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Some aspects of mathematical modeling
using the models together
with observational data*

V.V. Penenko

The methods of the solution of optimization problems on the basis of variational
principle are described. They use numerical models together with observational
data. In particularly, the problems of sensitivity investigations and data assimila-
tion are considered. The algorithmic advantages of the proposed approach based
on the adjoint problems and sensitivity functions as compared with the Kalman
filtering methods are discussed.

Introduction

The present paper describes some applications of mathematical models and
numerical methods for the investigation of climate and for the solution of
environmental problems. There is a wide range of problems connected with
mathematical simulation of the atmosphere and ocean and with estimation
of the industrial effect for the environment. With the industrial development
the man’s influence on the climatic system becomes apparent in variations of
basic parameters characterizing the atmospheric state. It means that human
impact could be interpreted as one of the factors in the climatic system and
estimation of this factor is one of the applications of the models sensitivity
theory. To solve such problems a special mathematical method is needed.
It should be based on variational principles, methods of perturbation, opti-
mization and identification theory. Since we discuss here the behaviour of
the model and its stability to variations of input data. Practical realization
of numerical algorithms is of particular importance.

Variational principles together with splitting-up methods can serve as
methodological base of computational algorithms. Splitting-up methods
provide economic and stable numerical algorithms for realization of the mod-
els and optimization theory. The variational principle guarantees mutual
concordance of values at different steps of computation. It allows us to for-
mulate methods for determining functions of the model’s sensitivity and to
consider them from the viewpoint of perturbation theory as methods of esti-
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mation of functional variations depending on variations of input data. Also
important are the inverse problems, i.e., estimation of the input parameters
by means of measured data of meteorological fields being simulated.

Perturbation and optimization methods as applied to numerical sim-
ulation of atmospheric and oceanic processes make it possible to analyze
qualitatively the model, estimate relative contribution of various factors, ra-
tionally design numerical experiments, formulate a series of new problems
of analysis and prediction of hydrometeorological fields and environmental
situations including inverse problems of identification of the model’s parame-
ters, estimate space and time scales of the domains of influence of parameter
variations and sources etc,

The questions concerned the specification of input parameters and initial
data for mathematical models always arise when solving different problems
related to the physics of atmosphere, ocean and environmental protection.
The information obtained from observations in real conditions is usually
used for this purpose.

Let us formulate the problem in a more general way and consider mathe-
‘matical models together with observational data. In this case mathematical
models will be used for the estimation of initial fields, reconstruction of the
field time- spatial structure and more precise definition of the parameters for
the models themselves with the help of the measured data. Diagnostic qual-
ity estimation of the model will be made simultaneously with assimilation
of observations.

For the solution of this problem it is convenient to use optimization
methods, combined with methods for investigation of the model sensitivity.
Such a combination results in the closed formulation of the problems and
in the clear organization of interaction between the mathematical model
and the actual information. Adjoint problems play an essential role in the
realization of this approach.

At present a considerable experience has been gained in the application
of optimization methods and adjoint equations in different fields of science
and technology [2-12]. Problems of analysis and assimilation of observa-
tions using numerical models offer wide possibilities for the utilization of
these methods. The detailed review of different applications of variational
methods in meteorology is given in [15]. This paper is the development of
the results of the works described in [11-21].

Data assimilation with optimization makes it possible to use simultane-
ously all the available data in such a form which is obtained from measure-
ments.

Three types of basic elements must be defined in order to represent the

methods for the assimilation of observations and the diagnosis of the model
quality:
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o mathematical models of investigated processes,
e mathematical models of “measurements”,

® criteria for the model quality and assimilation of observations.

Models of the processes are well-known. Models of observations describe
the transformation in which state functions correspond to the set of ob-
served quantities. Observations can be contact, indirect and remote. Their
sense determines the structure of the corresponding model. For.example,
if contact measurements give the state function values, then the appropri-
ate interpolation procedure is a model of such observations. In this case
interpolation must be carried out from the simulated fields, i.e., the state
functionvalues, calculated with the models, are transferred to the set of
points where measurements are made.

1. Statement of the problem and construction
of the discrete approximations

Major definition in the description of mathematical models are state func-
tions and parameters. Their physical meaning and the difference between
them depend on the specific formulation of the model.

In the problems of geophysical hydrothermodynamics and environment,
velocity vector components, temperature, pressure, density, humidity and
concentrations of pollutants refer to the state functions. These functions
determine the system behaviour at every point of the model integration
domain. The values of turbulent coefficients, integration domain character-
istics, coefficients of equations and boundary conditions, the source charac-
teristics, etc., will be given as parameters. The fields of initial values can
alsg be referred either to the unknown parameters or to the state functions.

For the convenience of the further description let us give advantage of
the operational notations. Let us write the model equations in the form

0F | 3 V) Fla 1) — s
BE-{.G((,O,Y)_f(x?t)”r(x’t)’ (1)
FE€Q(Dy), Y e R(D,).

The following notations are used here: @ is a state vector, ¥ is a parameter
vector, B is a diagonal matrix, some diagonal elements of which can be zero,
G(4,Y) is a nonlinear matrix operator depending on the state function and
parameters, f is a function of sources,  is a function of the model errors,
D; = Dx[0,t ], D is a domain of spatial variables , [0,% ] is the time inter-
val, Q(D;) is the space of state functions satisfying the boundary conditions,
R(Dy) is the range of admissible parameter values. For the considered class
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of problems, the operator G(¢g, 17) is defined by the hydrothermodynamic
equations of the “atmosphere-water-earth” system, transport and transfor-
mation of pollutants, and by the relations at the interface boundaries. It
includes all the terms of equations except the time derivatives. With re-
spect to the components of the state function ¢, this is a nonlinear matrix
operator with partial derivatives. In the stationary case, B-matrix is zero.
The initial conditions at ¢t = 0 and the model parameters can be written
in the form .
@ = @2+ &o(%), (2)
?:ﬁ,+((f,t). (3)

Here, @9 and Y, are the given a priori estimates of the initial fields @°
and the parameters’ vector ¥; £ (%), ((&,t) are the errors of the initial state
and parameters. If we suppose that the model and input data are exact,
the error terms in (1)-(3) should be omitted. The boundary conditions for
the closure of the model are the consequences of the physical content of the
problem under investigation.

1.1. Variational description of the model

For the construction of the algorithms of the direct and inverse modeling,
it is necessary to have both the differential and variational formulations of
the models. Let us give the variational form of the model (1)-(3) by means
of the integral identity [4, 5]

, G e
16.7.¢) = (B +6@.7) - -7 ) =0,

@€ Q(Dy), ¢ €Q*(Dy), Y € R(Dy).

Here, ¢* is an arbitrary sufficiently smooth function, @*(D;) is the space
of sufficiently smooth functions defined in D;. The functional I(@, ¥, &*) in
(4) is formed so that all the equations of model (1), initial and boundary
conditions, conditions at the interface boundaries and external sources are
included in it simultaneously.

The form of the functional and scalar product in (4) are generated from
the form of the total energy balance equation for model (1).

(4)

1.2. The model of observational data

Now let us describe one more essential element of the investigation. Here we
mean the data of measurements. In order to include them into the model
processing, it is necessary to formulate the functional relationship between
the measurements themselves and the state functions. Let this relation take
the form
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‘I’:n = ﬁ(‘ﬁ)"’é‘(i‘vt)v (5)

Here ¥,, = {‘i;m(fk, k = 1,Ko} is the set of observed values; I_i'((,b') is the
set of measurement models; £(Z, t) are the errors of these models, Kj is a

number of measurements. The values of ¥,, are defined on the set of points
D" € Dy.

1.3. Generalized characteristics of the processes

From the point of view of the computational technology, the methods of
inverse modeling and sensitivity investigations are more suited to the work
with global (integral) characteristics of the models and processes than to the
work with the local ones. That is why we determine the set of such objects
in the form

%(¢) = [ @@ H)xu(7 0aDdt, k=TK. (6)
Dy

Here Fi.() are some functions of @, xx(Z,t)dDdt is the Radon measure in
the region Dy, and xix(Z,t) are non-negative weight functions.

In particular, the functions xi(Z,t) can have a finite support in Dj.
For the functionals defined on the discrete set of points in D; the measure
Xk(Z,t)dDdt is the Dirac measure located on unique point or on the set of
points D* € D, [22]. Relations (5) have a local nature. Therefore, it is not
convenient to include them into the modeling process directly. For these
purposes, it is better to construct with their use the functional of the form

©)
w0 = ((En- H@) xS (In- @) . @

op
where the index T denotes the operation of transposition. The vectors are
arranged in columns. Functional (7) has the form of a scalar product with
the positive definite weight matrix S and the weight function xp. They are
defined in the domain D}*. If we choose the function xo as a measure of
a special type, the functional (7) can be rewritten in the integral form (6).
Functional (7) is the quality functional of the model.

2. Discrete approximations of the models and
functionals

Variational formulation (4) is used for the construction of the discrete ap-
proximations of the model. For these purposes, a grid D} is introduced into
the domain D; and the discrete analogs Q*(D}), Q*»(DP), R*(D?}) of the
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corresponding functional spaces are defined on it. Then the integral identity
(3) is approximated by its sum analog

™@Y,8) =0, geQ"D}, ¢ eQ™(Dl), Y e RMDF. (8)

The superscript A denotes the discrete analog of the corresponding object.
Numerical schemes for the model (1) are obtained from the stationarity con-
ditions of the functional I*(, Y, @*) at arbitrary and independent variations
of the grid functions @ € Q*(D}) and @* € Q**(D}) at the grid nodes D}
[12].

Constructively, these conditions are realized by the operations

)
oG"

@, Y,8) =0, ¢ € Q**(D}). (9)

The set of equations adjoint to (10) is obtained similarly

SoIM@T.7) + (5,0 =0, §€QHDY. (10)
Here 7(Z,t) is some given function. Its form is defined with the specific
use of the adjoint problem. This will be considered later. Differentiation in
(9)-(10) is realized with respect to the function grid components at every
grid point.

Boundary conditions in (9)—(10) are taken into account by the coefficients
and parameters of discrete equations. This is a consequence of the sum
functional.

If fractional time steps and decomposition into subdomains are used in
the construction of identity (8), equations (9) and (10) are the numerical
splitting schemes.

The number of the splitting stages is determined by the assignment of
the number of fractional steps in time and the number of subdomains, and
also by the type of quadrature formulas in time and in space. Description
of specific approximations and methods for the realization of splitting-up
schemes is given in [4, 5, 10, 12]. Note only, that the stability of com-
putational algorithms in this way of the numerical model construction is
provided by the property of energetic balance inherent in the identity (4).
The numerical model is constructed using this property. The set of adjoint
equations is a consequence of approximations of the basic model.

Investigation of the model sensitivity to the variations of input parame-
ters is a necessary step in the solution of the numerical simulation problems.
This is especially necessary in studying the real physical system behaviour
with the help of numerical models. In this case sensitivity functions play a
substantial role. In accordance with their definition they represent partial
derivatives of the investigated state function characteristics with respect to
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model parameters. If the model is considered together with the observational
data, then the sensitivity functions make it possible to realize interrelations
between observations and models. Actually, algorithmically the sensitivity
investigation gives numerical values of the gradients, that are required for
the realization of optimization methods. By the way, we pose the problem
of data assimilation by the models as a problem of optimization. The con-
struction of the main sensitivity relation is made according to the algorithm

- —

- = a
53,7 T) = e l* 0,77 +607) o= RYB.7,67), (1)
where @, g* are the solution of (35) and (42) with the unpertubed values of
Y.
The calculation of the sensitivity function is made by the formula

h
Q'{'. = “a__Rh(@@'ﬂsY), i=1,N. (12)

3. Governing equations of basic model

Let us write governing system of equations of atmospheric hydrodynamics:
the equations of motion

oru o RT
W+M(1ru)—f1rv+m1r[—é-;+ﬂ_+w/a 33:] D(u) =0, (13)
omv 0 RT 0n
at +M(NU)+fNﬂ+m1T|:ay+m‘a—y] —D(U)—-O, (14)
the thermodynamic equation
ag—tT + M(xT)- D(T) - Qr
RT ) or or or
- m 7r0+0(at +m(u3:r +v-§§))] =0, (15)
the water vapour continuity equation
Onq
21 T M(m9) - D(g) - Qg =0, (16)
the continuity equation
B7r 1ru 0 /v ora
[ax + 6y( )]‘i‘% =0, (17)

the hydrostatic equation
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o2  __RT _
0o ' a+pr/m

the equation for the surface pressure variations
or 178 (mu a (mv

The latter equation is the result of vertical integration of the continuity
equation. The sigmadot (&) equation is also obtained by vertical integration
of the continuity equation

ot [ (Gt m (e (2))ar =0 o)
The formula

- ’+] a+pr/1r N | (21)

is used to calculate ®, where ®, is the surface geopotential. The operators
D(¢), in which ¢ denotes u, v, T or g, are the turbulent exchange operators,
Qr is the diabatic heating rate, (), is the source term in the water vapour
equation,

M(p) = m%% (22) + 6%(3)) + ;—U(w), (22)

m m

where ¢ = 7u, nv, #T, 7q; ¢ = (p — pr)/™, ®* = ps — p1, P iS pressure, p; is
a surface pressure, pr is the pressure at the top of the model atmosphere,
u, v, & are the components of vector velocity @, ® is geopotential, T is
temperature, f is the Coriolis parameter, R is the gas constant for the dry
air, m is the map scale factor, ¢, is a specific heat at a constant pressure.

3.1. The structure of the state functions and adjoint
functions

Let us define the state function vector for the system (13)-(22) and introduce
some auxilary notations which we shall need later on
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¢=A{pi, i=1,8} ={u,v,T,9,6,x, 9,7} € Q(Dy),

¢ ={¢}, i =L,8} = {u",v",T",¢", 6", x*, ", 7"} € Q*(D)),
)= {i, i=18} = {U,V,T,4,5,x,®,7/m} € Q(D,),

= {7, i = T8} = {U", V", 1", ¢, 5%, x*, @, 7*} € Q*(Dy),
8¢ ={6pi, i =T,8}, & = {64, i =1,8},

{0, ¥} = {mpi/m, mp}/m}, i=T5,

0 = (wdpi + @ibm)/m, bp; = (me; — pibr)/m, i=T1,5,
¢={c;, (i=1,8)}={1,1,¢p¢,1,1,1,1}.

Here Q(Dy) is the space of sufficiently smooth functions ¢ which satisfy
the boundary conditions; x is the auxiliary function of the same structure
as d; ¢* is a vector-function with sufficiently smooth components (“trial”
functions), which are introduced for the formal definition of the main integral
identity corresponding to the origin problem; Q*(D;) is the space of the
trial functions. Both vectors ¢ and @* are of the same time-space structure.
¥ and dJ"‘ are the auxiliary definitions for the state and trial functions;
6@ and 8% are the variations of the state functions; ¢; (i = 1,8) are the
coefficients which serve to equalize the physical dimensions of different terms
in the inner product; Dy = D x [0, ]; Sy = Sx [0, ]; & = Qx [0, ];
D=Sx[0<0<1];S={a<z<bc<y<d}; Q is the lateral boundary
of D, [0,¢ ] is the time interval. The functions @ and ¥ and their variations
6 and 8% are one-to-one interrelated by the formulas of the variations in
the vicinity of unperturbed values of the state vector.

Besides the state functions, the definition of the parameter vector and
its variations is introduced

Y ={Y;, i=1,N} € R(D,),
8Y = {8Y;, i=T,N}, Y +(6Y € R(Dy),

(23)

(24)

where N is a number of the given parameters and R(D;) is a range of their
admissible values, { is a real parameter. The vector-function of the initial
state ¢°(%), source functions Qr, Qq, coefficients of the equations, boundary
values of the state function and other prescribed values are included in the
parameter vector. The variations of the parameters are considered in the
vicinity of the prescribed unperturbed values of the Y.

The specific feature of the o-coordinate model is in the fact that there is
some redundancy in the system (13)-(20). First, as the continuity equation
(17) as the two its consiquences (19), (20) are used. Second, the time differ-
tial operators are applied to the product of the state functions. To take this
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into account and to simplify the algorithmic realization, we introduce the
dual definitions of the state and trial functions in (23) and include auxiliary
components in them.

3.2. Boundary conditions

The boundary conditions for the state functions are defined by the physical
closure of the model. For ¢ it is

6=0 at o=0,1. (25)

The condition of the continuous approach to the background processes is
used in the limited area models. In global models, the periodic conditions
are involved. The interaction between the air and underlaying surface is
taken into account at the low boundary in the frames of the boundary or
surface layer parameterizations. The conditions of the interaction with the
higher atmospheric layers are exploited at the upper boundary. The form of
these conditions are dependent on the description of the turbulent exchange
operators. The boundary conditions for ¢* are given in the connection
with.the conditions for the state functions. They are the consequences of
both the variational formulation of the model and the structure of evaluable
functionals (6).

4. Formulation of intégral identity

First of all, it is necessary to introduce the scalar product in the space of
the state functions

7

(P1,P2) = fD D cipripx) dD dt + 68/; mme dSdt, (26)
t =1 t

where @y, @3 € Q(D;), dD = dSdo, dS = dz dy/m>.

Let G; = Gi(), ¢ = 1,8, be the left-hand sides of the equations (13)-
(16), (18), (20), (17), (19), accordingly, except the time derivatives. Then,
using the operator notations, let us rewrite the system (13)-(20) in the
operator form .

‘ % - -
2 +GW) =0, (27)
where G(%) = {G;, i = 1,8}, B is the (8 x 8) square matrix defined by the
local time structure of the model: B = {b;; = 1, for i = 1,4, 8; b;; = 0, for
i =5,7; brs = 1; the rest b;; = 0, for i,j = 1,8, i # j}.

The next point is to construct the main integral identity for the model.
To this aim, the equations (27) are scalar multiplied by the arbitrary suffi-
ciently smooth functions ¢* € Q(D;) in accordance with (26)

B
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16.69=(82 + 6, ") = ]D{z (5 + i) i

=1

+ esGs6* + ceGex" + C7(67;/tm + G7) @“}dD dt
+ / cs &T/ + Gs)‘ﬂ"‘m dSdt = 0. (28)

After substitution the expressions for G; and ¢; (i = 1,8) into (28), the
identity can be transformed to the form which is more convinient for the
construction of the discrete approximations and derivation of the main re-
lations of the sensitivity theory of the mathematical models [18].

I(QO,(P‘) = /D,{Z (a"f1 +M ¢1)+D(¢1))(P:

fU" = V') = (CorQrT™ + 7CoQqq")/m +

RTm . . 0oT*\ 8
m‘r + (‘I’ —Q—'a—';-)g-t-(i’r/m)'i'

E+/ do —a/lN(a')da’]x‘+
0% 0%y | .. 00
m(U G +V'5,) +5 30]

oPb* oo+ . 0P*
m(U g +V ) + 5

f&{(gg(r/m)-{.‘[}‘ N(d')da')}vr*mdgdt+

. .0 _
/ﬂ U@ mdS2ds + fs BT g (r/m)mdSde = 0, (29)

] }mdDdt +

where

i) a. 9 /.
M) =m g (U6 2) + Z(veZ) + Z(502)]

SRy A * * ﬁ * * on
= (r/0)(E = £T%) 4 m(U* ~ UT) 57 4 m(V* ~VT") g,
oU oV
N(@) =m(z+5);

Un is the normal components of the vectors U, = (U, V), dQ = {dzdo/m;
dyde/m}.
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As it is seen, in the first integrand the group of terms is organized posess-
“ing the antisymmetric character with respect to the functions % and @*.
These terms are responsible for the mutial energy exchange between the
different parts of the model. The forms (M (%), "), ¢ = 1,4, correspond
to the transport operators, and (D(y),¢*) is the symmetric integral form
of the diffusive operators. It is seen from (20), (21) that the functions &
and & are expressed by the other components of the state function and that
is why they can be excluded from the system. Unfortunately, such pro-
cedure makes the formulas more complicated. To avoid these undesirable
consequences, the three components with their multipliers %, x*, ®* are
additionary included in (29).

The transport operators M(v;) posess the properties of antisymmery
and energy balance:

/ (%‘f‘+M(¢,))cp,mdDdt— f ( ;b +M () pim dDdt+ A(:, 7). (30)

D\ Ot

A(ip”(’a:) :/D'(b,{p,lgmdD—l-L Unzb,ga:mzvrdﬂdt, ’t:ﬁ

The turbulent operators D(%;), (i = 1,4), are defined at the surfaces o =
const in such a way that they are divergent, symmetric with respect to the
i, ; and non-positive in D;. In particular,

3 31/),
e
where u;, v; are the turbulent coefficients, s marks the horizontal operators.

To complete the statement of the problem with turbulence, let us take the
following boundary conditions

D(4;) = mdiv, p; grad, ¢; + (32)

k;%% =r;, (Z,t) €y, (33)
3#’: . 31/); o _
Vig =0 at 0 =0; vigy =T at o0 = 1. (34)

The functions r; in (33) are defined from the real conditions of the approach
of the corresponding fields to their background values. 7; in (34) are cal-
culated with the help of the boundary or the surface layer models, which
describe the regimes of the interaction of the atmosphere with the under-
laying surface.

In the absence of turbulent exchange operators and external sources, af-
ter the substitution ¢* = @, = {u,v,1,q,,0,®,0} into the integral identity
(29), it turns to the energy balance equation
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Ll ' |
16,6 = [; ]D m(u? + v? +2¢,T + c,g*)dD + /S ®

% js; T (u? + V% + 2¢,T 4 ¢,¢% + 20)d dt = 0. (35)

The same property of energy balance should posess both the discrete
analoque of (29) and the numerical model constructed on its basis.

5. The adjoint problem and sensitivity functions
for the model in o-coordinates

The specific character of the presentation of the hydrodynamical model in o-
coordinates is aslo seen in the structure of the ajoint equations. To take this
into account, the insertion of the integral identity (29) to the general scheme
of the variational principles of discretization and sensitivity investigations,
described in Sections 3 and 4, is made with the help of the dual presentation
of the state and trial function and their variations.

The main functional of the model in (29)

16,8 = 1(3Y,¢)

has got the rather complicated dependence on its arguments. That is why,
for convinience, we shall describe all formulas in the differential form keeping
in mind that all operations are carried out in the discrete form. First, let us
extract three groups of the terms connected with (1) the transport operators,
(2) turbulence operators, (3) the energy exchange in the system. Then, after
linearization and variation procedures, the results are reorganized in two
groups: (1) terms with the variations 64 and (2) terms with the variations
6Y-.. Finally, the first group generates the adjoint problems (10), and the
second one — the main sensitivity relation (11) and the sensitivity functions
themselves (12).

5.1. The adjoint system

In accordance with (10), the conditions of the independence of the variations
of the functional 41(@, $*) on the variations of the components of the state

function 89 = {8y, i = 1 1,8} give us the system of adjoint equations [18]
* 1
_ou + M*u* + fv* - m(%q) / x*do’ / cr’x"‘dor')) -

ot
=, m?\ B} .
Zc.-(?)w,- o~ D(u') +m =0, (36)
=1
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—6(:;* + M*v* - lu* - (% ll + T*— + 5 f x"do’ f 'X'daf)) -
gm(m?z)%'a—? - D) +m =0, (37)
—?+M*T'+W—(}%Mr‘ -DI)4m=0. (@)
- ~D(g") +m4 =0, (39)
("’;H‘;“) ot (Dm0
~_¥-%~;q¢;%“f+m=0, (41)
®* — waT™* + 7 =0, (42)

a, . a(2m + pr/o) - R —
5;(1:‘ /m)+m (): -ET) +

m(b%a(U' —UT + —a(v* - VT")) +

Zm i (U, grad, ¢! + (E/m) e ) — g =0, (43)

i=1

a = (RT)/(r + pr/0o).

The conditions
=0, v*'=0, T*=0, ¢=0, n*=0, att=1¢ (44)

are obtained from the same reasons. The discrete analog of the ajoint equa-
tions and the scheme of their solution are the consequences of both the
integral identity and the scheme of realization of the direct problem. The
equations (40)—(42) are axiliary. The time integration, starting with ¢ =,
is made in the inverse direction.

The components 77 = {7, i = 1,8} are introduced into the system to
solve the problems of the sensitivity for the dynamical model. The concrete
form of this vector is obtained by the gradients of the quality functional.
The vector-gradient is calculated with respect to the components .
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5.2. Dependence of variations on the input parameters and
sensitivity functions

If to suppose that the function Z* satisfies the homogenious system (36)—-(43)
(i.e., at f = 0), and the condition (44), it is obtained

- P aI 1) - - v
§I(@,Y,F") = ((;;Yq’) 51’) = R(¢, ¢, 8Y)

- f (c36QrT" + ¢48Qyq")dD dt + f Zc,tsi,b,(p,h ;mdD +
=1
Ry(#,7,6Y) + Ro(§, 7", 6Y) + Rs(@, 7", 6Y), (45)
where R;, R,, R3 are given by
4 2 4 2

T ¥ - m * m
Ry(@,¢;,0Y) = fn {5Un Y it} - Y eilUnbthitg; —-
¢ i=1

=1

4
i—: Z mzc,-Un',bi(Pf}dQ di. (46)
=1
4
Ry(@, 77, 6Y —g { f [Jﬂ,grad.,w.gradg it . 6o]m dDdt +
dripimdQdt+ | dripimdSdt;, 47
Qe S !

Sps, 6v;, Or;, 67; (i = 1,4) are the variations of Y.

Rs(3, 7", 67) = /n (®*8U,, + U26® + (Ur — UpT*)ér — xT"6U, }m d2 dt —
t

fs (T*§(®,) + 1*67)],_,dS. (48)
The variations of functionals
8%k(¢) = (grady ®x(9),8Y), k=T, (49)
are used as the measure of the model sensitivity, where
gradp & (@) = {atpk(@, i= I—,_IV}

is the set of the sensitivity functions of (6) to the variations of the parameters
8Y in the vicinity of undisturbed their values Y.
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The algorithm for the calculation of variations consists of some steps
[13]:

1. The direct problem with the undisturbed values of the parameter
vector is solved in the discrete form (9). As a result, the solution ¢ is
obtained.

2. The set of the vectors are calculated

(95) = {mi = k(ﬁf")x( ), i=T8}, k=K. (50)

3. The set of the adjoint problems (36)-(44) with the source term
{1k, k =T, K} are solved. The result is {@}, k =1,K}.

4. With the use of {@, 7}, k = 1, K}, the sensitivity formulas are con-
structed as

5@} (@) = R*@, 71, 0Y), k=LK, (51)

where R"(gb’,gb";c,éf) is obtained from (11) and (45) by the substitution of
the values ¢* = @}, k = L K.

To find out the expressions for the sensitivity functions, the coefficients
with the same components of the vector of variations Y in (49), (45) and
(51) are equated with each other. This action is equivalent to the calcula-
tions of

8 o e . _
grady 94(9) = {557 B* (@ @1,07), i=TN}, k=TK.  (5?)

The differentiation in (52) is carried out on the whole set of the components
of 8Y in its discrete form. If to subsitute the concrete values of {¢, 7%,
k =T, K} into the formulas, the numerial values of the sensitivity functions
are obtained.

6. The basic algorithm of data assimilation,
diagnostics of the model and inverse modeling

Let us use the ideas of the optimization theory and the variational technique
for the statement of the inverse problems and for the construction of meth-
ods for their solution. In this case, all approximations are defined by the
structure of the quality functional and by the way of its minimization on
the set of values of the state functions, parameters and errors of the discrete
formulation of the model {13, 21].

The basic functional is formulated so that all the available real data,
errors of the numerical model and input parameters are taken into account:
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(@) = 20:(@) + (FTM‘ZF)D? + ((930 - ‘ﬁg)TMO (9-’0 B 'ﬁg))D

oo ] (59
+ ((Y - Ya) Ml (Y - Yc)) 2Ih((ﬁi Ys 9—’*)

Here the first term is given by (6), (7), the second term takes into account
the model errors, the third term describes errors in the initial data, the
fourth term is responsible for the errors of the parameters, and the fifth one
is a numerical model of the processes in a variational form. Mg, My, M, are
weight matrices. The stationarity conditions for the functional (53) gives us
the system of equations [21]

BAG+GHBY) - f= (54)
(BA)T @+ AT(3, V)7 +ﬁ =0, (55)
k(%) li== 0, (56)
h i

(E, ) = grad () = 25D, (57)
¢O -0 + My 195;:(0)’ t=0, (58)
F( ) = MZ_ (1‘, t)(Pk .’E,t), (59)
Y =Y, + MG, (60)
Go= S5 THB Y, 50, (61)
AGTIP = o= [6H5+ 0P P)] lamo, (62)

where A; is a discrete approximation of time differential operator, C_;c are the
functions of model sensitivity to the variations of parameters, and a is a real
parameter. For the purposes of diagnosis of the models, data assimilation,
identification of parameters, index & is set equal to zero and this means that
the functional ®f(¢) participates in (53) and (57).

System of equations (54)-(62) is solved with respect to 7, @°¥ by the
iterative procedures beginning with the initial approximations for the sought
functions

70 = o; @O = &°; YO =Y, (63)
Three basic elements are necessary for the realization of the method:

(1) algorithm for the solution of the direct problem (9), (54);
(2) algorithm for the solution of the adjoint problem (10), (55);

(3) algorithm for the calculation of sensitivity functions (s with respect to
the variations of the parameters (11), (12), (60). Let us note that the
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second term in the quality functional (53), which takes into account
the errors of the model, additionally playes the role of regulator of
calculations.

Iterations are not carried out for the investigation of model sensitivity.
First, one cycle of calculations is made for each functional ®%(), k = 0, K to

find the functions go,gak,g‘ . Then the main sensitivity relationsis constructed:

SOP) = (G d¥) = (G Fuk 0¥ F) om0 (64)

If to exclude adjoint function ¢* from the system of equations (54)—(61), the
result will be the procedure of the Kalman-Bucy type [1]. Indeed, if matrix
B is nonsingular one and k = 0, then after simple operations the following
system of equations are obtained from (54)—(59) [13, 16]

208 of . -
By +GHAY) - = BPE (P52 oS (B - (7). (65)

B%€+AP+BPB (AT+(3‘3§))TXO af;f) P)=M;", (66)

F=¢°, P(£,0)= My'B, at t=0, (67)

where P = P(Z,t) is n X n weight matrix, n is dimension of the functions
¢ and ¢~ in discrete form. The system (65)—(67) is the scheme of the first
order extended Kalman filtering. In the case when B = E and operators
G"(#,Y) and H(@) are linear with respect to &, the system of equation
(54)-(59) is algebraically identical to the scheme of Kalman filtering (65)-
(67). And it is not surprising because both types of procedures are generated
by the same quality functional (53). If to keep in mind the dimensions of
matrices and vectors and to compare the computational costs of realizations
of the algorithms, the following conclusion can be done. For the problems of
oceanic and atmospheric dynamics, the filtering of the Kalman type has not
adventage over the algoritm of data assimilation with the use of the adjoint
problems and sensitivity functionals. It is essential that ajoint problems and
sensitivity functions for all functionals can be simultaniously and parallelly
calculated. It is due to the fact that the problems (55) differ just by the
right-hand sides. The solution of the system (54) is the usual stage of the
direct modeling. Its result is the reconstruction of the space-time behavior
of the state function @ in the grid domain D!. It is worth to mention that
the algorithm (54)-(62), while working for the data assimilation, is typical
algorithm of computing tomography of the natural object with respect to
observational data.
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7. Design of observational experiment

State function plays an important role in the understanding of physical pro-
cesses in the climatic system. But it is difficult to estimate the observed
system behaviour only with this function. In particular, this is due to the
fact that not all the characteristics of the investigated processes can be
measured directly. Introduction of adjoint problems allows to relate math-
ematical models with observations. Using them sensitivity and influence
functions for the evoluated functional can be calculated and optimal plans
for observations can be constructed. Calculation of the influence functions
is especially useful for the solution of problems on the limited territory. In
this case estimates for the influence domains for the considered territory help
us to understand how to treat boundary conditions on the lateral bound-
aries and how to realize interaction between models of different scales. The
design of observational experiments with the help of sensitivity functions
was described in [12, 16]. The model of pollutants’ transport in the atmo-
sphere was taken there as an example. Here we consider one more approach
connected with the problems of data assimilation.

The functionals of the type (7) are defining ones at the stage of data
assimilation. To construct them all kinds of available data are taken into
account. The points of observation are proposed to be fixed.

While the problem of design is solved the locations of the points &}
will be changed according to the given criterion. As usual, this criterion is
the condition of obtaining the acceptable accuracy of estimations of desired
parameters [23]. Due to nonlinearity of the models we shall use the ideas
of successive design of observations [23). Let us suppose that the law of the
moving of the observational points can be parameterized by

Tk = 5% + TV (31), Tkr, Tk € Dy, (68)

where 2% and zi, are starting and planning observational points, V(«}) is
the “rate” in the space of design, 7 is a parameter. In the contrary of the
data assimilation problem where the influence domains of all observations
could be supperposed the design problem demands to separate the influ-
ence domains of each observation. To this goal we write the result of each
observation from (5) as a functional

U (23) = H(P) |pesi= ]D H(@)X(Z - £t)dDdt, &t e D",  (69)

where x (& — Zy)dDdt is the Dirac measure in the point z}. The sensitivity
functions with respect to the variations of the evaluated model parameters
and the coordinates of the observational points z} are calculated for the
functionals. For these aims the modification of the basic algorithm from the
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previous item is constructed. Using it, the problem of minimizing of the
goal functional with respect to the parameters 17(3:';) and 7 of the equations
(6) is solved. It should be mentioned that the solution of the optimization
problems, particularly the problems of the experimental design, is not easy to
obtain. Iterative techniques demand the interactive procedures for choosing
the parameters influencing on the behavior and convergence of algorithms.
In such cases the sensitivity functions give us the auxiliary information for
the organization of the interactive calculations.

8. Conclusion

The use of models together with observational data expands the possibilities
of mathematical modeling for the estimation of climatic changes and for the
solution of ecological problems. For these goals it is necessary to develop
the methods of direct and inverse modeling. The variational methods of
optimization can be used as an instrument for the realization of the inverse
modeling and diagnostic investigations.

The algorithms for the solution of the inverse and optimizational prob-
lems are closed in the sense that all stages of calculations in them are mu-
tually agreed. Nevertheless, the trouble with the rate of convergence of it-
erations as well as the difficulties with the choose of the appropriate weight
matrices in the functional (53) and of the a priori estimations for the de-
sirable functions may occur. It is due to nonlinearity of the models, the
presence of limitations, the huge number of internal and external degrees
of freedom in the discrete presentation of the models, etc. For the efficient
realization of the goals we need the interactive methods of modeling. From
this point of view the methods of calculation of sensitivity functions for the
model of complicated structure and the differential functionals of general
form are the most advanced parts of the investigations. The adjoint prob-
lems allow us to exclude the internal degrees of freedom in the external cycles
of optimization methods. The sensitivity functions give us the constructive
basis for the interactive analysis and control the calculations.
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