of time, there is no phase movement, from the upper to the lower boundary
of the computational domain, the profile of the content of the dispersed
phase from 0.4 to 0.6 is specified with a fairly sharp change in the volume
content of the phases identified along the central axis of the channel. The
flow temperature at the left boundary is T0 = 1200◦, the initial temperature
in the channel is Tin = 300◦.

An example of the effect of the viscosity of the dispersed phase on the
flow structure when introducing a high-temperature suspension is shown in
Figures 4 and 5. The flow temperature at the left boundary is T0 = 500◦,
the initial temperature in the channel is Tin = 300◦. The viscosity of the
dispersed phase was taken to be ηs = 103 N/(ms2) and ηs = 1 N/(ms2),
respectively. At the input boundary of the channel, the horizontal compo-
nents of the phase velocity vectors u1x = u2x = 0.1 m/s are specified. At
the initial moment of time, there is no phase motion, and the dispersion
phase content profile from 0.4 to 0.6 is specified from the upper to the lower
boundary of the computational domain.

A decrease in the viscosity of the dispersed phase of the suspension leads
to the appearance of structural inhomogeneities of the flow associated with
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Figure 2. Distribution of the specific content of dispersed phase particles (m−3)
in a horizontal channel for counting steps (a) 103, (b) 2 · 103, (c) 3 · 103

its stratification. It should be noted that the variation in the viscosity of
the dispersed phase has a more noticeable effect on the development of flow
inhomogeneity.

The instability of the layered flow of a high-temperature suspension
strongly depends on the specified distribution of the solid particle content.
Figures 6, 7 and 8, 9 show the results of modeling the introduction of a hot
suspension with different distributions of the solid particle content. In Fig-
ures 6, 7, the profile of the content of the dispersed (carrier) phase from 0.4
to 0.6 is specified from the upper to the lower boundary of the computa-
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Figure 3. Temperature distribution (◦C) in the horizontal channel for counting
steps (a) 103, (b) 2 · 103, (c) 3 · 103 corresponding to Figure 2

tional domain with a change in the volume content of the phases along the
central axis of the channel. In Figures 8, 9, the opposite profile was speci-
fied: the profile of the content of the dispersed (carrier) phase from 0.6 to
0.4 is specified from the upper to the lower boundary of the computational
domain with a change in the volume content of the phases along the cen-
tral axis of the channel. The remaining parameters of the problem are the
same: the horizontal components of the velocity vectors of the carrier and
dispersed phases are u1x = u2x = 0.1 m/s specified at the inlet boundary
of the channel, the flow temperature at the left boundary is T0 = 500◦, and
the initial temperature is Tin = 300◦.
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Figure 4. Distribution of the specific content of dispersed phase particles (m−3)
with viscosity 103 N/(ms2) for a counting step of 3 · 103

Figure 5. Distribution of the specific content of dispersed phase particles(m−3)
with viscosity 1 N/(ms2) for a counting step of 3 · 103
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Figure 6. Distribution of the specific content of dispersed phase particles (m−3)
in a horizontal channel for step 2 · 103

Figure 7. Temperature distribution (◦C) in the horizontal channel for step 2 · 103
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Figure 8. Distribution of the specific content of dispersed phase particles (m−3)
in a horizontal channel for step 2 · 103

Figure 9. Temperature distribution (◦C) in the horizontal channel for step 2 · 103
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The assignment of an inverse distribution of the volumetric content of
solid particles of a suspension leads to the development of concentration
instability of the flow.

Thus, in this work, based on the control volume method, a numerical
simulation of the flow of a high-temperature two-phase mixture in a channel
in a gravity field was carried out. The numerical model takes into account
the compressibility of a heterophase suspension and considers the main dissi-
pative and surface phenomena. The nature of the flow of a high-temperature
suspension in a horizontal channel was studied at different values of the vis-
cosity of the two-phase mixture. The effect of the non-uniform distribution
of solid particles of the suspension on the development of flow instability
was shown.
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